
Measurement, Analysis and Control

to Changes of Network Traffic

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2008

Yuichi OHSITA

List of Publications

Journal Papers

1. Y. Ohsita, S. Ata, and M. Murata, “Detecting Distributed Denial-of-Service Attacks by Ana-

lyzing TCP SYN Packets Statistically,” IEICE Transactions on Communications, vol. E89-B,

No.10, pp. 2868–2877, Oct. 2006.

2. Y. Ohsita, S. Ata, and M. Murata, “Identification of Attack Nodes from Traffic Matrix Esti-

mation,” IEICE Transactions on Communications, vol. E90-B, No.10, pp. 2854–2864, Oct.

2007.

3. Y. Ohsita, S. Ata, and M. Murata, “Deployable Overlay Network for Defense against Dis-

tributed SYN Flood Attacks,” to appear in IEICE Transactions on Communications vol. E91-

B, No.8, Aug. 2008.

4. Y. Ohsita, T. Miyamura, S. Arakawa, E. Oki, S. Shiomoto, and M. Murata, “Estimation of

Current Traffic Matrices from Long-term Traffic Variations,” submitted to IEICE Transac-

tions on Communications.

5. Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, S. Shiomoto, and M. Murata, “Gradually

Reconfiguring Virtual Network Topologies based on Estimated Traffic Matrices,” submitted

to IEEE/ACM Transactions on Networking.

Refereed Conference Papers

1. Y. Ohsita, S. Ata, and M. Murata, “Detecting Distributed Denial-of-Service Attacks by Ana-

lyzing TCP SYN Packets Statistically,” in Proceedings of IEEE Globecom 2004, pp. 2511–

2515 Nov. 2004.

i

2. Y. Ohsita, S. Ata, and M. Murata, “Deployable Overlay Network for Defense against Dis-

tributed SYN Flood Attacks,” in Proceedings of IEEE International Conference on Computer

Communications and Networks (ICCCN 2005), pp. 407–412, Oct. 2005.

3. Y. Ohsita, S. Ata, and M. Murata, “Identification of Attack Nodes from Traffic Matrix Esti-

mation,” in Proceedings of 4th International Trusted Internet Workshop, Dec. 2005.

4. Y. Ohsita, T. Miyamura, S. Arakawa, E. Oki, S. Shiomoto, and M. Murata, “Estimating Cur-

rent Traffic Matrices Accurately by Using Long-term Variations Information,” to be presented

at Broadnets 2008, Sept. 2008.

Non-Refereed Technical Papers

1. Y. Ohsita, S. Ata, and M. Murata, “Detecting Distributed Denial-of-Service Attacks by Ana-

lyzing TCP SYN Packets Statistically,” Technical Reports of IEICE(IN2003-201), pp. 23–28,

Feb. 2004 (in Japanese).

2. Y. Ohsita, S. Ata, and M. Murata, “Deployable Overlay Network for Defense against Dis-

tributed SYN Flood Attacks,” Technical Reports of IEICE(IN2004-125), pp. 13–18, Dec.

2004 (in Japanese).

3. Y. Ohsita, S. Ata, and M. Murata, “Traffic Matrix Estimation for Identification of Attack

Sources,” IEICE Society Conference, BS-3-1, Sept. 2005 (in Japanese).

4. Y. Ohsita, S. Ata, and M. Murata, “Identification of Attack Nodes from Traffic Matrix Es-

timation,” Technical Reports of IEICE(NS2005-86, IN2005-86, CS2005-32), Sept. 2005 (in

Japanese).

5. Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, S. Shiomoto, and M. Murata, “Increasing

the Accuracy of Traffic Matrix Estimation for Gradual Reconfiguration of Virtual Network

Topologies,” Technical Reports of IEICE(PN2006-90), pp. 37–40, Mar. 2007 (in Japanese).

ii

Preface

Network operators design their networks according to the predicted traffic so as to accommodate all

traffic efficiently (e.g., without congestion or large delays). However, if the current traffic signifi-

cantly differ from the predicted one, the previously constructed network becomes no longer suitable

to the current traffic; for example, it may happen that utilizations of some links are extremely high

and cause congestion or large delays. Similarly, if a server receives unexpectedly many requests,

the server cannot respond to the requests.

Thus, when the current traffic becomes significantly different from the predicted one, we need to

handle the changes of traffic so as not to degrade the performances of the network. Such significant

changes of traffic are caused either by the malicious traffic or by the increases of legitimate traffic.

In this thesis, we propose methods to handle both cases.

One of the typical malicious traffic is traffic of denial-of-service (DoS) attacks in which at-

tackers send a very large number of packets to prevent users from communicating with service

providers. Especially, in the distributed denial-of-service (DDoS) attacks often seen recently, mul-

tiple distributed nodes attack a single server concurrently. Even if the rate of attack from each node

is small, the attack traffic can cause serious damage at the victim server when the number of hi-

jacked nodes is large. Therefore, if the significant changes of traffic are caused by the malicious

traffic, we need to identify and block attack packets immediately and protect the legitimate traffic

so as to keep legitimate users able to connect the services. Against this kind of attacks, we propose

the following methods.

First, we propose a method to detect attacks. In our detection method, we focus on SYN flood

attacks which are the most frequent attacks among DDoS attacks. One of the problems in detecting

SYN flood traffic is that server nodes or firewalls cannot distinguish the SYN packets of normal TCP

connections from those of SYN flood attack. Moreover, since the rate of normal network traffic may

vary, we cannot use an explicit threshold of SYN arrival rates to detect SYN flood traffic. Thus, we

investigate the difference of statistics of arrival rates of normal TCP SYN packets and SYN flood

iii

attack packets by using the traffic data monitored at the gateway of our university. According to the

results, the arrival rate of normal TCP SYN packets can be modeled by a normal distribution while

the arrival rate of TCP SYN packets when attack starts is far from a normal distribution. Based on

the analytical results, our detection method detects attacks by checking the difference between the

sampled SYN rates and the normal distribution. The simulation results show that our method can

detect attacks whose rates are even lower than 20 SYNs/sec. In addition, the results also show that

our method can detect attacks faster than the existing detection method.

Then, we propose a method to identify attack nodes which can work with legacy routers unlike

the traditional traceback methods. In our identification method, we identify the egress routers that

attack nodes are connecting to by estimating the traffic matrix between arbitral source-destination

edge pairs from the traffic volumes of each link which can be monitored by legacy routers. By

monitoring the traffic variations obtained by the traffic matrix, we identify the edge routers that

are forwarding the attack traffic, which have a sharp traffic increase to the victim. According to

the simulation results, even when we can monitor only the link loads, our method can identify

attack sources accurately and limit the total attack rate from unidentified attack sources by setting

parameters adequately.

Finally, we propose a method to protect legitimate traffic. Our protection method also focuses

on SYN flood attacks. In our protection method, all of the TCP connections to the victim servers

from a domain are maintained at the gateways of the domain (i.e., near the clients). We call the

nodes maintaining the TCP connection defense nodes. The defense nodes check whether arriving

packets are legitimate or not by maintaining the TCP connection. That is, the defense nodes dele-

gate reply packets to the received connection request packets and identify the legitimate packets by

checking whether the clients reply to the reply packets. Then, only identified traffic are relayed via

overlay networks. As a result, by deploying the defense nodes at the gateways of a domain, the le-

gitimate packets from the domain are relayed apart from other packets including attack packets and

protected. According to our simulation results, our method can make the probability of dropping

legitimate SYN packets less than 0.1 even when the attack rate exceeds 600,000 SYNs/sec.

On the other hand, if the significant changes of traffic are caused by the increases of legitimate

traffic, we should not block any traffic unlike the case of the malicious traffic. Thus, we reconfigure

the network settings (e.g., routes or logical topologies) so as to accommodate all current traffic

efficiently. This type of activity is often called traffic engineering (TE). In TE methods, new network

settings are configured according to a traffic matrix, which indicates traffic volumes between all

pairs of edge nodes, so that constraints such as maximum link utilization are satisfied. However, it

iv

is difficult to monitor traffic matrices directly. Therefore, we need to estimate traffic matrices from

the information which can be monitored more easily than directly monitoring traffic matrices and

then perform TE methods using the estimated traffic matrices.

One of the important issues about using the estimated traffic matrices is estimation errors which

may degrade the performances of TE methods. For example, due to estimation errors, TE method

may not mitigate the congestion. Thus, we propose methods that reduce estimation errors during

performing TE methods.

First, we propose a gradual reconfiguration method in which the reconfiguration of network

settings is divided into multiple stages instead of reconfiguring the suitable settings at once. By

dividing the reconfiguration into multiple stages and assuming that no or few elements of the true

traffic matrix change significantly throughout the TE method execution, we can calibrate and reduce

the estimation errors in each stage by using information monitored in prior stages. We evaluate the

effectiveness of the gradual reconfiguration by simulation. According to the results, our gradual re-

configuration can reduce the root mean squared relative error (RMSRE) to 0.1 and achieve adequate

network settings as is the case with the reconfiguration using the actual traffic matrices.

However, when it takes a long time to achieve the sufficient network settings, the current traffic

can differ from the initial traffic monitored before the beginning of the reconfiguration. This violates

the fundamental assumption of the above method to reduce estimation errors. Therefore, we also

propose a new estimation method, with which we can accurately estimate current traffic matrices

even when it takes a long time to achieve the sufficient network settings. In this method, we first

estimate the long-term variations of traffic by using the link loads monitored the last M times.

Then, we adjust the estimated long-term variations so as to fit the current link loads. In addition,

when the traffic variation trends change and the estimated long-term variations cannot match the

current traffic, our method detects mismatches between the estimated long-term variations and the

current traffic. Then, our method re-estimates the long-term variations after removing information

about the end-to-end traffic causing the mismatches, so as to capture the current traffic variations.

According to our simulation results, our estimation method can estimate current traffic matrices

accurately without RMSRE larger than 0.1 even when traffic changes significantly.

v

Acknowledgements

First of all, I would like to express my sincere gratitude to Professor Masayuki Murata of Grad-

uate School of Information Science and Technology, Osaka University, under whose direction the

studies described in this thesis have been carried out. I also thank to Professor Koso Murakami,

Professor Makoto Imase, and Professor Teruo Higashino of Graduate School of Information Sci-

ence and Technology, Osaka University, and Professor Hirotaka Nakano of Cyber Media Center,

Osaka University, for reviewing this thesis.

This work would not have been possible without Associate Professor Shingo Ata of Graduate

School of Engineering, Osaka City University and Assistant Professor Shin’ichi Arakawa of Grad-

uate School of Information Science and Technology, Osaka University. Their critical comments

and unerring guidance are always informative and helpful. I’m also indebted to Associate Professor

Naoki Wakamiya of Graduate School of Information Science and Technology, Osaka University for

giving me helpful comments.

I would also like to thank Professor Naoaki Yamanaka of Keio University, Associate Profes-

sor Eiji Oki of the University of Electro-Communications, Dr. Kohei Shiomoto and Mr. Takashi

Miyamura of NTT Corporation, for their useful suggestions and fruitful discussion.

I am thankful to all the members of Advanced Network Architecture Laboratory in Graduate

School of Information Science and Technology, Osaka University, for their detailed and valuable

instructions.

I want to heartily thank my parents for their endless love and invaluable support. Finally, I am

deeply grateful to my wife, Masako for her support. She has always supported and encouraged me

to do my best.

vii

Contents

List of Publications i

Preface iii

Acknowledgements vii

Chapter 1 Introduction 1

Section 1 Background and Overview . 2

1.1 Background . 2

1.2 Outline of Thesis . 3

Chapter 2 Detection, Identification and Defense against Denial-of-Service Attacks 17

Section 2 Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN

Packets Statistically . 18

2.1 Statistical Analysis of Traffic and Attack Detection Method 18

2.2 Evaluation of Attack Detection Method 26

2.3 Conclusion . 34

Section 3 Identification of Attack Nodes from Traffic Matrix Estimation 34

3.1 Overview of Identification Method . 34

3.2 Evaluation of Identification Method 44

3.3 Conclusion . 52

Section 4 Overlay Network Against Distributed SYN Flood Attacks 53

4.1 Defense Method to Protect Legitimated Traffic from a Domain by Using

Overlay Networks . 53

4.2 Deployment Scenario . 63

ix

4.3 Evaluation of Defense Method . 66

4.4 Conclusion . 73

Chapter 3 Measurement, Estimation and Topology Control to Changes of Traffic 75

Section 5 Gradual Reconfiguration of Virtual Network Topology 76

5.1 Terminology . 76

5.2 Overview of Gradual Reconfiguration 77

5.3 Traffic Matrix Estimation Method Suitable for Gradual Reconfiguration 79

5.4 Evaluation of Gradual Reconfiguration 85

5.5 Conclusion . 98

Section 6 Estimation of Current Traffic Matrices from Long-term Traffic Variations . . 98

6.1 Method for Estimating Current Traffic Matrix by Using Changes in Routes 99

6.2 Evaluation of Estimation Method . 106

6.3 Conclusion . 118

Chapter 4 Conclusion 121

Bibliography 125

x

List of Figures

1.1 Overview of a 3-way handshake and a SYN flood attack 4

1.2 IP/Optical network. 13

2.1 Time-dependent variation of SYN arrival rates . 21

2.2 Comparisons between the distributions of SYN rates and the four distributions(normal

traffic) . 23

2.3 Variation of average of squared differences between the sampled SYN rates and the

three distributions . 24

2.4 Distribution of SYN packet arrival rate when attacks started. 24

2.5 Outline of the average squared difference calculation 25

2.6 Variation of average of squared differences between the sampled SYN rates and the

modeled distributed functions . 27

2.7 Relation between threshold for average of the squared difference and the probabili-

ties of not detecting an attack and of erroneously detecting an attack 29

2.8 Relation between the detectable SYN rate of attack traffic and parameter Sh. 30

2.9 Relation between the detectable SYN rate of attack traffic and parameter N 30

2.10 Relation between the detectable SYN rate of attack traffic and parameter M 31

2.11 Average of squared differences versus time after the beginning of attacks with vari-

ous SYN rates. 32

2.12 Time to detect attacks with our method and with SYN-FIN method 33

2.13 Overview of our identification method . 35

2.14 Simple example of DoS attack . 37

2.15 Backbone Topology of the Abilene . 44

2.16 Time-dependent variation of arrival rate of packets 45

xi

2.17 Time-dependent variation of increase of arrival rate of packets between source and

destination. 45

2.18 Estimated increase vs. Actual increase when attack started 46

2.19 Rank of increase in traffic vs. number of false-positives 48

2.20 γ vs. false-negative and false-positive . 49

2.21 Relationship between attack rate and γ to identify attachk sources 50

2.22 γ vs. total rate of traffic from unidentified attack sources 51

2.23 Comparison of our identification method and PCA method using estimated traffic

matrix . 51

2.24 Overview of our defense method . 54

2.25 Delegation of SYN/ACK packets . 54

2.26 State transition diagram between attack detection mode and defense mode 55

2.27 Steps to start defense mode . 56

2.28 Problem in finishing the defense mode . 57

2.29 Steps to finish the defense mode . 57

2.30 Data structure to hold normal flows . 61

2.31 First stage of deployment . 64

2.32 Seccond stage of deployment . 64

2.33 Final stage of deployment . 65

2.34 Server-side defense and client side defense . 66

2.35 Probability of dropping legitimate SYN packets vs. attack rate 67

2.36 Enviroment used in our simulation . 68

2.37 Probability of dropping legitimate SYN packets (when attack rate is constant) . . . 69

2.38 Probability of dropping legitimate SYN packets (the case of pulsing attacks) 72

2.39 Number of TCP connections held by a defense node 73

3.1 Overview of gradual reconfiguration of VNT . 77

3.2 Operations in each stage . 78

3.3 EON topology . 87

3.4 RMSREs of each stage (the case without changes of traffic) 89

3.5 Number of added/deleted paths vs maximum utilization 90

3.6 Maximum utilization (with various N) . 92

3.7 Number of added/deleted optical layer paths of additional equation method 92

xii

3.8 RMSREs of additional equation method (the case with changes of traffic) 94

3.9 Maximum utilization (the case with changes of traffic) 95

3.10 RMSREs of the additional equation method when some traffic change suddenly . . 95

3.11 RMSREs of the additional equation method when some of link loads cannot be

monitored . 96

3.12 RMSREs of the additional equation method when link load information includes

some errors . 97

3.13 Overview of estimation method using long-term traffic variations 100

3.14 Results of estimating long-term variations . 109

3.15 RMSRE vs. Φ . 110

3.16 Time variation of RMSE (the case without the sudden chages of traffic) 112

3.17 Time variation of RMSRE (the case without the sudden chages of traffic) 112

3.18 d2,14 vs. rate of added traffic . 113

3.19 Complementary cumulative distribution of di,j with no changes 114

3.20 Time variation of RMSE (when some traffic variations change) 115

3.21 Estimation results for our method with re-estimation 116

3.22 Estimation results for our method without re-estimation 117

3.23 Variation in maximum link utilization after TE execution 119

xiii

List of Tables

2.1 Classification of flows . 20

2.2 Default configuration of backlog queue . 28

2.3 Number of attack sources vs. false-positives and false-negatives 47

2.4 Data structure used to identify flows . 59

xv

Chapter 1

Introduction

1

Section 1. Background and Overview

Section 1 Background and Overview

1.1 Background

Network operators design their networks according to the predicted traffic so as to accommodate all

traffic efficiently (e.g., without congestion or large delays). However, if the current traffic signifi-

cantly differ from the predicted one, the previously constructed network becomes no longer suitable

to the current traffic; for example, it may happen that utilizations of some links are extremely high

and cause congestion or large delays. Similarly, if a server receives unexpectedly many requests,

the server cannot respond to the requests.

Thus, when the current traffic becomes significantly different from the predicted one, we need to

handle the changes of traffic so as not to degrade the performances of the network. Such significant

changes of traffic are caused either by the malicious traffic or by the increases of legitimate traffic.

In this thesis, we discuss methods to handle both cases.

One of the typical malicious traffic is traffic of denial-of-service (DoS) attacks in which at-

tackers send a very large number of packets to prevent users from communicating with service

providers. Especially, in the distributed denial-of-service (DDoS) attack often seen recently, mul-

tiple distributed nodes attack a single server concurrently. A malicious user tries to hack remote

nodes by exploiting the vulnerabilities of software running on them, installs an attacking program

on hijacked nodes, and keeps them waiting for an order to attack a victim server. When the mali-

cious user sends a signal to them, they begin to attack to the same server. Even if the rate of attack

from each node is small, the attack traffic can cause serious damage at the victim server when

the number of hijacked nodes is large. Therefore, if the significant changes of traffic are caused

by the malicious traffic, we need to identify and block attack packets immediately and protect the

legitimate traffic so as to keep legitimate users able to connect the services.

On the other hand, if the significant changes of traffic are caused by the increases of legitimate

traffic, we should not block any traffic unlike the case of the malicious traffic. Thus, we reconfigure

the network settings (e.g., routes or logical topologies) so as to accommodate all traffic efficiently.

This type of activity is often called traffic engineering (TE). In TE methods, new network settings

are configured according to a traffic matrix, which indicates traffic volumes between all pairs of

edge nodes, so that constraints such as maximum link utilization are satisfied.

One approach to obtain the traffic matrix directly is to construct fully meshed label switched

paths using MPLS. However, this approach does not scale because it requires N -square number

of label switched paths. Another approach is to tally the number of packets of each end-to-end

2

Chapter 1. Introduction

traffic flow at all the edge nodes. However, this is also difficult to apply in large-scale networks,

because tallying the number requires a non-negligible amount of CPU resources of edge nodes, and

gathering the tallied data of all end-to-end traffic consumes a non-negligible amount of network

resources such as bandwidths.

Therefore, several methods to estimate traffic matrices have been proposed [1–10]. In such

methods, a whole traffic matrix is estimated by using the information (e.g., link utilizations) that

can be collected much more easily than directly monitoring traffic matrices. However, according to

Ref. [11], if we use the estimated traffic matrices as an input of a TE method, estimation errors in

traffic matrices have large impacts on the performance of the TE methods and may cause the signif-

icant large link utilizations. Thus, we need a TE method which can properly work with estimated

traffic matrices by cooperating with traffic matrix estimation methods.

1.2 Outline of Thesis

As discussed above, so as not to degrade the performances of networks even when network traffic

changes significantly, we need to handle the following two kinds of cases; the cases of (1) attacks

and (2) increases of legitimate traffic. Against attacks, we propose methods which can detect attacks

immediately, identify the sources of the attacks accurately and protect the legitimate connections

accurately. On the other hand, against the increases of legitimate traffic, we propose methods which

estimate current traffic matrices and reconfigure the adequate network settings by cooperating each

other.

Detection, Identification and Defense against Denial-of-Servce Attacks

The recent rapid growth of and increased use of the wide use of the Internet are making Internet

security issues increasingly important. Distributed Denial-of-Service (DDoS) attacks are one of the

most serious problems. The DDoS attack causes serious damage at the victim server by increasing

the number of hijacked nodes even if the rate of attack traffic generated by each node is quite small.

There are many kinds of DDoS attacks such as Smurf attacks [12], UDP floods [13], and SYN

flood attacks [14]. In Smurf and UDP attacks, attackers generate many ICMP or UDP packets to

exhaust the capacity of the victim’s network link. In SYN flood attacks, attackers send so many

connection requests to one victim server that users cannot connect to that server. Because attackers

can easily put servers into a denial-of-service state this way, about 90% of all DoS attacks are SYN

flood attacks [15]. In addition, according to Ref. [16], recently many bot networks use SYN flood

3

Section 1. Background and Overview

(a) 3-way handshake

SYN/ACK

SYN

ACK

SYN

SYN/ACK

(b) SYN Flood Attack

Client Server Attacker Server Spoofed Host

Figure 1.1: Overview of a 3-way handshake and a SYN flood attack

attacks to shut down target servers. As a result, the number of SYN flood attacks is still increasing.

SYN flood attacks exploit the TCP (Transmission Control Protocol) specification. In the TCP,

a client node communicates with a remote node (i.e., server) by way of a virtual connection estab-

lished by a process called a 3-way handshake. As shown in Figure 1.1(a), a client first sends a server

a SYN requesting to establish a connection. Then the server sends the client a SYN/ACK packet

acknowledging receipt of the SYN packet. When the client receives the SYN/ACK packet, the

client sends the server an ACK packet acknowledging receipt of the SYN/ACK packet and begins

to transfer data.

In the 3-way handshake, the state in the server waits for the ACK packet from the client is called

the half-open state. The server in the half-open state prepares for communication with the client, for

example, by allocating a buffer. Since a server in the half-open state is using some of its resources

for the client, the number of half-open states should be limited. The number of connections it can

maintain while it is in the half-open state is controlled in a backlog queue. SYN packets in excess of

the number that can be held in the backlog queue are discarded, and the server sends RST packets

to notify clients whose SYN packets are discarded.

Figure 1.1(b) shows an overview of a SYN flood attack. Attackers send SYN packets whose

source address fields are spoofed. The server receiving these SYN packets sends the SYN/ACK

packets to spoofed addresses. If the node having the spoofed address actually exists, it sends a RST

packet for the SYN/ACK packet because it didn’t send the SYN packet. If there is no host having

the spoofed address, however, the SYN/ACK packet is discarded by the network and the server

waits in vain for an ACK packet acknowledging it. For losses of SYN/ACK packets, the server

has a timer in the backlog queue, and half-open states exceeding the timer are removed. When the

backlog queue is filled with spoofed SYN packets, however, the server cannot accept SYN packets

4

Chapter 1. Introduction

from users trying to connect to the server.

To defend servers and networks against these kinds of attacks, we propose methods which can

detect attacks immediately, identify the sources of the attacks accurately and protect the legitimate

connections accurately in Chapter 2.

Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statisti-

cally [17–19] To defend servers and networks against DDoS attacks, we first need to detect at-

tacks. In this paragraph, we discuss how to detect attacks especially focusing on SYN flood attacks

which are the most frequent attacks among DDoS attacks.

It is difficult to distinguish the packets of SYN flood attacks from normal TCP SYN packets at

the victim server because the packets of the attacks do not differ from normal TCP SYN packets

except in the spoofing of the source addresses. In addition, since the rate of normal network traffic

may vary, we cannot use an explicit threshold of SYN arrival rates to detect SYN flood traffic. This

is why SYN flood attacks are hard to detect.

Therefore, several methods for detecting this kind of attacks have been proposed, and one is to

detect the mismatch between bidirectional packets [20]. When a server is not under attack, packet

arrival rates for both directions are almost the same or at least of the same order, because the TCP

needs an ACK packet for each packet that is sent. If the packet arrival rate for one direction is much

higher than that for the other direction, the traffic in the high-rate direction might include some

attack packets. In this mechanism, however, the router cannot detect the attack until the server

can reply SYN/ACK packets for spoofed SYN packets. MULTOPS [21] is one of similar versions

which checks asymmetries of traffics for both directions with the granularity of subnets. Another

method proposed in Ref. [22] is to use the difference between the rates of SYN packets (i.e., the

head of the connection) and FIN/RST packets (i.e., tail of the connection). If the rate of SYN

packets is much higher than that of FIN or RST packets, the router recognizes that the attacking

traffic is mixed into the current traffic. The method proposed in Ref. [23] detects attacks by the

number of source addresses. If the number of source addresses increase rapidly, the current traffic

might include attack packets.

These methods have several problems, however, one of which is that they cannot detect attacks

until servers are seriously damaged or until most of the connections are closed. Another is that they

may mistake high-rate normal traffic for attack traffic because they do not take into consideration

the normal time-of-day variation of network traffic or they do but using non-parametric approach

without knowing how the normal traffic varies. Non-parametric approach can detect attacks in case

5

Section 1. Background and Overview

of any variance of normal traffic, but require long time. Attack traffic should be identified more

accurately and faster by considering the variance of normal traffic.

Therefore, in Section 2, we propose a method that detects attacks more quickly and more ac-

curately by taking the time-of-day variance of traffic into consideration. For this purpose, we first

collect all packets passing through the gateway of our university, and analyze the statistical char-

acteristics of both normal and attack traffics. According to the analytical results, the arrival rate

of normal TCP SYN packets can be modeled by a normal distribution. Then, we propose a new

detection method based on the analytical results. Finally, we conduct trace-driven simulations. Ac-

cording to the simulation results, our detection method can detect attacks whose rates are even lower

than 20 SYNs/sec. In addition, the results show that our method can detect attacks faster than the

existing detection method.

Identification of Attack Nodes from Traffic Matrix Estimation [24–27] Identifying the attack

sources is one of effective (and ideal) solutions to cut off the link to the attacker or filter attack

packets by an edge router connected to the attacker. However, because attackers can easily spoof

the source address fields of the attack packets, it is quite hard to identify the attack sources by only

checking the source address of the attack packets.

For this reason, several methods for identifying the attack sources are proposed. In general,

these methods are called IP tracebacks. One of them is proposed in Ref. [28], where a router gen-

erates an ICMP traceback packet to the destination of the packet with a low probability at the event

of packet forwardings. The victim identifies the actual source of the packet by using the received

ICMP traceback packets. Other methods are proposed in Ref. [29–31], in which a router marks IP

packets to be forwarded with identification information instead of generating ICMP packets. The

victim can identify the source of the packets using the identification information. Another method

is proposed in Ref. [32,33], where each router stores packet digests. The victim queries its upstream

routers to see whether an attack packet has passed through them or not.

However, these methods have several problems. One of them is that they cannot work with

legacy routers because they need router support. Another is that they may erroneously identify

legitimate clients as attack sources. This is because these methods can only identify the source

nodes of IP packets. Since there is no difference between legitimate and attack packets, identifying

attack packets from the mixture of attack and legitimate traffic is difficult.

In DoS attacks, attackers send a large number of packets to exhaust the network resources.

When an attack starts, there is a rapid increase in the traffic from the attack sources to the victim.

6

Chapter 1. Introduction

Several methods use such increase in traffic in the network to detect attacks [34–37]. By using

traffic volumes which can also be monitored by legacy routers, we identify edge routers connecting

to the attackers without any change in core network. Then, deploying only edge routers supporting

IP traceback, we identify attack nodes by using IP traceback from the identified edge routers. In

addition, identification of the attack sources by monitoring the increased traffic can distinguish the

attackers from the legitimate clients, which do not sharply increase traffic. However, there are only

a few papers about identification of attack sources by monitoring the increase in traffic.

Lakhina et al propose a method for identifying the attack sources by monitoring the traffic on

each link in the network [35]. In this method, the measured loads of all links are separated into

normal and abnormal subspaces. The normal subspace indicates the time-of-day variation of the

traffic. Other variations are categorized into the abnormal subspace. We then identify the attack

source that explains the largest amount of anomalous subspace. Although this method can identify

the attack source in a single attacker case, this method has difficulty in identifying multiple attack

sources such as DDoS, because we need to consider all possible cases by changing the number of

attackers. It requires a huge computation overhead.

The anomaly detection methods using traffic volumes between all source/destination pairs are

also proposed. The traffic volumes between every pair of ingress and egress points are typically

described as a traffic matrix. The method proposed in Ref. [37] uses the compact summary of the

per-flow statistics and detect anomalies by comparing the difference between the actual summary

and the forecasted summary obtained by the forecast models. Another method proposed in Ref. [36]

separates the traffic matrix into normal and abnormal subspaces. Since this method separate traffic

volumes between all source/destination pairs into normal and abnormal subspaces, we can identify

traffic between source/destination pairs having large abnormal subspaces as attack traffic.

However, these methods assume that the traffic matrix can be monitored accurately. Though

Cisco’s NetFlow [38] can monitor the flow statistics and periodically export the monitored statistics

to the central storage device, the process of NetFlow in routers consumes CPU time to identify flows

of received packets. The performance analysis of NetFlow [39] says the resource consumption

would increase according to the number of active flows passing the router. Especially, DDoS attack

traffic contains many of spoofed packets which lead the large number of flows having a single

packet. As a result, during DDoS attacks, the activation of NetFlow has possibility to consume very

large amount of CPU time. Though Ref. [40] proposes the distributed method to monitor traffic

data and separate them into normal and abnormal subspaces, this method needs router support and

cannot work with legacy routers. On the contrary, to avoid the high loads on routers, the objective

7

Section 1. Background and Overview

of our identification method is to identify attack sources accurately under the assumption that we

cannot monitor the amount of traffic for all edge pairs. Therefore, we only measure the load of

network links.

Estimating traffic matrix from the measurement of link loads is also proposed in some literatures

e.g., Ref. [6], however, existing traffic matrix estimation methods are not suitable to apply the

identification of attacks because the assumption used in these methods may decrease the accuracy

of estimation of traffic volumes including the attack traffic.

Therefore, in Section 3, we propose a new method for identifying attack sources by estimating

the increase in traffic between each source and destination. In this method, we can estimate the

increase in traffic accurately by focusing not on the total rate of traffic but on the increase in traffic.

In addition, our method can work with existing routers because we can obtain link load data through

Simple Network Management Protocol (SNMP). We also evaluate the effectiveness of our method

through simulation. According to the results, even when we can monitor only the link loads, our

method can identify attack sources accurately and limit the total attack rate from unidentified attack

sources by setting parameters adequately.

Overlay Network Against Distributed SYN Flood Attacks [41–43] After the detection of at-

tacks, we need a defense method which can protect legitimate traffic so that end users can connect

the target servers during attacks. We discuss the defense method, especially focusing on SYN

flood attacks which are the most frequent attacks among DDoS attacks. Prior to mention about the

defense methods, we describe the requirements on the defense methods below.

R1 Distinguish and protect legitimate packets accurately even during very heavy attacks. In DDoS

attacks, attack nodes are widely distributed all over the world. Attack traffic from attack

nodes is aggregated into a very heavy attack at the server.

R2 Protect legitimate packets from a domain to the victim server even if the intermediate domains

do not deploy the methods. It is often the case that the intermediate domains do not deploy

the methods because it is difficult to deploy new mechanism in the whole Internet at once.

R3 Work transparently with existing nodes. That is, defense methods should not require any mod-

ifications or software updates on servers and clients, because it is difficult to modify a large

number of nodes at once.

R4 Have no impacts on the traffic which can connect the server even without the protection. If

8

Chapter 1. Introduction

the traffic is treated by a defense method, the process of defense methods may become the

performance bottleneck and cause the increase of the end-to-end delay and so on.

Several methods against DDoS attacks have been proposed so far. SYN cookie [44] and SYN

cache [45] are mechanisms deployed on server (victim) nodes. The SYN cookie mechanism can

remove the queue for connection requests by embedding the information in the SYN packet into

the sequence number of the SYN/ACK packet. The server node then verifies the ACK packet of

the SYN/ACK packet by decrypting the sequence number of the ACK packet. On the other hand,

in the SYN cache mechanism, the server node has a global hash table to keep half-open states of

all applications, while in the original TCP these are stored in the backlog queue provided for each

application. As a result, the node can have more number of half-open states and the impact of SYN

flood attack can be reduced. However, heavy attacks from widely distributed nodes can overwhelm

the firewalls or the servers regardless of implementation of these methods, because one server deals

with many attack packets from many attacker nodes. That is, these methods do not fulfill R1. For

this reason, a distributed defense mechanism is needed to defend servers from distributed attacks.

D-WARD [20] has been proposed as a way to stop DDoS attacks near their source. In this

method, an edge node detects attacks and limits the rate of traffic addressed to the victim server.

However, detecting distributed attack traffic near attacker nodes is quite difficult when attack nodes

are highly distributed because each attacker node generates a small amount of attack traffic. We

believe that it is more practical to detect attacks near a victim node and alert other nodes deployed

near attacker nodes. In pushback [46], a router detecting an attack requests upstream routers to limit

the amount of traffic bounded to the victim node. This method can set a rate limit near attackers by

recursively requesting the limitation from upstream routers. However, these methods to limit the

rate of traffic also limit the rate of the legitimate traffic to the victim. That is, these method cannot

protect legitimate traffic and do not fulfill R1.

DefCOM [47] proposes another framework to mark suspicious packets at edge nodes and limit

the rates for the suspicious packets at core nodes. PacketScore [48] and ALPi [49] are similar

methods. In these methods, edge nodes compute a per-packet score which is used to estimate the

legitimacy of a packet. Core nodes perform score-based selective packet discarding. These filtering

methods can effectively mitigate attacks when the characteristics of attack packets differ from those

of legitimate packets. However, the packets used in SYN flood attacks do not differ from legitimate

SYN packets except in the spoofing of the source addresses. When attack packets have almost the

same characteristics as legitimate packets, legitimate traffic may be mistakenly identified as attacks

and blocked by these methods. This can seriously impair the communication between the victim

9

Section 1. Background and Overview

and legitimate clients because mistakenly blocking legitimate packets significantly increases the

packet loss rates between the legitimate clients and the victim. That is, these methods do not fulfill

R1.

Another framework is proposed in Ref. [50]. In this framework, traffic monitors called watch-

dogs are placed at distributed points. When attack occurs, watchdogs send the information about

the attack to other watchdogs by using multicast. Then, a packet filter to prevent the detected attack

is installed at distributed points. MovingFirewall [51] is also a framework to drop attack packets

at distributed places. In this framework, after an attack is detected near the victim, firewalls trace

attack flows upstream. Then, the firewall nearest to the attackers mitigates the attack traffic using

the attack signature.

However, these frameworks only block attack packets and do not consider how to protect the

legitimate packets. Because legitimate packets checked by a firewall are relayed as normal IP

packets, it may be possible that the legitimate packets are mixed with attack traffic again and cannot

be protected. One of the examples is the case where domain A deploys these frameworks and

does not directly connect to other domains deploying these frameworks. In this case, though attack

packets from domain A are blocked, the legitimate packets from domain A are mixed with attack

packets at the intermediate domain which does not deploy these frameworks. As a result, the

legitimate packets from domain A are also checked by the firewalls deployed at the other domains,

and when the firewalls have heavy load, the legitimate packets from domain A may also be dropped.

That is, though domain A deploys these frameworks, whether the legitimate packets from domain A

are dropped or not depends on the loads of the firewalls at the other domains, as is the case without

deploying these frameworks. That is, these frameworks do not fulfill R2.

The frameworks using the overlay network to protect legitimate traffic have also been proposed

as SOS [52–54], Mayday [55] or FON [56]. WebSOS [54] is one of applications of SOS, in which

SOS is applied to defense mechanism for web servers. In this framework, packet filtering is set so

that only packets via overlay network can reach the server. The route to the server on the overlay

network is randomly selected from candidate routes for each session to distribute the traffic to the

server. Additionally, to avoid attack traffic entering the overlay network, clients are authenticated

at the edge of overlay network. However, authentication requires clients to implement a kind of au-

thentication software. Traffic from unauthorized clients (i.e., clients not installed the authentication

software) are classified into attack traffic, and not protected by these frameworks. That is, these

methods require the modification of all clients and do not fulfill R3. In addition, in this method, all

packets to the victim server are relayed via overlay network even if the packets are not mixed with

10

Chapter 1. Introduction

attack packets on the way to the server. In this case, due to random routing or overheads of over-

lay nodes, the delays of such legitimate traffic which does not require the protection may increase

unnecessarily. That is, these frameworks do not fulfill R4.

As described above, none of the existing methods fulfill all of four requirements described

above. Thus, in Section 4, we propose a defense method which fulfills all of the requirements.

In our method, the identification and protection of the outgoing legitimate traffic from a domain

are performed by the node deployed at the gateways of the domain. We call the node defense node.

Unlike existing methods, the purpose of our method is NOT eliminating the attack traffic, but the

main focus of our method is to protect of legitimate traffic which are generated during actual com-

munications between valid users. For this motivation, we need major two mechanisms: (1) identify

the legitimate traffic accurately, and (2) transfer/protect legitimate traffic safely. Conventionally,

these two mechanisms are so difficult and unrealistic for the deployment because handling all the

traffic requires too many resources, however, we consider the possibility of deployment technically

in depth, and found that they are deployable in actual by combining TCP proxy and overlay network

and handling only the packets which are mixed with attack packets on the way to the destination

server.

The key ideas of our defense method are as follows.

• Identify legitimate traffic from a domain by maintaining the TCP connections at the gateways

of the domain. That is, the defense nodes delegate reply packets to the received connection

request packets and identify the legitimate packets by checking whether the clients reply to

the reply packets. Unlike the traditional firewalls delegating the reply packets near the victim

servers, our method can immediately and accurately identify the legitimate traffic without

dropping the legitimate connection requests even during heavy attacks, because defense node

does not hold the legitimate connection request as long as victim servers since round trip times

(RTTs) between the clients and the defense nodes are much smaller than the RTTs between

clients and the victim servers. That is, our method fulfills R1. In addition, by maintaining

the TCP connections, we can identify legitimate traffic without any modifications of clients

or servers (R3).

• Protect legitimate packets by relaying them via overlay networks. By using overlay networks,

our method can relay legitimate packets apart from other packets including attack traffic, even

if intermediate domains do not deploy our method. That is, our method fulfills R2.

• Not maintain the TCP connections of the traffic but relays them as normal IP packets, if

11

Section 1. Background and Overview

legitimate traffic from the domain of the defense node is not mixed with attack packets on the

way to the destination server (e.g., the case that attack packets are blocked at other domains).

That is, our method fulfills R4.

We also conduct simulations to evaluate our defense method. According to our simulation

results, our method can make the probability of dropping legitimate SYN packets less than 0.1 even

when the attack rate exceeds 600,000 SYNs/sec.

Measurement, Estimation and Topology Control to Changes of Traffic

Network operators design their networks according to the predicted traffic so as to accommodate

all traffic efficiently (e.g., without congestion or large delays). However, if the current traffic sig-

nificantly differ from the predicted one due to the changes of legitimate traffic, the previously con-

structed network becomes no longer suitable to the current traffic. Therefore, in this case, we need

to reconfigure the networks settings by TE methods so as not to degrade the performances of the

network. However, as discussed above, TE methods require the traffic matrices which are hard to

monitor directly. Therefore, we propose methods which estimate traffic matrices accurately and

reconfigure the adequate network settings by cooperating each other in Chapter 3.

Gradual Reconfiguration of Virtual Network Topology [57, 58] One of efficient traffic engi-

neering methods to accommodate traffic that changes unpredictably is optical layer traffic engi-

neering (TE) [59–66]. Optical layer TE assumes that a network consists of IP routers and optical

cross-connects (OXCs), as illustrated in Fig. 1.2. Each outbound port of an edge IP router is con-

nected to an OXC port. Lightpaths (hereafter called optical layer paths) are established between

two IP routers by configuring OXCs along the route between the routers. A set of optical layer

paths forms a VNT (virtual network topology). Traffic between two routers is carried over the VNT

using IP layer routing. In these conditions, optical layer TE accommodates time-varying traffic by

dynamically reconfiguring VNTs.

Several methods to reconfigure the VNT have been proposed. They can be categorized as either

full [59, 60] or partial reconfiguration algorithms [61–66]. In full reconfiguration, the new VNT

is computed with no limitation on the number of reconfigured optical layer paths. For example,

Mukherjee et al. [59] formulated the full reconfiguration VNT design problems as optimization

problems and proposed heuristic algorithms based on the simulated annealing approach that find

nearly optimal solutions. The full reconfiguration approach can yield a solution that is optimal in

12

Chapter 1. Introduction

Optical layer

Optical layer

Packet layer
Packet layer

IP/MPLS network

Edge IP
Router

IP/Optical network

IP/MPLS network

VNT

Edge IP
Router

IP Router

OXC OXC: Optical Cross Connect
VNT: Virtual Network Topology

Packet layer
path

Optical layer
path

Figure 1.2: IP/Optical network.

terms of network performance such as maximum utilization of optical layer paths when using the ac-

tual traffic matrix. On the other hand, in partial reconfiguration [61–66], the new VNT is computed

with limitations on the number of reconfigured optical layer paths. Banerjee and Mukherjee [61]

present an integer linear programming (ILP) formulation for optimal VNT design. Their approach

assumes that the future traffic matrix is given; the future VNT is determined by adapting the current

one to accommodate the change in the traffic matrices. Gieselman et al. [66] proposed a heuristic

reconfiguration algorithm that efficiently adapts to fluctuations in traffic. In the partial reconfigura-

tion method, we can construct the adequate VNT by changing only a small number of optical layer

paths.

However, as described above, both algorithms require a traffic matrix as an input and it is

difficult to monitor traffic matrices directly. Therefore, several methods to estimate traffic matrices

have been proposed. Zhang et al. [6] have proposed a estimation method called the tomogravity

method. Tomogravity method first obtains the initial traffic matrices by using a gravity model

that assumes that the amount of traffic from a source to a destination node is proportional to the

total of the incoming/outgoing traffic for each edge node. Then, the method estimates the current

traffic matrix by adjusting the initial traffic matrices so as to fit all the monitored link loads. Results

reported by Refs. [6] and [67] show that tomogravity can follow rapid changes in amounts of traffic,

and can estimate the traffic matrix on a tier-1 ISP network within 5 seconds. Recently, a method

to estimate traffic matrices so as to follow the gravity model even in the case without complete

observation of the edge link loads has been proposed [7].

Another type of estimation methods [2, 3] has also been proposed; they assume that edge-to-

edge traffic demand follows a Gaussian distribution. Additionally, Tan et al. [4, 5] have proposed

13

Section 1. Background and Overview

methods to estimate traffic matrix which fits the monitored link loads and is nearest to the initial

traffic matrix obtained by assuming the Gaussian distribution.

However, the estimated traffic matrices include estimation errors due to the differences between

the actual traffic and these models (i.e., gravity model or Gaussian distribution) as shown in the

results described in Ref. [68] and these estimation errors have impacts on a TE method.

One way of handling such estimation errors is to reconfigure the VNT redundantly, taking the

estimation errors into consideration. However, if the estimation errors are large, the redundant

reconfiguration may require an unacceptable amount of resources such as wavelengths. To avoid

the impact of estimation errors, therefore, reduction of estimation errors is necessary.

One approach to increase the estimation accuracy is to use additional information. Refs. [8]

and [9] obtain additional information by measuring a part of end-to-end traffic. However, in a large

network, we may not measure enough number of end-to-end traffic to estimate the traffic matrices

accurately. Another method to obtain the additional information has been proposed by Soule et

al. [10]. In this method, additional information is obtained by changing the routes of packet layer

paths and observing the difference between utilization of links before and after routes are changed.

However, this method requires changes in packet layer paths that are initially unnecessary.

Therefore, in Section 5, we propose a method to reduce the estimation errors while reconfig-

uring the VNT. In this method, the VNT reconfiguration is divided into multiple stages instead of

reconfiguring the suitable VNT at once. By dividing the VNT reconfiguration into multiple stages

and assuming that no or only few elements of the true traffic matrix change significantly throughout

the TE method execution, our traffic matrix estimation method calibrates and reduces estimation

errors at each stage by using information (e.g., packet layer routing and utilizations of optical layer

paths) monitored at prior stages with no unnecessary route changes. By reducing the estimation

errors, our method can achieve the sufficient VNT (e.g., making the link utilizations less than a

threshold) without directly monitoring traffic matrices as is the case with the reconfiguration using

the actual traffic matrices. We evaluate the effectiveness of the gradual reconfiguration by simula-

tion. According to the results, the gradual reconfiguration can reduce the root mean squared relative

error (RMSRE) to 0.1 and achieve an adequate VNT.

Estimation of Current Traffic Matrices from Long-term Traffic Variations [69,70] The method

proposed in Section 5 obtains additional measurements by using the route changes caused by a TE

method. By performing TE a sufficient number of times, this approach obtains a sufficient number

of measurements and then estimates the traffic matrix by assuming that no or only few elements

14

Chapter 1. Introduction

of the true traffic matrix change significantly throughout the TE method execution. However, if it

takes a long time to change routes sufficient times, the current traffic can differ from the initial traf-

fic monitored before the first route change. This violates the fundamental assumption of the above

method. Therefore, we need a traffic matrix estimation method that considers the time variations

of traffic matrices. Ref. [10] proposes a method for modeling traffic variations by using periodic

functions and estimates these functions’ parameters. However, when traffic changes unpredictably,

the traffic matrices estimated by this approach cannot fit the current traffic matrices since it can only

estimate the average variations of traffic for a period of a day by monitoring link loads for several

days. As a result, a TE method cannot configure routes suitable for the current traffic.

Therefore, in Section 6, we also propose a new estimation method, with which we can accurately

estimate current traffic even when traffic changes. Unlike in Ref. [10], the purpose of our method

is to estimate not the long-term variations of traffic but the current traffic matrix, which consists

of both long-term variations and short-term variations. By using the accurate traffic matrix, a TE

method can properly work to configure routes suitable for the current traffic.

In this method, we first estimate the long-term variations of traffic by using the link loads moni-

tored the last M times. Then, we adjust the estimated long-term variations so as to fit the current link

loads. In addition, when the traffic variation trends change and the estimated long-term variations

cannot match the current traffic, our method detects mismatches between the estimated long-term

variations and the current traffic. Then, our method re-estimates the long-term variations after re-

moving information about the end-to-end traffic causing the mismatches, so as to capture the current

traffic variations. According to our simulation results, our estimation method can estimate current

traffic matrices accurately without RMSRE larger than 0.1 even when traffic changes significantly.

15

Chapter 2

Detection, Identification and Defense

against Denial-of-Service Attacks

The recent rapid growth and the increasing utility of the Internet are making security issues in-

creasingly important. Denial-of-service (DoS) attacks are one of the most serious problems and

must be resolved as soon as possible. These attacks prevent users from communicating with ser-

vice providers and have damaged many major web sites all over the world. The number of attacks

has been increasing, and the techniques used to attack servers have become more complex. In the

distributed denial-of-service (DDoS) attacks often seen recently, multiple distributed nodes attack

a single server concurrently. A malicious user tries to hack the remote nodes by exploiting the vul-

nerabilities of the software running on them, installs an attack program on the hijacked nodes, and

keeps them waiting for an order to attack a victim server. When the malicious user sends a signal

to them, they begin to attack the same server. Even if the rate of attack for each node is small, the

attack traffic can cause serious damage to the victim server when the number of hijacked nodes is

large.

To defend servers and networks against these attacks, in this chapter we propose methods which

can detect attacks immediately, identify the sources of the attacks accurately and protect the legiti-

mate connections accurately.

17

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

Section 2 Detection of Distributed Denial-of-Service Attacks by Ana-

lyzing TCP SYN Packets Statistically

To defend servers against DDoS attacks, we need to detect attacks immediately and accurately. One

of the problems in detecting attack traffic is that server nodes or firewalls cannot distinguish the

packets of normal traffic from those of attack traffic. Moreover, since the rate of normal network

traffic may vary, we cannot use an explicit threshold of packet arrival rates to detect attack traffic.

In this section, we focus on SYN flood attacks which are the most frequent attacks among DDoS

attacks and introduce a mechanism for detecting SYN flood traffic more accurately by taking into

consideration the time variation of arrival traffic. For this purpose, we first investigate the statistics

of the arrival rates of both normal TCP SYN packets and SYN flood attack packets. According

to the analytical results, the arrival rate of normal TCP SYN packets can be modeled by a normal

distribution. Then, we propose a new detection method based on the analytical results. According

to the simulation results, our detection method can detect attacks whose rates are even lower than

20 SYNs/sec. In addition, the results show that our method can detect attacks faster than the existing

detection method.

2.1 Statistical Analysis of Traffic and Attack Detection Method

In this subsection, we first describe how we gathered the data we used to model normal traffic and

how we analyzed that data. We then describe the algorithm we use to detect the attack traffic.

Monitoring and classification of real traffic

We deployed a traffic monitor at the gateway of Osaka University. We used optical-splitters to split

the 1000 Base-SX fiber-optic cables and recorded the headers of all of packets transferred on this

link. That is, we monitored all the packets in both the inbound and outbound directions at Osaka

University.

We use tcpdump [71] to read the headers of packets. Although tcpdump cannot guarantee to

read headers of all packets at wire-speed, we confirmed that the headers of less than 0.01% of the

packets were not recorded and these losses did not affect the results of our statistical analysis.

We first classified monitored packets into flows. We defined a series of packets which have the

same (src IP, src port, dest IP, dest port, protocol) fields as a single flow and we classify these flows

into the following five groups.

18

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Group N Flows that completed the 3-way handshake and were closed normally by an FIN or RST

packet at the end of connections.

Group Rs Flows terminated by a RST packet before a SYN/ACK packet was received from the

destination host. These flows were terminated this way because the destination host was not

available for the service specified in the SYN request.

Group Ra Flows terminated by a RST packet before an ACK packet for the SYN/ACK packet was

received. These flows were terminated this way because the SYN/ACK packets were sent to

a host that was not in the Internet.

Group Ts Flows containing only SYN packets. These flows are not terminated explicitly (i.e.,

by RST/FIN packets) but by the timeout of flows. There would be three reasons that flows

could be classified into this group. One was that, the destination node did not respond the

SYN packet because, for example, the destination node is temporally shut down due to e.g.,

maintenance. A second was that the source address of the SYN packet was spoofed and

the destination sent the SYN/ACK packet to the spoofed address. The third was that all

of the SYN/ACK packets were discarded by the network (e.g., because of due to network

congestion).

Group Ta Flows containing only SYN and its SYN/ACK packets. Like Group Ts flows, these

flows were terminated by the timeout of flows. In this case, however, it was because all the

ACK packets were dropped.

To identify the traffic of normal flows, we focused on the Group N flows. Hereafter, we refer these

flows as normal traffic and to Groups Rs, Rs, Ts and Ta flows as incomplete traffic.

Time-dependent variation of normal traffic and its statistical modeling

In the work shown in this section, we used the traffic data for 5 days: from 17:55 on March 20, 2003

to 19:45 on March 24, 2003. The average rate of incoming traffic (from the Internet to the campus

network) was about 12.0 Mbps and the average rate of outgoing traffic was about 22.4 Mbps. During

busy hours (09:00 to 17:00) the average incoming and outgoing rates were respectively 37.0 Mbps

and 55.0 Mbps. A total of 1,983,116,637 TCP packets were monitored, 21,615,220 of which were

SYN packets. The total number of flows that were monitored, however, was only 21,283,114. The

difference between the number of SYN packets and the number of flows is due to the retransmission

of SYN packets.

19

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

Table 2.1: Classification of flows
Group number of flows percentage

N 18,147,469 85.1
Rs 622,976 2.9
Ra 75,432 0.3
Ts 2,435,228 11.4
Ta 2,009 0.0

The numbers of flows classified into each of the five groups are listed in Table 2.1. These values

were obtained using 180 seconds as the timeout. That is, if there are more than 180 seconds after

the last packet in of the flow, we considered the flow to be terminated.

The time-dependent variations of SYN arrival rates of all flows, the flows in normal traffic and

the flows in incomplete traffic are shown in Figures 2.1. Points where the arrival rate rises sharply

(e.g., 28,000 sec and 57,000 sec) seem to be due to incomplete traffic. These results also show

that we would mistakenly identify many points as attacks if we set a single threshold for the SYN

arrival rates because the arrival rates of the normal traffic change over time. We can also see that

the distribution of SYN arrival rates seems to be different in incomplete traffic from in the normal

traffic especially at the tail.

To confirm this impression, we fitted the SYN arrival rates of normal traffic to several distribu-

tions. We selected four distributions as candidates.

The equation for the normal distribution F (x) with the mean ζ and the variance σ2 of measured

SYN arrival rates is

F (x) =
∫ x

−∞
1√
2πσ

exp[
−(y − ζ)2

2σ2
]dy. (2.1)

The lognormal distribution of which variable is the logarithmic variable of the normal. The

equation for the log normal distribution is

F (x) =
∫ x

−∞
1√

2πσy
exp[
−(log y − ζ)2

2σ2
]dy. (2.2)

In lognormal distribution, two parameters (ζ ,σ) are calculated from

ζ̂ =
1
n

n∑
i=0

log xi (2.3)

20

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

(a) all flows

(b) normal traffic

(c) incomplete traffic

Figure 2.1: Time-dependent variation of SYN arrival rates

21

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

σ̂2 =
1
n

n∑
i=0

(log xi − ζ̂). (2.4)

where n is the number of samples.

The equation for the Pareto distribution is

F (x) = 1− (x
k)α, x ≥ k (2.5)

Parameters (α,k) in Pareto distribution are obtained from [72].

k̂ = min(x1, x2, . . . , xn), (2.6)

α̂ = n

[
n∑

i=1

log
xi

k̂

]
. (2.7)

The equation for the gamma distribution is

Γ(λ) =
∫ ∞

0
xλ−1e−xdx, (2.8)

f(x) =

⎧⎨
⎩

1
Γ(α)βα xα−1e

− x
β , 0 < x <∞

0, −∞ < x < 0
(2.9)

We calculate parameters (α,β) in the gamma distribution so that it has the same average E(X)

and same variance V (X) as the sample. The parameters are given by

α =
E(X)2

V (X)
(2.10)

β =
V (X)
E(X)

. (2.11)

Figure 2.2 shows the result of fitting the normal traffic to four distributions. This figure com-

pares the cumulative distribution of SYN packet arrival rates with the cumulative distributions de-

scribed above. This curve is for the data obtained in 10-second intervals. We used 10,000 samples to

obtain the SYN rate distributions. From this figure we can see that tail of the SYN rate distribution

of the normal traffics is quite different from Pareto distribution. Among rest three distributions, the

gamma distribution is most suitable for the normal traffic in the region of 99-percentile and higher.

On the other hand, the normal distribution is most appropriate in the area of less than 95-percentile.

The lognormal distribution can also be fit to the normal traffic at 90-percentile and below.

22

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

1e-005

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

de
ns

ity

arrival rate [SYNs/sec]

sample
pareto

log normal
normal

gamma

Figure 2.2: Comparisons between the distributions of SYN rates and the four distributions(normal
traffic)

To verify the appropriateness of the statistical modeling, we calculate average of squared dif-

ference. In this experiment we especially focus on the tail part of the distribution of the normal

traffic. We define Xt(0 ≤ Xt ≤ 1) as the ratio of the tail part of the distribution. In other words,

by setting Xt = 0.9 we obtain the region of the distribution at 90% and higher. Let us denote the

number of samples of SYN rates as n. We sort sampled SYN rates in ascending order and label

them ri(1 ≤ i ≤ n). F−1(x) is the inverse function of F (x). Denote as D the average of squared

differences from distributions F (x).

D =

∑n
i=n−�nXt�(F

−1(i
n)− ri)2

�nXt� − 1
. (2.12)

We calculated the value of D for each of our measurements of the SYN arrival rate (i.e., for

every 10 seconds in our experiment). We used 10,000 samples to obtain the SYN rate distributions

and the samples are obtained in 10-second intervals. That is, we need total 100,000 seconds to

obtain the entire distribution. We then calculate the average of squared differences for each sample

by using 10,000 histories of samples. Fig. 2.3 shows the time-dependent variation of average of

squared difference of normal traffic from normal, lognormal and gamma distributions. From this

figure we can see that lognormal distribution is sometimes quite different from sample distribution.

D on the gamma distribution is the smallest at any time, and its variation is also small. The variation

of D on the normal distribution also does not vary regardless of time. From this observation, we can

conclude that the gamma distribution is most appropriate to model the normal traffic statistically.

The normal distribution is also useful for modeling, and the lognormal distribution gives a fair

23

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

normal
lognormal

gamma

Figure 2.3: Variation of average of squared differences between the sampled SYN rates and the
three distributions

0.01

0.1

1

0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

de
ns

ity

SYN arrival rate [SYNs/sec]

sample
normal

lognormal
gamma

Figure 2.4: Distribution of SYN packet arrival rate when attacks started.

appropriateness.

We next evaluate for fitting statistical distributions with all traffic (i.e. the traffic including both

normal and attack traffics). The results are shown in Fig. 2.4. Fig. 2.4 compares the distribution

of SYN arrival rates of all flows three distributions used above. From this figure, we can observe

a clear difference from the normal traffic case (Fig. 2.2). Even in gamma and normal distributions

the actual traffic is far from the modeling functions. It is because the attack traffic included in

the all traffic gives a strong impact to the statistics, and clearly different from human-generated

characteristics (e.g., constantly high rate for a long period). Especially, the influence of the attack

traffic is significantly appeared at the tail part of the distribution. This is the reason why we focus

on the tail part of the distribution for distinguish the attack traffic.

24

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Time [sec]

S
Y
N
 a
r
r
iv
a
l
r
a
te
 [
p
a
c
k
e
t/
s
e
c
]

oldest part (Sh of all samples) used for parameter

Samples for making distribution

(a) oldest part of samples

Xt

the tail part

SYN arrival rate

P
r
o
b
a
b
il
it
y
 d
e
n
s
it
y

(b) tail of distribution

Figure 2.5: Outline of the average squared difference calculation
　　

Attack detection method based on statistics of SYN arrival rates

As described above, the SYN arrival rates of the normal traffic can be modeled by gamma or

normal distributions. Therefore it would be possible to detect the attack traffic by checking the

difference between the sampled SYN rates and the modeled distribution functions at the tail part of

the distribution. Since there is a clear difference between the attack traffic and the gamma/normal

distribution function, we can identify the attack traffic by setting a kind of threshold about the

difference. Based on this motivation, we propose a new detection method.

SYN arrival rates are calculated every time N SYN packets arrive. We measure the interval

T between two sets of N SYN packet arrivals. We estimate the arrival rate from N
T . Note that

this method is different from the SYN rate calculation described in the previous paragraph. There

are two reasons as following. First, in the heavy-loaded condition, we need to detect the attack

more quickly. Hence the sampling interval should be variable according to the load of the network.

Second, on the implementation issue this counter-based rate calculation is simpler than timer-based

one because the interrupting timer is not necessary. We then collect M SYN rates, calculate the

parameters of the modeled distribution function, and obtain the average squared difference between

the sampled distribution and the modeled distribution function. Namely, total NM SYN packets

are needed in order to obtain the distribution.

In calculating the average squared difference, we introduce two ratio values Sh and Xt, which

25

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

are the ratio of the oldest part of samples and the tail part of the distribution, respectively. Fig. 2.5

shows the outline of the average squared difference calculation. First, we calculate the parameter

of the model function by using the Sh oldest part of sampled SYN rates. The reason why we use

Sh is as follows. We calculate the value of D for each event of SYN rate calculation. The oldest

one in M SYN rates are identified as the normal traffic in M − 1 times. That is, if no attack traffic

is detected previously, the older SYN rate has a tendency to be identified as normal traffic. We then

calculate the squared difference D at the range of the Xt tail part of the distribution. In this section,

we set Xt = 1− Sh for simplicity.

Figures 2.6(a), 2.6(c) and 2.6(e) show the variation of the averages of squared differences for all

flows and Figs. 2.6(b), 2.6(d) and 2.6(f) show the ones for normal traffic. According to these results,

the averages of the squared differences for the normal traffic are quite small and stable regardless of

time. The averages of the squared differences for all flows, on the other hand, rise rapidly at several

points (we call them spikes throughout this section). Comparing Figures 2.6(a) with Figures 2.6(b)

and Figures 2.6(c) with Figures 2.6(d) suggest that these spikes are caused by the incomplete traffic

including attack traffic. Therefore, we can detect attacks by setting a threshold for the average of

squared difference as the boundary between normal traffic and attack traffic.

2.2 Evaluation of Attack Detection Method

Definition of attack traffic

Prior to the performance evaluation, we define the attack traffic that must be detected as traffic

that can put a server into a denial-of-service state. This state occurs when the backlog queue is

full and new SYN packets arrive at the server. The length of the backlog queue is configured by

a kernel parameter in the operating system, and the default parameters of the backlog queue on

some major operating systems are listed in Table 2.2. The timeout values in this table are the

durations until the half-open connections in the backlog queue are removed. That is, the half-open

connections exceeding the timeout are closed by the server. To put a server into a denial-of-service

state, attackers have to supply a number of SYN packets exceeding the maximum length of backlog

queue within the timeout period. Supposing that target servers are running on Linux and we define

attacks as cases when more than 1024 SYN packets which do not complete the 3-way handshake are

sent within 180 seconds. Scanning our 5-day data, we found total 10 points satisfying this definition

of attack traffic.

26

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

ei
ffe

re
nc

e

Time [sec]

(a) all flows (compared with gamma distribution)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

ei
ffe

re
nc

e

Time [sec]

(b) normal traffic (compared with gamma distribu-
tion)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

ei
ffe

re
nc

e

Time [sec]

(c) all flows (compared with normal distribution)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

ei
ffe

re
nc

e

Time [sec]

(d) normal traffic (compared with normal distribu-
tion)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(e) all flows (compared with lognormal distribu-
tion)

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(f) normal traffic (compared with lognormal distri-
bution)

Figure 2.6: Variation of average of squared differences between the sampled SYN rates and the
modeled distributed functions

27

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

Table 2.2: Default configuration of backlog queue
OS max length timeout (sec)
Linux 1,024 180
Solaris 1,024 240
Windows 2000 server 200 40

Accuracy of proposed detection method

We evaluated our detection algorithm by using a trace-driven simulation based on the traffic data

we measured. We define the probability (P−) of not detecting the attack traffic (i.e., the probability

of the false-negative errors) and the probability (P+) of erroneously detecting an attack (i.e., the

probability of false-positive errors), which are calculated from following:

P− =
	 of attacks not detected

	 of attacks satisfying the definition
(2.13)

P+ =
	 of points erroneously detected as attacks

	 of points detected as attacks

Probabilities of P− and P+ are shown in Fig. 2.7 respectively as a function of the threshold

for the average of squared difference. In this regard, we set N to 100, Sh to 90 and M to 100.

These figures show that both distributions could detect all attacks when we set the threshold to

less than 250. Though probability of detecting erroneously was 5 % when the threshold was 250,

these erroneous detections were caused by a single client sending about 20 SYNs/sec. From the

viewpoints of fairness and resource managements, this relatively high-rate traffic should be limited.

It can, after all, be regarded such traffic as “attack traffic” directed at the Internet itself rather than a

specific server.

Detectable SYN rate of attack traffic

We also examine the SYN rates of attacks that can be detected without erroneous detections. Be-

cause low-rate attack traffic was not found in our data, we simulated such traffic by injecting low-

rate attack traffic into the traced traffic.

Effect of parameters in our detection method Figure 2.8 shows the SYN rates of attacks can be

detected as a function of parameter Sh. We can detect lower-rate attacks by setting Sh to 75 than

to 70. That is because when Sh is smaller, the number of samples used to estimate the parameters

28

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
P

ro
ba

bi
lit

y
Threshold for average of squared difference

P-

P+

(a) gamma distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

ba
bi

lit
y

Threshold for average of squared difference

P-

P+

(b) normal distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

ba
bi

lit
y

Threshold for average of squared difference

P-

P+

(c) lognormal distribution

Figure 2.7: Relation between threshold for average of the squared difference and the probabilities
of not detecting an attack and of erroneously detecting an attack 29

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

0

2

4

6

8

10

12

14

16

18

20

70 75 80 85 90

A
tta

ck
 r

at
e

[S
Y

N
s/

se
c]

Sh

gamma
normal

log normal

Figure 2.8: Relation between the detectable SYN rate of attack traffic and parameter Sh.

0

2

4

6

8

10

12

14

16

18

20

100 150 200 250

A
tta

ck
 r

at
e

[S
Y

N
s/

se
c]

N

gamma
normal

log normal

Figure 2.9: Relation between the detectable SYN rate of attack traffic and parameter N .

is smaller and we cannot model accurately. On the other hand, we can detect lower-rate attacks by

setting Sh to 85 than by to 90. Too small Xt makes detection too sensitive because the number of

samples compared with the models is small.

Figure 2.9 shows the SYN rates of attacks can be detected as a function of parameter N . In this

regard, we set X to 90 and M to 100. When we set too small N , momentary high rates are detected

erroneously. On the other hand, larger N makes attack detection duller and it takes more time to

detect attacks.

Figure 2.10 shows the SYN rates of attacks can be detected as a function of parameter M . In

this regard, we set Sh to 90 and N to 100. When we set M to larger value, we can model more

accurately. However, we can detect lower-rate attacks by setting M to 200 than by to 250. That

30

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

0

2

4

6

8

10

12

14

16

18

20

100 150 200 250

A
tta

ck
 r

at
e

[S
Y

N
s/

se
c]

M

gamma
normal

log normal

Figure 2.10: Relation between the detectable SYN rate of attack traffic and parameter M .

is because large M makes effect of attack traffic on the distribution of SYN arrival rates small and

makes low-rate attacks difficult to be detected.

These results show also our method can detect smaller attacks than a single threshold cannot de-

tect. Fig. 2.1(b) shows the SYN arrival rates vary between 10 and 50 SYNs/sec. Therefore, to avoid

erroneous detection, we should set a single threshold of SYN arrival rate more than 50 SYNs/sec

though the threshold cannot detect low-rate attacks which occur in hours when the traffic is rela-

tively low. Time-of-day variation of SYN rates influences methods using a single threshold. On the

other hand, our method can detect attacks regardless of time-of-day variation of SYN rates. There-

fore Figures 2.8 through 2.10, we can see that our method can detect attacks whose rates are lower

than 20 SYNs/sec.

Comparison among three distribution functions Figures 2.8 through 2.10 also show that there

is no significant observation among three distribution functions (normal, lognormal, and gamma).

So we can use any of these functions to detect the attack traffic in case of our simulation. But if we

focus on the deployment of our detection mechanism, the calculation complexity is also important.

It is clear that the calculation of the lognormal distribution is more complex than the one of the

normal distribution. Both the normal and the gamma distributions require much computational

overhead, however, the calculation of parameters in the normal distribution is very easy. Also, the

calculation of the normal distribution function can be simplified by using a table of standard normal

distribution. In summary, the normal distribution is most appropriate to detect the attack traffic on

considering both accuracy and implementation issues.

31

Section 2. Detection of Distributed Denial-of-Service Attacks by Analyzing TCP SYN Packets Statistically

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time from the beginning of attack

20 SYNs/sec
24 SYNs/sec
28 SYNs/sec

Figure 2.11: Average of squared differences versus time after the beginning of attacks with various
SYN rates.

Time needed to detect the attack traffic

Figure 2.11 shows the dynamics of average of squared difference from the beginning of the attacks.

In this figure, the SYN rates of the attacks are 20 SYNs/sec, 24 SYNs/sec and 28 SYNs/sec. In this

figure N is 200, M is 100 and Sh is 90. We use the normal distribution as the model distribution.

This figure shows that the averages of squared differences increase gradually after the beginning

of attacks. When the threshold is set to 20, which detect attacks without detecting any attacks

erroneously, attacks with SYN rates higher than 28 SYNs/sec can be detected within 20 seconds. In

this case, the number of half-open states caused by attack is 560, which is smaller than the length

of backlog queue in Linux.

To show that our mechanism can detect attacks faster, we compare the time needed to detect

attacks on our method with the time on the method proposed in [22]. Throughout this section, we

refer it as SYN-FIN method.

We first note here a brief description of the SYN-FIN method. First, we calculate Δi which is

the difference between the number of SYN or SYN/ACK packets and the number of RST or FIN

packets. We then obtain the normalized value of Δi by dividing the average number of RST or FIN

packets F , which is given by xi = Δi/F . We then calculate yi from

yi =

⎧⎨
⎩ 0 (yi−1 + xi−1 − α ≤ 0)

yi−1 + xi−1 − α (otherwise)
(2.14)

Finally, we determine the traffic has some attacks by detecting the value of yi exceeds the threshold

32

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

10

100

1000

14 16 18 20 22 24 26 28 30

T
im

e
to

 d
et

ec
t [

se
c]

Attack rate [SYNs/sec]

Our method
SYN-FIN method

Figure 2.12: Time to detect attacks with our method and with SYN-FIN method

T .

In the simulation, we set the values of α and T to be 0.15 and 0.37 respectively, which are

the optimized parameters to detect attacks as fast as possible. In this simulation we used normal

distribution as the model and set N to 200, M to 100 and Sh to 90. We set the threshold of D in

our method to be 20, which can detect attacks without detecting any attacks erroneously.

Figure 2.12 compares the time to detect attacks between our method and SYN-FIN method. We

varied the rate of attacking traffic and measure the time needed to detect the attacking traffic. From

this figure, we can observe that our method is much faster to detect attacks than SYN-FIN method.

One of the reasons is because SYN-FIN method uses a non-parametric approach to estimate the

difference the characteristic of normal from the one of attacking traffics, while our method adopts

a parametric approach (i.e., we model that the SYN rate of the normal traffic follows the normal

distribution) to estimate it. The parametric approach can detect faster and more accurate than the

non-parametric approach in the cases if the model is appropriate. However, SYN-FIN method has

an advantage that it can also detect attacks with lower rate (e.g., less than 14 SYNs/sec). Our

method cannot detect them because the traffic having the low rate attacks still follows the normal

distribution.

Resource needed by detection method

From above results, our method can work with only 100 samples of SYN rates. If we monitor D

for each destination address, we need 100 samples for each address. The captured traffic has 1,000

destination addresses in 1,000 seconds of inbound traffic, and 10,000 destination addresses in 1,000

33

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

seconds of outbound traffic. According to Fig. 2.1(b), arrival rates are not so large and we can then

assume a small range of integer value (i.e., 16 bits) is enough for counting SYN rates. Then we

need 200 KBytes for incoming traffic and 2 Mbytes for outgoing traffic.

2.3 Conclusion

We have analyzed the traffic at an Internet gateway and the results showed that we can model the

arrival rates of normal TCP SYN packets as a normal distribution. Using this result, we described

a new attack detection method taking the time variance of arrival traffic into consideration. Simu-

lation results show that our method can detect attacks quickly and accurately regardless of the time

variance of the traffic.

Section 3 Identification of Attack Nodes from Traffic Matrix Estima-

tion

The most effective way to prevent attack traffic is to identify the attack nodes and detach (or block)

attack nodes at their egress routers. However, existing traceback mechanisms are currently not

widely used for several reasons, such as the necessity of replacement of many routers to support

traceback capability, or difficulties in distinguishing between attacks and legitimate traffic. In this

section, we propose a new scheme that enables a traceback from a victim to the attack nodes. More

specifically, we identify the egress routers that attack nodes are connecting to by estimating the

traffic matrix between arbitral source-destination edge pairs. By monitoring the traffic variations

obtained by the traffic matrix, we identify the edge routers that are forwarding the attack traffic,

which have a sharp traffic increase to the victim. We also evaluate the effectiveness of our identi-

fication method through simulation. According to the results, even when we can monitor only the

link loads, our method can identify attack sources accurately and limit the total attack rate from

unidentified attack sources by setting parameters adequately.

3.1 Overview of Identification Method

Our method identifies attack sources by estimating the increases in traffic between every pair of

sources and destinations. We estimate the increases in traffic from the monitored link load. In the

estimation of the traffic matrix, we don’t focus on the total amount of traffic, but only focus on the

amount of increase from the previous measurement. The reason why we use only the increases in

34

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Monitored Network

Monitoring Node

1. Collecting link load

data from every router

2. Estimation of the

increase of traffic

3. Identification of

attack sources

Edge link

Edge link

Edge router

Figure 2.13: Overview of our identification method

traffic for the traffic estimation is discussed in the next paragraph. In this subsection, we first show

a brief overview of our identification method.

Figure 2.13 shows an overview of our identification method. In our method, we introduce a

control node to perform the process of identification of attack sources. We call this node a monitor-

ing node, and we also define the region where the monitoring node controls as a monitored network.

The monitoring node identifies the attack sources by periodically performing the following opera-

tions.

1. Obtains the statistics of the link load data from all routers in the monitored network.

2. Estimates a matrix of the increase in traffic between all arbitrary pairs of edge routers in the

monitored network.

3. Identifies the attack sources from the estimated traffic increase matrix.

We can obtain link load data through SNMP. SNMP is supported by essentially every device

in IP networks and is used to monitor or manage the device. That is, our method can work with

existing routers.

The interval for obtaining the statistics affects the time for identifying the attack sources. If we

set the interval to a larger value, the identification takes more time. On the other hand, if we set

the interval to a smaller value, the loads on the routers increase though we can identify attack the

sources soon after the attack starts. Thus, we should set this interval to as small value as possible

without high loads on routers. In general, to avoid high loads on routers, the interval of SNMP

35

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

is set to 5 minutes. Therefore, we set this interval to 5 minutes in our evaluation described in

Subsection 3.2.

In the following paragraphs, we describe the details about how to estimate the increase in traffic

and how to identify the attack sources.

Estimation of Increase in Traffic

First, we assign a set of links outside the monitored network as E. We call these links edge links.

The router, which is connected by an edge link, is called the edge router. We assign a set of all the

links in the monitored network, including the edge links, as L.

Traffic matrix T is defined as the |E| × |E| sized matrix, whose element ti,j (i, j ∈ E)

indicates the amount of traffic traversing from edge link i to edge link j. We can obtain the link

loads from each router through SNMP. The link loads can be denoted by the 2|L|-size link load

matrix X as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xf
1

xb
1

xf
2

xb
2
...

xf
|L|

xb
|L|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.15)

In matrix X , elements xf
l (l ∈ L) and xb

l (l ∈ L) indicate the amount of traffic on link l in

the forward and backward directions respectively, because most of the network links are bidirec-

tional. We only use the words forward/backward to distinguish the direction of the link. Therefore,

there is no policy for determining the forward or backward direction of each link. However, we

must distinguish between the ingress and egress traffic. To distinguish between them, we denote the

ingress traffic measured on edge link i as xin
i (i ∈ E) and egress traffic measured on the edge

link j as xout
j (j ∈ E) .

Traffic Matrix Estimation using Gravity Model We estimate the traffic matrix of each pair of

edge links from the link loads and routing information in monitored network. Ref. [6] uses a

gravity model to estimate the traffic matrix. The gravity model assumes that traffic from a source

to a destination is proportional to the total traffic at the source and at the destination. Using this

36

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

A

B

C

1 Gbps＋1Gbps

2 Gbps

3 Gbps

2 Gbps

1 Gbps+1Gbps

A

B

C

1 Gbps＋1Gbps

2 Gbps

3 Gbps

2 Gbps

1 Gbps+1Gbps

3 Gbps

Figure 2.14: Simple example of DoS attack

model, we estimate the traffic matrix from

ti,j = xin
i

xout
j∑

∀k∈E
xout

k

(i, j ∈ E) , (2.16)

where xin
i is the element of X corresponding to the amount of ingress traffic to the monitored

network measured on the edge link i and xout
j is the egress traffic measured on the edge link j.

However, we cannot estimate increases in traffic accurately using Eq. (2.16) as follows. We

assume that an attack traffic whose rate is tattack traverses from i to j. We also assume legitimate

traffic ti,j can be accurately estimated by Eq. (2.16). Traffic from i to j, including the attack traffic

is estimated from

t′i,j = (xin
i + tattack)

xout
j + tattack∑

k xout
k + tattack

, (2.17)

where t′i,j is the traffic traversing from i to j including attack traffic. Then, the increased traffic by

the attack is estimated by

t′i,j − ti,j =
t2attack + tattack(xin

i + xout
j)∑

k∈E xout
k + tattack

, (2.18)

where ti,j is the legitimate traffic from i to j. Fig. 2.14 shows a simple example. In this example,

we assume the total rate of traffic in the monitored network is 6 GBytes/sec, both xin
A and xout

B

are 1 GBytes/sec. We also assume the attack traffic from the edge link A to B has the rate of

1 GBytes/sec. From Eq. (2.18), the total traffic, including the attack traffic from edge link i to j is

estimated as 0.55 GBytes/sec, which is quite different from the attack rate (1 GBytes/sec).

As previously mentioned, when attack traffic is injected, the estimated increase in traffic is pro-

portional to the total rate of traffic monitored at the source. That is, the gravity model is infeasible

37

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

for directly estimating the attack traffic because the impact of the attack traffic is distributed among

the edge links that have legitimate traffic to the victim. As a result, the estimated attack rate is

significantly lower than the rate of the attack traffic that is really generated.

Traffic matrix estimation focusing on increased traffic To accurately estimate the increase in

traffic, we propose a matrix estimation method focusing not on the total rate of traffic but on the

increase in traffic.

First, we calculate the increases in traffic on each link from

Gn = Xn − X̄n, (2.19)

where Gn is the 2|L|-size vector in which the elements gf
i,n (i ∈ L) and gb

i,n (i ∈ L) indicate

the increase in traffic on link i in the forward and backward directions at time n, respectively. Xn

is the link load vector at time n and X̄n is the 2|L|-size vector in which x̄f
i,n is the average rate of

legitimate traffic on the link i in the forward direction before time n and x̄b
i,n is one on the same

link in the backward direction. We explain how to calculate X̄n later.

Then, by using Gn, we estimate the increases in traffic between every pair of sources and desti-

nations. The increase in traffic can be shown as a |E|×|E|matrix Fn whose element fi,j,n (i, j ∈ E)

indicates the increase in traffic traversing from edge link i to edge link j.

Eq. (2.16) cannot be used to estimate the traffic increase matrix from Gn, which may include

negative values, because it supports only positive values. Therefore, we modify Eq. (2.16) to support

negative values. We define the traffic increase matrix Fn, having the traffic increase fi,j,n, from edge

link i to j between the time n− 1 and n. The value of fi,jn is calculated from

fi,j,n=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gin
i,n

gout
j,n∑

{k:(gout
k,n

>0)} gout
k,n

(gin
i,n>0, gout

j,n >0)

−
∣∣∣∣∣gin

i,n

gout
j,n∑

{k:(gout
k,n

<0)} gout
k,n

∣∣∣∣∣ (gin
i,n<0, gout

j,n <0)

0 (others).

(2.20)

Focusing on the increase in the traffic, we can eliminate the effect of the amount of legitimate

traffic and estimate the increase in the traffic more accurately. That is, we can estimate that the

increase in traffic from attack sources to the victim is large by checking the increase in traffic when

the attack starts. If the monitored network suffers from multiple attacks whose sources and victims

are different, some traffic from different sources to different destinations concurrently increases.

38

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

In this case, the estimated increase in traffic is proportional to the increase in traffic measured at

the sources. That is, traffic from a source of an attack to a victim of another attack is estimated as

increased. However, we can identify the attack sources that generate the attack traffic, even if we

could not identify the victim node exactly where the attack source sends the attack traffic to.

Modification of traffic matrix Although Fn is a |E|×|E|matrix, Fn can be denoted as following

the |E|2-size vector;

Fn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1,1,n

f1,2,n

...

f1,|E|,n
f2,1,n

...

f|E|,|E|,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

Due to the fact that the total amount of traffic on the link is the summation of the traffic of flows

that are passing the link, Fn and Gn satisfy

Gn = AFn, (2.22)

where A is a 2|L| × |E|2 routing matrix which is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

af
1,1,1 af

1,2,1 · · · af
|E|,|E|,1

ab
1,1,1 ab

1,2,1 · · · ab
|E|,|E|,1

af
1,1,2 af

1,2,2 · · · af
|E|,|E|,2

ab
1,1,2 ab

1,2,2 · · · ab
|E|,|E|,2

...
...

. . .
...

af
1,1,|L| af

1,2,|L| · · · af
|E|,|E|,|L|

ab
1,1,|L| ab

1,2,|L| · · · ab
|E|,|E|,|L|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.23)

af
i,j,k (i, j ∈ E, k ∈ L) is equal to 1 if the traffic from edge link i to edge link j traverses on link

k in the forward direction, or set to zero otherwise. In a similar way, ab
i,j,k (i, j ∈ E, k ∈ L) is

equal to 1 if the traffic from edge link i toedge link j traverses on link k in the backward direction

or zero otherwise. Matrix A can be obtained by monitoring the routing messages, such as the Link

39

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

State Advertisement (LSA) of OSPF [73] or by simulating routing [74].

The traffic matrix estimated by the gravity model cannot satisfy Eq. (2.22) because Eq. (2.20)

does not use the traffic statistics on the internal links of the monitored network, but uses only the

traffic measurements of the edge links. Therefore, we adjust the traffic matrix estimated by the

gravity model to satisfy Eq. (2.22). We can obtain the final estimation results for Fn from

Fn = F ′
n + A+(Gn −AF ′

n), (2.24)

where F ′
n is the |E|2-size vector indicating the results estimated by Eq. (2.20), and A+ is a pseudo-

inverse matrix of A. We can obtain the least squares solution of X = AT by multiplying X by the

pseudo-inverse matrix of A. That is, by Eq. (2.24), we obtain Fn which satisfies Gn = AFn and

minimizes |Fn − F ′
n|2. In our evaluation, we obtain A+ by using a function of Scilab [75].

How to estimate average of legitimate traffic Our method for estimating the increase in traffic

uses the average rate of legitimate traffic. The rate of legitimate traffic varies according to the

time of day. To follow the time-of-day variation of this traffic, we assume that the average rate of

legitimate traffic X̄n is basically estimated by the exponentially weighted average of the monitored

traffic rate from

X̄n+1 = αXn + (1− α)X̄n (0 < α < 1) . (2.25)

Note here, other estimation method (e.g. AutoRegressive Integrated Moving Average (ARIMA)

model) can also be used to estimate the average rate of legitimate traffic. However, according

to [37], exponentially weighted average is almost as accurate as ARIMA model though it is very

simple. For this reason, we use the exponentially weighted average described above.

However, when the traffic increases suddenly and rapidly (we call these spikes throughout the

rest of this chapter), X̄n becomes large after the spike. The large X̄n value causes difficulties in the

identification of the increase in traffic after the spike, because the larger X̄n value makes the impact

of (Xn − X̄n) small, even for cases of increases in traffic. For this reason, we must estimate the

average of the legitimate traffic without the effect of spikes.

We can eliminate the effect of spikes by updating only the elements of X̄n corresponding to

the link on which the increase in traffic is under a threshold. However, as described in the previous

paragraph, our method assumes the situation covered by Eq. (2.22). For this reason, we should

update X̄n by satisfying Eq. (2.22).

For this purpose, we update X̄n using an element from estimated Fn, which is not rapidly

40

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

increasing. First, we extract the element not increasing rapidly from Fn. We denote the |E| × |E|
matrix of the extracted elements as F̂n. Each element f̂i,j,n (i, j ∈ E) is defined by

f̂i,j,n =

⎧⎨
⎩ fi,j,n (fi,j,n < μi,j + βσi,j)

0 (others)
. (2.26)

where μi,j is the average of the last J values of fi,j,k (i, j ∈ E, n− J < k ≤ n) and σi,j is the

variance of the last J values of fi,j,k (i, j ∈ E, n− J < k ≤ n) . β is the parameter by which

we can set the threshold. By Eq. (2.26), when the traffic from i to j sharply increases at time n

beyond the threshold, f̂i,j,n is zero, while in other cases, f̂i,j,n is fi,j,n.

After that, we update X̄n+1 with the following equation.

X̄n+1 = α(X̄n + AF̂n) + (1− α)X̄n (2.27)

In Eq. (2.27), we calculate the increase in traffic on each link from F̂n by AF̂n. Using the increase

in traffic, we calculate the amount of traffic at time n as X̄n + AF̂n. Then, we update X̄n+1 as the

weighted average of the monitored traffic using the amount of traffic at time n.

With the above stated equations, we can update X̄n+1 without the effect of any spikes in Fn.

By deciding whether each element of Fn should be used to update, we can satisfy Eq. (2.22).

The above model to estimate the average of legitimate traffic uses three parameters, α, β and

J . If the change of legitimate traffic causes large entries in Gn, the legitimate traffic is erroneously

identified as an attack. To avoid this erroneous detection, we should set the parameters to the value

which can minimize Gn during no attack times.

α indicates the weight to current measurement. Setting α to a large value, we cannot eliminate

the impact of temporal change of traffic on the estimated average of legitimate traffic. As a result,

the impact enlarges the increase of legitimate traffic from the estimated average of legitimate traffic.

However, setting α to a small value, the estimated average of legitimate traffic cannot follow the

periodic change of traffic. Therefore, we use the traffic data monitored before to set α to adequate

value. By using the traffic data monitored before, we set α to the value which can minimize the

squared errors between monitored traffic rate and its estimated rate.

By β, we can set the sensitivity to detect the spikes. If we set β to a large value, the spike also

affect the estimated average of legitimate traffic. On the other hand, if we set β to a small value, the

periodical change of traffic may mistakenly be identified as a spike. As a result, we cannot update

41

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

the estimated average of legitimate traffic. Therefore, we use the traffic data monitored before and

set β to as small value as possible without identifying the periodic change of the monitored traffic

as a spike.

J is the number of monitored data used for setting a threshold to detect spikes. By setting J to

large value, we use more monitored data. However, setting J to large value needs more memories

to store the monitored data. Therefore, we set J to as large value as possible.

Identification of attack sources

When an attack starts, the traffic sharply increases from the attackers to the victim. Moreover, the

larger the increase is, the more serious the impact on the network resources is. We identify the

sources increasing the traffic on the victim as attack sources. However, when many attack sources

are widely distributed, the impact of the attack is serious, even if each attack source generates a

small rate of attack traffic. Thus, the identification of the attack sources, by setting a static threshold

to the increase in traffic, is not sufficient. Instead of setting a threshold, we identify the attack

sources by comparing the increase in traffic from each edge link to the victim. When the victim

detects an attack, it is reasonable enough to assume that the source generating more traffic to the

victim has more likelihood of being considered an attack source. With this assumption, we identify

attack sources from the nodes generating a lot of traffic to the victim node. We also use the total

rate of traffic to detect the event of an attack. By using the total rate of attack traffic, we can identify

the attack sources even in cases of DDoS. The total rate of attack traffic can be estimated from the

increase of the egress traffic to the victim.

When an attack starts, the egress traffic increases with the rate of the attack traffic. However,

the rate of legitimate traffic may also change according to the time-of-day. Assuming the increase

of egress traffic to the victim is attack traffic may be an overestimation of the attack traffic, because

an increase in egress traffic includes both legitimate and attack traffic. As a result of this overesti-

mation, the source node sending only legitimate traffic may be misled as an attack source. For this

reason, we estimate the rate of the attack traffic g̃out from results of traffic estimation. When an

attack to edge link j starts at the time n, g̃out is estimated from

g̃out = gout
j,n − μout

j − γ, (2.28)

where gout
j,n is the egress traffic on edge link j to the outside of the monitored network, μout

j is

the average of the last J values of gout
j,k (n− J ≤ k < n) , and γ is the parameter indicating

42

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

the variation in the rate of the legitimate traffic. In this equation, μout
i represents the effect of the

time-of-day variation of the legitimate traffic and γ mitigates the effect of the other variations of the

legitimate traffic. By adequately setting γ, we can estimate g̃out as the value which may be a little

smaller than the actual attack rate, but is never larger than the actual attack rate.

Then, we identify source i as attack source when source i satisfies

∑
(k:fk,j,n>fi,j,n)

fk,j,n ≤ g̃out, (2.29)

where fi,j,n is the element of the estimated traffic increase matrix Fn corresponding to the traffic

from edge link i to victim edge link j. Before using Eq. (2.29), we must first sort out the set of

fk,j,n(1 ≤ k ≤ N) by descending order based on their values. We then calculate the total of the

top m traffic to the victim node. We compare the total top m traffic with the estimated egress traffic

g̃out. We increment m by one and calculate the total top m traffic until the total traffic exceeds g̃out.

Finally, we identify these m nodes as the attack sources.

Let us denote the actual rate of attack traffic as tattack and that the sum of the top m increases

of the egress traffic to the victim as ttop(m). If ttop(m) is smaller than g̃out and ttop(m+1) is larger

than g̃out, then we can identify m + 1 attack sources. In this case, the total rate of attack traffic

from the identified attack sources is ttop(m+1), which is larger than g̃out. That is, the rate of the

attack traffic from the unidentified attack sources is at most tattack− g̃out, which is calculated from

γ+μ−fnormal where fnormal is the increase in legitimate traffic. Therefore, by setting γ adequately,

we can identify most of the attack sources and limit the rate of attack traffic from the unidentified

attack sources.

Calculation time of our method

In our method, we estimate the traffic increase matrix from Eq. (2.20), Eq. (2.24) and Eq. (2.27).

The calculation time for Eq. (2.20) is O(|E|2) because we should estimate the traffic transmitted

between every pair of ingress and egress points. Although Eq. (2.24) needs the value of A+, we do

not have to calculate A+ each time, since A seldom varies. The calculation times for Eq. (2.24) and

Eq. (2.27) are O(|L||E|2), because they include the products of a 2|L| × |E|2 matrix and a |E|2-

sized vector. That is, the calculation time for estimating the traffic increase matrix is O(|L||E|2).
To identify the attack sources, we check whether the candidate satisfies Eq. (2.29). The number

of candidates is |E|. If fk,j,n(1 ≤ k ≤ N) are sorted by descending order, we check the condition

at most |E| times. Using a quicksort algorithm, we can sort |E| elements by less than O(|E|2)

43

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

Figure 2.15: Backbone Topology of the Abilene

comparisons. That is, the calculation time for identifying the attack sources using the estimated

matrix is O(|E|2).
Consequently, the calculation time for our method is O(|L||E|2). However, in a large network,

we can reduce the calculation time by using a link load on only a part of the links, not on all links.

This can be done by taking A and Xn from a part of links.

3.2 Evaluation of Identification Method

We evaluate our method by using simulations. In our simulation, we use the backbone topology

of Abilene (11 nodes and 14 links) shown in Fig. 2.15 for the monitored network. We assume that

each node in Fig. 2.15 has one edge link. That is, in this simulation, the purpose of our method is

to extract nodes connecting to attackers from 11 nodes in Fig. 2.15. We use the traffic data captured

for 24 hours with 5 minutes interval on the Abilene backbone network for the legitimate traffic in

the simulation. The sampling rate of the data is 1:100 (that is, one out of every 100 packets is

sampled). In this simulation, we use packets/sec to measure the traffic rate, because attacks sending

a number of small packets (including SYN flood attacks, which are the most frequent attacks [16])

affect packets/sec more significantly than byte/sec.

In our simulations, we set α to 0.3 and β to 3, which allows a time-of-day variation of the traffic.

Accuracy in estimating the increase of traffic

First, we validate that our method can accurately estimate the increase in traffic. Fig. 2.16 shows

the time-dependent variation of the arrival rate of each packet between a source and a destination.

Fig. 2.17 compares the actual time-dependent variation of the increase in arrival traffic with its

estimated rate. Comparing Fig. 2.16 and Fig. 2.17, we can see that by monitoring the increase in

traffic, we can eliminate the time-of-day variation of the traffic. That is, by monitoring the increase

44

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10000 20000 30000 40000 50000 60000 70000
A

rr
iv

al
 r

at
e

[P
ac

ke
ts

/s
ec

]
Time [sec]

Figure 2.16: Time-dependent variation of arrival rate of packets

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 0 10000 20000 30000 40000 50000 60000 70000

In
cr

ea
se

d
va

lu
e

of
 a

rr
iv

al
 r

at
e

[P
ac

ke
ts

/s
ec

]

Time [sec]

Estimated Value
Actual Value

Figure 2.17: Time-dependent variation of increase of arrival rate of packets between source and
destination.

in traffic, we can identify the attack sources without the effect of a time-of-day variation in the

traffic. From Fig. 2.17, we also see that in the cases where a rapid increase in traffic occurs, our

method can accurately estimate it.

We perform another simulation to evaluate accuracy when attacks from several sources start. We

inject attack traffic from randomly selected five sources to a single destination. Fig. 2.18 compares

the results of the estimations with actual values. The horizontal axis is the actual rate of traffic

and the vertical axis is the estimated value. In Fig. 2.18(a), the attack rate from each source is

4000 packets/sec. In this case, 25% of all packets to the victim are attack packets. In Fig. 2.18(b),

45

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

-4000 -2000 0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 V

al
ue

 [P
ac

ke
ts

/s
ec

]

Actual Value [Packets/sec]

(a) 4000 packets/sec attack injected

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

-4000 -2000 0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 V

al
ue

 [P
ac

ke
ts

/s
ec

]

Actual Value [Packets/sec]

(b) 10000 packets/sec attacks injected

Figure 2.18: Estimated increase vs. Actual increase when attack started
　　

the attack rate from each source is 10000 packets/sec. In this case, about a half of all packets to

the victim are attack packets. The lines in both figures show x± 1000. These figures show we can

accurately estimate the increase in traffic. Even for large attacks, we can estimate the increase in

traffic with an error rate of less than 1000 packets/sec.

46

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Table 2.3: Number of attack sources vs. false-positives and false-negatives

of # of false-negatives # of false-positives
attack sources (false-negative rate) (false-positive rate)

(total # of
attack sources)

1 (14) 0 (0.00) 12 (0.09)
2 (28) 0 (0.00) 6 (0.05)
3 (42) 2 (0.04) 12 (0.12)
4 (56) 6 (0.14) 14 (0.16)
5 (70) 14 (0.20) 16 (0.21)

Accuracy of identification of attack sources

Definition of false-positive and false-negative The accuracy of our method for identifying attack

sources is evaluated by two metrics, false-positive and false-negative. We define false-positive as

a case where a source not generating attack traffic is erroneously identified as an attack sources.

We define false-negative for cases where an attack source cannot be identified. That is, the number

of false-positives indicates the number of sources erroneously identified as attack sources and the

number of false-negatives indicates the number of attack sources that cannot be identified. We also

define the false-negative and false-positive rates as follows:

false-negative rate =
of false-negative

total # of attack sources

false-positive rate =
of false-positive

total # of sources not generating attack traffic

Number of attack sources vs. false-positives and false-negatives We simulate our method to

identify attack sources, changing the number of attack sources. We inject attack packets at 14

different times which are randomly selected. We change the number of attack sources from one to

five and attack sources are randomly selected. In this simulation, we set the attack rates so that 25%

of all packets to the victim are attack packets and the attack rate from each attack source is equal.

We set γ to 6000 packets/sec.

Table 2.3 shows the total number of false-positives and false-negatives of 14 attacks and their

rates. From these results, we can accurately identify the attack sources regardless of the number of

attack sources.

47

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Rank

N
u
m

b
e
r

o
f
fa

ls
e
-
p
o
s
it
iv

e
s

(a) Rank of estimated in-
crease vs. number of false-
positives

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Rank

N
u
m

b
e
r

o
f
fa

ls
e
-
p
o
s
it
iv

e
s

(b) Rank of actual in-
crease vs. number of false-
positives

Figure 2.19: Rank of increase in traffic vs. number of false-positives

However, there are a few false-positives. Therefore, we investigate such false-positives. Fig. 2.19

shows where these false-positives are ranked in estimated increase in traffic and actual increase in

traffic when the number of attack sources is five. In this figure, the horizontal axis is the rank order

in estimated increase in traffic and actual increase in traffic and vertical axis is the number of false-

positives corresponding to the rank order. From this figure, though actual increases in traffic from

the sources mistakenly identified are ranked 6th or lower, estimated ones are ranked 5th or higher.

That is, the reason of these false-positives is estimation errors. These estimation errors are caused

by the rapid increase in traffic traversing to the link that is near the link to the victim. In these cases,

the rapid increases cause errors because most of the path of the increased traffic is common with

the path from the source of the increased traffic to the victim.

γ vs. false-positive and false-negative We evaluate the relationship between γ and the false-

positives or false-negatives in our method by using a simulation with various values of γ. In this

simulation, we inject attack packets from randomly selected five sources at randomly selected 14

different times. Fig. 2.20 shows the results. In this figure, we inject two kinds of attacks. First,

the attack rate from each source is 4000 packets/sec. In this case, 25 % of all packets to the victim

are attack packets. In the second one, the attack rate from each source is 10000 packets/sec. In

this case, about a half of all packets to the victim are attack packets. From Fig. 2.20, we can see

that the proposed method can reduce the number of false-positives by setting γ to a larger value.

However, a large γ causes many false-negatives. In addition, when comparing two kinds of attacks,

we can also see that if we set γ to the same value, we have less false-negatives in cases of larger

48

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000
P

ro
ba

bi
lit

y
Gamma

False-negative rate (ratio of attack packets = 25 %)
False-negative rate (ratio of attack packets = 50 %)
False-positive rate (ratio of attack packets = 25 %)
False-positive rate (ratio of attack packets = 50 %)

Figure 2.20: γ vs. false-negative and false-positive

attacks than in smaller attacks. From this figure, we can also see that the number of false-positives

is almost the same, regardless of the injected attack rate. That is, the attack rate does not affect the

number of false-positives.

γ vs. attack rate from unidentified attack sources To evaluate the relationship between γ and

the total rate of attacks from unidentified attack sources, we simulate our method to identify attack

sources, changing the attack rate. In this simulation, we inject attack packets from randomly se-

lected five sources at randomly selected 14 different times and the attack rate from each source is

equal.

In Fig. 2.21, the horizontal axis is the total rate of the attack traffic. Each line shows γ, which

can identify one of the five attack sources, two of the five attack sources, three of the attack sources,

four of the attack sources and all of the attack sources at all time. From this figure, we can see that a

smaller γ is needed to identify attack sources for smaller attacks or to identify more attack sources.

This figure also shows that even when we set γ to the same value, we can identify more attack

sources for large attacks. For example, by setting γ to 10000 packets/sec, we can identify only one

attack source when the attack rate from each attacker is 2000 packets/sec. However, by setting γ to

the same value, we can identify four attack sources when the attack rate is 6000 packets/sec.

Figure 2.22 shows the relationship between γ and the total rate of attack traffic from unidentified

attack sources. In this figure, the three lines indicate the false-positive rate and the maximum and

average of the total rate of attack traffic from the unidentified attack sources. From this figure, we

can see that by setting γ to a smaller value, the attack rate from unidentified attack sources can be

49

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2000 4000 6000 8000 10000

ga
m

m
a

Attack rate from each attacker [Packets/sec]

1/5 attackers are detected
2/5 attackers are detected
3/5 attackers are detected
4/5 attackers are detected
5/5 attackers are detected

Figure 2.21: Relationship between attack rate and γ to identify attachk sources

small while a smaller γ causes more false-positives. We can also see that the average of the total

rate of attack traffic from unidentified attack sources is near γ. That is, the total rate of attack traffic

from unidentified attack sources is closely related to γ.

However, in some cases, the total rates of attack traffic from unidentified attack sources are

higher than γ. There are two reasons for this. First one is caused by the decrease of legitimate

traffic to the victim. In this case, our method underestimates the total attack rates to the victim.

Another reason is caused by errors in our method for estimating the increases in traffic. Our method

for estimation has errors in the range of±1000 packets/sec. That is, the estimated increase in traffic

from an attack source may be 1000 packets/sec less than the actual increase, while the difference

from one to another attack source may be 1000 packets/sec larger than the actual increase. In this

case, this error causes 1000 packets/sec attack traffic from unidentified attack sources. However,

we can accurately identify attack sources sending attack traffic whose estimated rate is larger than

γ + μ − fnormal. That is, by adequately setting γ, we can identify attack sources even when the

estimated increases have several errors.

As previously mentioned, the total rate of attack traffic from unidentified attack sources is

closely related to γ. That is, by defining the maximum attack rate that does not affects the network

resources, we can adequately set γ to limit the total attack rate from unidentified attack sources to

the defined maximum attack rate.

Comparison with existing method Finally we compare our method with existing method.

The method proposed in Ref. [36] separates traffic matrix into normal and abnormal subspaces

50

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10000 20000 30000 40000 50000 60000
 0

 0.2

 0.4

 0.6

 0.8

 1

A
tta

ck
 r

at
e

fr
om

 u
nd

et
ec

te
d

at
ta

ck
er

s
[P

ac
ke

ts
/s

ec
]

F
al

se
-p

os
iti

ve
 r

at
e

gamma

Attack rate from undetected attackers (max)
Attack rate from undetected attackers (average)

false-positive rate

Figure 2.22: γ vs. total rate of traffic from unidentified attack sources

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2000 3000 4000 5000 6000 7000 8000 9000 10000

fa
ls

e-
po

si
tiv

e
ra

te

Attack rate [Packets/sec]

Our method
PCA using estimated traffic matrix

PCA using true traffic mtrix

Figure 2.23: Comparison of our identification method and PCA method using estimated traffic
matrix

by applying Principal Component Analysis (PCA). When the square sum of abnormal subspaces is

larger than the threshold, it is detected as attacks. These abnormal subspaces also can be used to

identify attack sources. Using abnormal subspaces, we can identify all attack sources by identifying

the sources having the largest abnormal subspaces, until the squared sum of the abnormal subspaces

of traffic which are not identified as attack becomes less than the threshold. In this simulation, we

use two traffic matrices for PCA method. One is the true traffic matrix. Another is estimated by the

method proposed in Ref. [6]. By using estimated traffic matrix, we compare our method with PCA

method in the conditions that we can only monitor link loads.

51

Section 3. Identification of Attack Nodes from Traffic Matrix Estimation

We compare our proposed and PCA methods by simulation. In this simulation, we inject attack

packets from randomly selected five sources at randomly selected 14 different times and the attack

rate from each source is equal. We compare the false-positive rates when we set the thresholds so

that false-negative rates are less than 0.1. Fig. 2.23 shows the results. In this figure, the horizontal

axis is the attack rate from one attack source and the vertical axis is the false-positive rate. From

this figure, false-positive rate of PCA method with the true traffic matrix is low. That is, in the case

of monitoring traffic matrix accurately, PCA method identifies attack sources accurately. However,

false-positive rate of PCA method using estimated traffic matrix is quite high. This is because

the method proposed in Ref. [6] cannot estimate the traffic matrix accurately in the case of attacks.

Because the increase in traffic matrix estimated by the method proposed in Ref. [6] is proportional to

the total rate of traffic monitored at the source, we mistakenly identify sources having large amount

of traffic or cannot identify attack sources having small amount of traffic. As a result, PCA method

cannot identify attack sources accurately in the case that we can monitor only the link utilizations.

On the other hand, our method can identify attack sources accurately. This is because our

method estimates not the total amount of traffic but the increase in traffic. By focusing on the

increase in traffic, we can accurately estimate the increase in traffic caused by the attacks and

identify attack sources. From this figure, we can also see that our method can identify attack sources

more accurately when the attack rate is larger. This is because larger attack causes the significant

increase in traffic. As a result, because the increase in traffic caused by the attack is much larger

than the time-dependent variations of legitimate traffic, we can identify the sources easier.

This way, to detect attack sources, traditional traffic matrix estimation method is insufficient

and we need to use the estimation method focusing on the changes in traffic caused by attacks. In

our method, we can identify attack sources accurately by focusing on the increase in traffic.

3.3 Conclusion

In this section, we have proposed a new method for identifying attack sources by estimating traffic

matrices. Our method periodically collects link load data from each router through SNMP and

estimates the increase in traffic between each source and destination. When attacks start, our method

identifies the sources of the attack using the estimated increase. We have also shown that our method

can accurately identify attack sources without any false-positives by setting the adequate parameters

of γ.

52

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Section 4 Overlay Network Against Distributed SYN Flood Attacks

DDoS attacks prevent the legitimate users from connecting the victim servers by consuming the

resources of the servers and networks. Because the attack succeeds when legitimate packets are

also dropped even if no attack packets reach the server, we need a method to protect legitimate

packets accurately from attack packets.

In this section, we propose a new framework, in which all of the TCP connections to the victim

servers from a domain are maintained at the gateways of the domain (i.e., near the clients). We

call the nodes maintaining the TCP connection defense nodes. The defense nodes check whether

arriving packets are legitimate or not by maintaining the TCP connection. That is, the defense nodes

delegate reply packets to the received connection request packets and identify the legitimate packets

by checking whether the clients reply to the reply packets. Then, only identified traffic are relayed

via overlay networks. As a result, by deploying the defense nodes at the gateways of a domain, the

legitimate packets from the domain are relayed apart from other packets including attack packets

and protected. We evaluate our defense method by simulation and show that our method can make

the probability of dropping legitimate SYN packets less than 0.1 even when the attack rate exceeds

600,000 SYNs/sec.

4.1 Defense Method to Protect Legitimated Traffic from a Domain by Using Over-

lay Networks

Overview of defense method to protect legitimate traffic

Figure 2.24 shows an overview of our proposed architecture. We place a node called defense node

at the gateways of domains. Each defense node logically connects to one or more other defense

nodes, and constructs an overlay network among the defense nodes. Each defense node identifies

legitimate SYN packets by returning SYN/ACK packet instead of the victim node. Then, the SYN

packet is relayed only when the defense node receives the ACK packet of the SYN/ACK packet from

the client (Fig. 2.25). Because defense node does not hold the SYN packets as long as victim server

due to small RTTs, even if heavy attacks occur, the defense nodes can identify legitimate packets

from the domain without dropping the legitimate connection requests. Once a flow (i.e., packets

having the same (src IP, dest IP, src port, dest port, protocol) fields) is identified as legitimate traffic,

packets of the flow are transferred via the overlay network and distinguished from attack traffic.

In the ideal situation, the defense node should handle all arriving packets and pick up legitimate

packets from them. However, this process causes processing overhead, and the defense node will

53

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Victim

User

Attacker
Identification of

attack packets

User
User

Attacker

User

User

Legitimate packets

SYN

ACK of

SYN/ACK

Delegate

SYN/ACK

Connect the

flow

Figure 2.24: Overview of our defense method

SYN

SYN/ACK

ACK

SYN

SYN/ACK

ACK

Client Defense node Server

DATA

DATA

Figure 2.25: Delegation of SYN/ACK packets

54

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Attack

detection

mode

Defense

mode

Detect an attack

Receive an alert message

Detect the end of the attack

Figure 2.26: State transition diagram between attack detection mode and defense mode

become a performance bottleneck. To minimize the defense node overhead, it is desirable to identify

only those packets requiring to be protected (i.e., packets which will be mixed with attack packets

on the way to the destination server). For this purpose, we use a mechanism for detecting the starts

and ends of SYN flood attacks. A defense node has two modes, attack detection mode and defense

mode and moves between two modes as shown in Fig. 2.26.

In the attack detection mode, the defense node monitors packets and checks whether the arriving

traffic is attack or not. This check is performed at the server side. This is because it is difficult to

detect highly distributed attacks at edge routers or core networks since the number of attack packets

is very small there. Additionally, though there are several proposals to detect attacks, each method

has pros and cons. For example, though a more complex method can detect attacks more accurately,

it requires more resources such as CPU and memories. Therefore, we separate methods to detect

attacks from our framework so that we select any detection methods according to the situations or

policies of the domain. In our evaluation described in Subsection 4.3, we use the method proposed

in Section 2.

When the defense node detects attack traffic, the defense node moves into the defense mode

for the victim’s address and sends alert messages to other defense nodes. Then, each defense node

receiving the alert message also moves into the defense mode for the victim’s address.

In the defense mode, the defense node delegates SYN/ACK packets in order to identify legiti-

mate traffic and relays the identified traffic apart from other traffic by using the overlay networks.

The defense mode is continued until there becomes no attack traffic in the intermediate domains.

In the following paragraphs, we describe the details of the above operations.

55

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Victim

User

Attacker

User User

Attacker

User

User

2. Alerting defense
nodes

1. Detection
of attacks

3. Blocking attack packets

Figure 2.27: Steps to start defense mode

Changing the modes of defense nodes

Starting defense mode When the defense node detects attack traffic, the defense node moves into

defense mode for the victim’s address by adding the address to the victim server list held by each

defense node. Then, the defense node alerts other defense nodes.

Figure 2.27 shows the steps to alert all defense nodes after an attack is detected. Once the

attack is detected, the IP address of the victim node is sent to all defense nodes as alert messages

via the overlay network. The defense nodes that receive the alert then move into the defense mode

by adding the address to their victim server lists. Then, they begin to return SYN/ACK packets

for SYN packets whose destination addresses are that of the victim server. These alert messages

are generated at the event of attack detection, and forwarded once for each defense node. No other

alerts are forwarded during the defense mode, except the events of ending the defense mode. These

alerts therefore do not strictly affect on the network bandwidth availability.

Ending the defense mode Since the resources of the defense node are limited, the defense mode

should be terminated as soon as the protection of legitimate traffic becomes unnecessary (i.e., there

becomes no attack traffic on the way to the victim server). To enable this, it is necessary to detect

the nonexistence of attack traffic.

To detect the nonexistence of attack traffic, the defense node counts the number of connection

requests (i.e., SYN packets) which time out or are dropped. When the number is 0 for a given

56

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

User

Attacker

Defense

node A

Defense

node B Victim

User

B also identifies all SYN

packets passing A

If A finishes delegation

before the attack stops

Figure 2.28: Problem in finishing the defense mode

Victim
User

Attacker

User

Attacker

User

User

1. Detection
of the end
of attacks

2. Sending
Message of
the end of
attacks

3. Checking
whether attacks
end.4. Sending

Message of
the end of
attacks

5. Checking
whether attacks
end.

Figure 2.29: Steps to finish the defense mode

length of time (Tend), the defense node is considered to receive no attack traffic. Unlike attack

detection, detection of the nonexistence of attack traffic does not have to be particularly fast since

a long defense mode does not disturb legitimate connections. By waiting for a pre-defined timeout,

we can also protect legitimate traffic against pulsing attacks in which the attack traffic oscillates

between the maximum rate and zero.

However, even when a defense node receives no attack packets, it is possible that the legitimate

traffic will be mixed with attack traffic if they are relayed as normal IP packets. This situation is

shown in Fig. 2.28. In this figure, all of the attack traffic is passed via defense node DB and DA

57

Section 4. Overlay Network Against Distributed SYN Flood Attacks

receives no attack packets. However, if DA finishes the delegation at DA, all of the SYN packets

passing DA are subject to identification at DB . The load on DB thus increases because the total

number of SYN packets delegated by DB increases, and DB may drop some SYN packets because

of the SYN cache limit on DB. This degradation of performance will not occur if DA continues

to delegate SYN/ACK packets until there becomes no attack traffic on DB (i.e., the attack has

completely ended in this case).

Therefore, the defense node should stop delegating SYN/ACK packets only when there are no

attack packets at either the defense node or intermediate defense nodes on the way to the victim

node.

Figure 2.29 shows the steps to end the defense mode. First, the defense node nearest to the

victim node detects the nonexistent of attack traffic. This defense node ends the defense mode by

deleting the corresponding IP address from the victim server list. Then, the defense node sends a

message indicating the end of the attack to all adjacent nodes (i.e., those logically connected from

the defense node). A defense node receiving the message still remains in the defense mode until it

detects the nonexistent of attack traffic. Upon detecting the nonexistent of attack traffic, the defense

node ends the defense mode by deleting the corresponding IP address from the victim server list,

and forwards the message to the downstream adjacent defense nodes. The defense is completely

ended after all defense nodes have received the message and ended the defense mode.

Identification and protection of legitimate traffic during the defense mode

When a defense node is in the defense mode for a victim server, the defense node identifies and

protects legitimate traffic to the server by maintaining the TCP connection. When receiving a

packet, the defense node performs the following steps. First, the defense node checks whether the

destination address of the packet is included in the victim server list. If the destination address is

not included, the defense node relays the packet as a normal IP packet after verifying that it does

not hold the corresponding TCP connection. If the destination address is included (i.e., the defense

node is in the defense mode for the destination address), the defense node performs the following

operations.

• If the packet is a SYN packet, the defense node delegates a SYN/ACK packet and holds the

connection request.

• If the packet is an ACK packet and the defense node holds connection request corresponding

to the received packet, the defense node establishes the connection to the destination server

58

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Table 2.4: Data structure used to identify flows
Source address 32 bits

Destination address 32 bits
Initial sequence number (receiver) 32 bits
Initial sequence number (sender) 32 bits

Source port 16 bits Destination Port 16 bits
Timer 8bits reserved for future use

via overlay network.

• If the defense node has established the connection corresponding to the received packet, the

defense node relays the packet by using the established connection to the destination server.

• In other case, the defense node drops the packet.

In the rest of this paragraph, we describe these operations in detail.

Delegating SYN/ACK packets When the defense node receives a SYN packet to the victim

server, the defense node returns a SYN/ACK packet to the address specified in the source address of

the received packet. Then, after the defense node receives the acknowledgement for the SYN/ACK

packet, it tries to establish a connection to the victim server.

When delegating a SYN/ACK packet, the defense node must hold the data shown in Table 2.4

to identify the ACK packets which is the acknowledgement of the SYN/ACK packet. The number

of structures held by the defense node is equal to the number of delegating SYN/ACK packets. The

defense nodes should save their resources such as memory or CPU load while they hold legitimate

connection requests even if they receive a number of SYN packets.

To save the resources, in this section, we use the SYN cache [45] mechanism. The SYN cache

uses a hash table to search the data structures. The hash value is computed from the source and

destination IP addresses and the source and destination port numbers. Entries having the same hash

value are kept on a forward linked list. The length of the list is limited. When the list is full (i.e.,

the length of the link is equal to the maximum value) and a new connection request is received, the

oldest (i.e., the head) entry in the list is dropped and a new request is appended at the tail of the

list. This is because the oldest entry is the most likely to be an attack packet since the legitimate

SYN packets remain in the backlog queue only as long as the RTT between sending the SYN/ACK

packet and receiving its acknowledgement.

59

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Establishing the connection to the victim server When receiving an ACK packet to the victim

server, the defense node checks whether the corresponding connection request is held in the SYN

cache. If the corresponding connection request is held, the defense node establishes the connection

to the server via the overlay network, because the flow the ACK packet belongs to is identified as

legitimate traffic since the ACK packet completes the 3-way handshake.

The defense node establishes two connections per flow, the connections between the defense

node and the victim server and between the defense node and the source node of the flow. In our

method, the defense node relays packets by connecting the two TCP connections. To connect the

two connections, we use the mechanism used in TCP proxy [76], which is a method controlling

transmission quality at the transport layer. TCP proxies construct overlay networks and establish

the connections to the next-hop TCP proxies, which are determined according to the destination

addresses. TCP proxies relay packets by using hop-by-hop connections established via the overlay

networks. Ref. [76] shows that the TCP throughput can be improved by TCP proxies in spite of

buffering delay of the proxies due to shorten RTT by dividing small TCP connections. Though

the hop-by-hop TCP connections can gain more throughput rather than a single TCP connection

between the same end nodes, defense nodes do not always have to establish hop-by-hop connection

since our purpose of using overlay network is to distinguish the traffic identified as legitimate.

Therefore, the intermediate defense nodes have only to relay the legitimate packets to the next hop

defense node. Since hop-by-hop connections have both pros and cons, we use both types of TCP

connections based on the administrative policy.

TCP connections are required to be held in a data structure in which we can search them quickly,

because defense nodes search the corresponding TCP connections every time receiving a packet.

The method in Ref. [77] can search flows quickly by using a hash table. To apply this method to our

defense nodes, though, we need to adjust it. While Ref. [77] uses only (src IP, dest IP, server port)

fields to identify flows, the defense nodes need to recognize connections having different client port

numbers as different connections. Additionally, defense nodes need to know the corresponding

connections to the next hop at the same time as searching the connections.

Figure 2.30 shows the data structure used in a defense node to hold legitimate connections.

Entries having the same hash value are maintained in linked lists. In an entry, a defense node

holds information needed by the TCP connection and the pointer to the entry of the corresponding

connection. Upon receiving a packet to or from the victim, a defense node searches in the hash

table for the flow of the packet. The defense node then forwards the packet to the corresponding

flow.

60

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Hash table

Hash value

list

src IP
dest IP

src port dest port
Pointer to the
corresponding flow

...

src IP
dest IP

src port dest port
...

Figure 2.30: Data structure to hold normal flows

The size of data structure shown in Fig. 2.30 is only 240 Bytes per flow because a TCP connec-

tion can be held in a 120 Byte control block [78]. We also need sender/receiver buffers. According

to Ref. [76], though larger buffers can gain more throughput, we can gain at least as much through-

put as a single TCP connection between the same end nodes even if the sender/receiver buffer sizes

are only 10 Kbyte. We need total 20 Kbytes per flow to hold both sender and receiver buffers.

Another important issue on establishing connections via overlay network is how to select the

next hop, or how to construct the overlay topology. In SOS [52–54], the next hop is chosen ran-

domly to distribute the load of traffic among overlay connections. Alternatively, we can route the

legitimate traffic by using the information of latency or throughput between overlay nodes [79]

or the QoS-Aware routing method [80]. However, the suitable topology and routing depend on

policies of domains. Therefore, we separate methods to select the next hop or to construct overlay

networks from our framework so that we can use any methods according to the situations or policies

of the domains. In our evaluation described in Subsection 4.3, we use the minimum hop routing to

simplify the evaluation model.

61

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Relaying legitimate packets by using the established connections If the received packet is not

a SYN packet or the acknowledgement of the SYN/ACK packet held in the SYN Cache, the defense

node searches the data structure shown in Fig. 2.30 to check whether the corresponding flow has

been established. If the flow has been established, the packet is relayed by using the established

TCP connection as following steps. First, the defense node receiving the packet stores the packet

into the buffer of TCP proxy, and sends its ACK packet back to the source node. Then the packet is

delivered by the other TCP connection to the destination node.

We also need to consider about the security of the overlay network. In our method, we re-

gard the flows which complete the 3-way handshake as legitimate traffic. However, a malicious

user may send many packets after completing the 3-way handshake to make the overlay network

overloaded and unavailable. Though random routing proposed in [52] can mitigate the intermedi-

ate links flooded by attack packets, it cannot avoid attack packets flooding the link nearest to the

victim. In our method, on the other hand, the source addresses of packets on the overlay network

are never spoofed because the source addresses are verified by checking the acknowledgements of

SYN/ACK packets at the initial phase. For this reason, we can easily filter the flooding packets by

limiting a rate from each source address. If there are too many attackers and the filtering is insuffi-

cient, we also need to limit the rate from a defense node to avoid the attack packets degrading the

performance of the whole overlay network. However, because limiting the rate from a defense node

affects the legitimate traffic from the node, we need to set the rate limit carefully. How to set the

rate limit is one of our future works.

Extension to defend servers against other types of attacks

We have discussed how to defend servers from SYN flood attacks above. However, there are other

types of attacks. For example, SYN/ACK flood attacks are attacks in which attackers generate too

many SYN/ACK packets to the victim server by sending SYN packets whose source addresses are

spoofed with the victim’s address.

We can easily extend our method so as to defend servers from this kind of attacks by maintaining

TCP connections not only to the victim servers but also from the victim servers. Maintaining TCP

connection from the victim servers can be performed as following steps. First, the defense node

nearest to the victim server receives a SYN packet from the victim server. The defense node relays

the SYN packet to the defense node nearest to the destination node via overlay networks. Then, the

defense node nearest to the destination node connects to the destination node and relays the packets

between the destination node and the victim server by connecting two TCP flows in a similar way

62

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

to the case described in the previous paragraph.

In this case, all connections from the victim servers are relayed via overlay networks and main-

tained by defense nodes. That is, when a defense node receives SYN packets whose source ad-

dresses are the victim’s address and the SYN packets are not relayed via overlay networks, the SYN

packets are regarded as packets generated by attackers. Similarly, when the defense node receives

a SYN/ACK packet to the victim server and the defense node has not received the corresponding

SYN packet via the overlay network, the SYN/ACK packets are also regarded as attack packets.

That is, defense nodes can easily identify attack packets and drop them. As a result, because attack

packets are dropped near attackers, we can protect servers from this kind of attacks.

This way, maintaining the TCP connection at the defense nodes is also effective to other kinds

of attacks using TCP.

4.2 Deployment Scenario

In this subsection, we explain how our mechanism can be deployed in the Internet. We deploy our

method in a phased manner because it is impossible to deploy in the whole Internet at once. In this

section, we refer to a domain in which our mechanism is deployed as a protected domain. All edge

routers are defense nodes in a protected domain. Otherwise, a domain is referred to as unprotected.

Figs. 2.31 through 2.33 show the strategic scenario for the deployment of our defense mechanism.

There are three stages as follows.

1st stage (Fig.2.31): Only one domain is protected. Others are unprotected.

2nd stage (Fig.2.32): Several domains are protected.

Final stage (Fig.2.33): All domains are protected.

At the first stage, we consider our method to be deployed in only one domain, as shown in

Fig. 2.31. In this figure, Domain 1 is protected. Outside Domain 1 all attack traffic to the victim

node is first delivered to the victim node. The defense node nearest to the victim node then detects

the attack traffic, and alerts the other defense nodes of the attack. Attack traffic is therefore blocked

at the defense nodes placed at the edge of Domain 1. In the case shown in Fig. 2.31, our method

enables Domain 1 to block attack packets at three points. This means that our defense mechanism

can defend against attack traffic up to three times as effectively as a single-point defense mechanism.

At the second stage of deployment (Fig. 2.32), our method is deployed in several domains which

cooperate with each other. In the case shown in Fig. 2.32, Domain 1, Domain 3, and Domain 6 are

63

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Victim

Domain 1

Domain 5

Domain 2

Domain 4

Domain 3

Domain 6
Domain 7

Figure 2.31: First stage of deployment

Victim

Domain 4

Victim

Domain 1

Domain 5

Domain 2

Domain 3

Domain 6

Domain 7

Figure 2.32: Seccond stage of deployment

64

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

Victim

Domain 1

Domain 5

Domain 2

Domain 4

Domain 3

Domain 6
Domain 7

Figure 2.33: Final stage of deployment

protected. The protected domains do not have to be physically connected. Domains can be protected

only by connecting with other protected domains logically (e.g., Domain 3 in Fig. 2.32). After an

attack alert, the delegation of SYN/ACK packets is performed at the edge of the protected domains.

As a result, attack traffic generated in Domain 3 and Domain 6 is blocked at the egress edges of these

domains. Attacks from Domain 2 and Domain 4 are blocked at the edge of Domain 1 (the defense

node for the link to Domain 2). Attacks from Domain 5 and Domain 7 are also blocked at the edge

of Domain 1. Increasing the number of protected domains means that attack traffic is blocked at

more defense nodes. Moreover, at the second stage, clients in protected domains can connect to the

victim node even when attack rate is so high that clients in unprotected domains cannot connect to

the victim node. For example, when attack rates from Domain 2 and Domain 4 are too high for the

defense node at the edge of Domain 1 to deal with, legitimate clients in Domain 2 and Domain 4

may fail to connect to the victim. Even in this case, clients in Domain 3 can connect to the victim

because the packets from the Domain 3 are identified by the defense node not in Domain 1 but

in Domain 3 and are only relayed by the defense node in Domain 1. As the number of protected

domains increases, the amount of legitimate traffic that our mechanism can protect may increase.

At the final stage of deployment (Fig. 2.33), all domains are protected. In the case shown in

Fig. 2.33, no attack packets reach Domain 1 because all attack packets are blocked inside each

domain. The attack traffic is no longer delivered to the core network when detected.

65

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Identification

of packets

Client

Attacker

(a) Server-side defense

Client

Identification

of packets

Attacker

(b) Client-side defense

Figure 2.34: Server-side defense and client side defense

4.3 Evaluation of Defense Method

In this subsection, we evaluate the performance of proposed defense mechanism through simulation.

First, we show the effectiveness of client-side defense by comparing the dropping rate of legitimate

traffic where a single defense node is placed at the client-side with the one where the node is placed

at the server-side. Then, we verify that our method can efficiently protect legitimate traffic from

domains deploying our method by simulating the case where we place defense nodes at several

domains (i.e., not all domains). In addition, we evaluate our method in the case of pulsing attacks.

Finally, we investigate the number of TCP connections held by a defense node during the defense

mode in order to evaluate the memories required to protect legitimate traffic.

Effectiveness of client-side defense

To demonstrate the effect of identifying legitimate traffic near clients, we compared the probability

of dropping legitimate SYN packets when deploying a client-side defense mechanism (Fig. 2.34(b))

with that when deploying a server-side defense mechanism (Fig. 2.34(a)). In this evaluation, the

average RTT between the clients and the victim server was set to 200 ms, and the average RTT

between the clients and the client-side defense node was set to 20 ms. By using the result described

in Section 2, we generated the legitimate SYN packets whose rate follows a normal distribution

with a mean of 100 SYNs/sec. We set the SYN Cache parameters to the values used in FreeBSD.

Figure 2.35 shows the probabilities of legitimate SYN packets being dropped based on the rate

of attack traffic. As shown, the client-side defense protects legitimate packets much better than the

server-side defense. This is because the RTTs between clients and the client-side defense node are

much shorter than the RTTs between clients and the server-side defense node. The average holding

time for each connection request on the SYN cache is also short, which increases the availability of

the SYN cache.

66

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+006
P

ro
ba

bi
lit

y
th

at
 le

gi
tim

at
e

S
Y

N
 p

ac
ke

t d
ro

ps
Attack rate [SYNs/sec]

Server-side defense
Client-side defense

Figure 2.35: Probability of dropping legitimate SYN packets vs. attack rate

Ref. [81] reports observing attacks whose rates exceeded 600,000 SYNs/sec. In the event of

such heavy attacks, server-side defense cannot protect legitimate packets and the probability of

dropping legitimate SYN packets rises to almost 1. On the other hand, if we deploy client-side

defense, the probability of dropping legitimate SYN packets would be less than 0.1.

In summary, the client-side defense can catch up more than the server-side defense and can pro-

tect legitimate packets even when attack rate is large. That is, our method fulfills the R1 described

in Section 1.

Effectiveness of our method to protect legitimate traffic

We next considered the effectiveness of our method when our method is deployed in the several

domains (i.e., not all the domains). In this evaluation, we used the case shown in Fig. 2.36. In this

case, Domains 0, 1, 4, and 6 deploy our methods. RTTs between the directly connected domains

(e.g., Domains 0 and 1) are 80 ms. RTTs between clients in a domain and the gateway of the domain

are 20 ms. That is, RTTs between clients in Domain 4 and the gateway of Domain 0 are 260 ms.

Domain 0 has a victim server and Domain 3 has attackers which inject attack packets after a

certain period of time from the beginning of the simulation. The total attack rate generated by

attackers in Domain 3 is 600,000 SYNs/sec, and the attack begins at 600 sec from the simulation

start and ends at 1200 sec from the simulation start. 30 SYNs/sec of legitimate traffic are generated

from Domains 1, 4 and 6 to the victim server. In addition, the victim server generates 3 SYNs/sec

of legitimate traffic to Domain 6. We set the timeout of SYN cache to 180 sec and Tend to 180 sec.

In this evaluation, we compared our method with the following two cases.

67

Section 4. Overlay Network Against Distributed SYN Flood Attacks

Victim

Clients

Clients

Clients

Attackers

Domain 0

Domain 1

Domain 2

Domain 3

Domain 4

Domain 5
Domain 6

Figure 2.36: Enviroment used in our simulation

Server-side defense Only server-side defense node (i.e., the defense node deployed at the gateway

of Domain 0 in Fig. 2.36) identifies the legitimate packets and blocks attack packets.

Attacker-side defense Similar to the MovingFirewall, the node nearest to the attackers blocks at-

tack packets but other nodes perform nothing. In the case of Fig. 2.36, because Domains 2

and 3 do not deploy defense nodes, the defense node deployed at the gateway of Domain 1

identifies the legitimate packets and blocks attack packets.

In all cases, defense nodes identify the legitimate traffic by delegating the SYN/ACK packets.

Figure 2.37 compares the dropping rate of legitimate traffic from Domains 1, 4 and 6. From

this figure, most of the legitimate SYN packets are dropped in the case of the server-side defense.

Especially, the legitimate clients in Domains 4 and 6 cannot establish the connections at all. This

is because it takes long time to establish connections since the RTTs between the defense node at

Domain 0 and the clients in Domains 4 and 6 are large. As a result, the SYN packets are dropped

from the backlog queue of the defense node at Domain 0 due to a number of attack packets.

In the case of attacker-side defense, the probabilities of packet loss for Domain 1 and 6 become

very low soon after the attack starts. This is because the attacks are immediately detected, and the

defense node at Domain 1 begins to distinguish legitimate packets from attack packets. Then, none

of the legitimate SYN packets from Domain 6 are dropped because there is no attack traffic on the

way from Domain 6 to the victim server. In addition, because the RTTs between the defense node

of Domain 1 and clients in the domain are small, the probability of packet loss for Domain 1 also

68

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

th
at

 le
gi

tim
at

e
S

Y
N

 p
ac

ke
t d

ro
ps

Time [sec]

Domain 1
Domain 4
Domain 6

(a) Server-side defense

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

th
at

 le
gi

tim
at

e
S

Y
N

 p
ac

ke
t d

ro
ps

Time [sec]

Domain 1
Domain 4
Domain 6

(b) Attacker-side defense

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

th
at

 le
gi

tim
at

e
S

Y
N

 p
ac

ke
t d

ro
ps

Time [sec]

Domain 1
Domain 4
Domain 6

(c) Our method

Figure 2.37: Probability of dropping legitimate SYN packets (when attack rate is constant)

69

Section 4. Overlay Network Against Distributed SYN Flood Attacks

becomes very low.

However, the probability of packet loss for Domain 4 remains almost 1 during the attacks. This

is because the legitimate packets from Domain 4 are still mixed with attack packets on the way to

the defense node of Domain 1. In addition, because it takes long time to identify the packets from

Domain 4 as legitimate traffic since the RTTs between the defense node at Domain 1 and clients at

Domain 4 are large, the legitimate packets from Domain 4 are dropped by attack packets. That is,

attacker-side defense cannot protect legitimate traffic if the legitimate traffic is mixed with attack

traffic at intermediate domains not deploying defense nodes.

On the other hand, in the case of using our method, the probability of packet loss for Domain 4

also becomes very low soon after the attack starts. This is because the legitimate SYN packets from

Domain 4 are not mixed with attack traffic since the defense node at Domain 4 begins to protect

legitimate traffic by relaying them apart from other packets. That is, our method can protect the

legitimate packets even if the intermediate domains (i.e., Domain 2 in this case) do not deploy our

method (R2).

Effectiveness to the pulsing attack

We evaluated our method in the case of pulsing attacks. In this simulation, we used the same

environment as the previous paragraph. We injected two types of pulsing attacks. First, attack rate

changes between 0 and 600,000 SYNs/sec every 200 sec. Second, attack rate is changed between 0

and 600,000 SYNs/sec every 400 sec.

We investigated the probability of dropping legitimate SYN packets from Domain 4 for each

type of attacks. Fig. 2.38 shows the results. In this figure, we plotted the time dependent variation

of the probability of dropping legitimate SYN packets in the case of our method, attacker-side

defense and victim-side defense. This figure shows that, in the cases of attacker-side defense and

server-side defense, clients in Domain 4 cannot connect to the victim server when the attack rate

is 600,000 SYNs/sec as with the same observation in the previous paragraph. On the other hand,

the probability of packet loss in the case of our method becomes very low soon after the attack has

occurred because defense nodes immediately move into defense mode.

When the attack rate is varied every 200 sec, the probability of packet loss in the case of our

method never becomes high after the defense mode has begun. This is because defense nodes do

not finish the defense mode since the interval between the end of an attack and the start of another

attack is small.

Defense nodes finish the defense mode if the number of packets which time out or are dropped

70

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

has been 0 for 180 sec. In addition, attack packets remain in backlog queue until timeout if they are

not dropped. The timeout is set to 180 sec. That is, the number of packets which time out does not

become 0 until 180 sec after attack finished because some attack packets in backlog queue time out.

Thus, defense nodes finish defense mode 360 sec after attack finished. Therefore, if an attack starts

within 360 sec after another attack finished, packet loss rate remains low because defense node still

remains defense mode.

On the other hand, when attack rate is changed every 400 sec, the probability of packet loss in

the case of our method also becomes high every 400 sec. This is because the defense nodes end the

defense mode while the attack rate is 0. However, the packets resent are not dropped because the

probability of packet loss was high only for a second. For this reason, clients from Domain 4 can

connect the victim server even when attack rate changes every 400 sec. This way, our method can

protect legitimate packets even in the case of pulsing attacks.

Loads on defense nodes

Finally, to evaluate the loads on defense nodes to hold legitimate TCP connections, we investigated

the number of TCP connection held by a defense node. In this evaluation, we used the same envi-

ronment of the case of Fig. 2.37 and the length of the legitimate TCP connections was set so as to

follow the Pareto distribution whose mean is 5 sec.

Figure 2.39 compares the number of TCP connections held by the defense node at Domain 6

in following three cases, our method with the extension described in Subsection 4.1, our method

without the extension, and a method similar to SOS [52–54] which does not stop the identification

of legitimate traffic when at least one defense node receives attack traffic.

From this figure, the number of TCP connections held by a defense node in the cases of our

method decreases at 980 sec from the simulation start, while it remains large in the case of method

which does not stop the identification when at least one defense node receives attack traffic. This

is because all of the attack traffic is blocked by the defense node at Domain 1 and there becomes

no attack traffic on the way from Domain 6 to the victim server. Therefore, the defense node at

Domain 6 ends the defense mode after verifying that the number of connection requests (i.e., SYN

packets) which time out or are dropped is 0 for a given length of time. As a result, our method

avoids unnecessary overhead of defense nodes, which may cause increase of the end-to-end delays,

by avoiding holding the TCP connections which can connect to the server even without protection

(R4).

From this figure, we can also see that the extension described in Subsection 4.1 does not require

71

Section 4. Overlay Network Against Distributed SYN Flood Attacks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

th
at

 le
gi

tim
at

e
S

Y
N

 p
ac

ke
t d

ro
ps

Time [sec]

Victim-side defense
Attacker-side defense

Our method

(a) Attack rate changes every 200 sec

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

th
at

 le
gi

tim
at

e
S

Y
N

 p
ac

ke
t d

ro
ps

Time [sec]

Victim-side defense
Attacker-side defense

Our method

(b) Attack rate changes every 400 sec

Figure 2.38: Probability of dropping legitimate SYN packets (the case of pulsing attacks)

72

Chapter 2. Detection, Identification and Defense against Denial-of-Service Attacks

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

of
 T

C
P

 c
on

ne
ct

io
ns

 h
el

d
by

 a
 d

ef
en

se
 n

od
e

Time [sec]

Our method with the extension
Our method without the extension

Method not to stop identification during attacks

Figure 2.39: Number of TCP connections held by a defense node

so many resources. Though the defense node in our method with the extension holds slightly more

connections than in our method without the extension, the difference is small. This is because the

number of connections from the victim server is much smaller than those from the clients. The

servers like web servers rarely send connection requests but wait for connection requests. However,

if a victim server sends many connection requests, the extension requires more resources. In such

cases, we need to use smaller data structures to maintain the TCP connections from the victim

server, which is one of our future works.

4.4 Conclusion

In this section, we have proposed a defense mechanism which can protect legitimate packets without

any modification in clients from distributed SYN flood attacks. In our method, all of the TCP

connections to the victim servers from a domain are maintained at the gateways of the domain

(i.e., near the client). We call the nodes maintaining the TCP connection defense nodes. During

the attacks, the defense nodes check whether arriving packets are legitimate or not by maintaining

the TCP connection. That is, the defense nodes delegate reply packets to the received connection

request packets and identify the legitimate packets by checking whether the clients reply to the reply

packets. Then, only identified traffic are relayed via overlay networks. As a result, by deploying

the defense nodes at the gateways of a domain, the legitimate packets from the domain are relayed

apart from other packets including attack packets and protected.

73

Chapter 3

Measurement, Estimation and Topology

Control to Changes of Traffic

Network operators design their networks according to the predicted traffic so as to accommodate

all traffic efficiently (e.g., without congestion or large delays). However, if the current traffic sig-

nificantly differ from the predicted one due to the changes of legitimate traffic, the previously con-

structed network becomes no longer suitable to the current traffic.

Optical layer traffic engineering (TE) [59–66] is one efficient way of accommodating traffic

that changes unpredictably. Optical layer TE accommodates time-varying traffic by dynamically

reconfiguring VNTs which are formed by the optical layer paths.

In optical layer TE, a traffic matrix, which indicates traffic volumes between all pairs of edge

nodes, is required as an input. By using the traffic matrix, the VNT reconfiguration methods config-

ure a new VNT in which constraints such as maximum utilization of optical layer paths are satisfied.

Because it is difficult to monitor traffic matrices directly, several methods for estimating them from

link loads [1–10] have been proposed. However, estimated traffic matrix includes estimation errors

which degrade the performance of TE significantly.

Therefore, in this chapter, we propose methods which estimate traffic matrices accurately and

reconfigure the adequate network settings by cooperating each other.

75

Section 5. Gradual Reconfiguration of Virtual Network Topology

Section 5 Gradual Reconfiguration of Virtual Network Topology

Traffic matrix is essential to traffic engineering (TE) methods. Because it is difficult to monitor

traffic matrices directly, several methods for estimating them from link loads have been proposed.

However, estimated traffic matrix includes estimation errors which degrade the performance of TE

significantly. In this section, we propose a method that reduces estimation errors while reconfigur-

ing the VNT.

To reduce the estimation errors, we propose a gradual reconfiguration method in which the VNT

reconfiguration is divided into multiple stages instead of reconfiguring the suitable VNT at once.

By dividing the VNT reconfiguration into multiple stages, our traffic matrix estimation method

calibrates and reduces the estimation errors in each stage by using information monitored in prior

stages.

We also investigate the effectiveness of our gradual reconfiguration using simulations. Ac-

cording to the results, the gradual reconfiguration can reduce the root mean squared relative error

(RMSRE) to 0.1 and achieve an adequate VNT as is the case with the reconfiguration using the

actual traffic matrices.

5.1 Terminology

Before presenting overviews of our gradual reconfiguration, we explain our terminology.

Traffic matrix

A matrix indicating the amount of traffic between all pairs of IP routers.

Physical topology

A topology physically constructed in the optical layer that consists of OXCs and WDM opti-

cal fibers. Two OXCs are connected by a single optical fiber.

Optical layer path

A lightpath configured between two indirectly/directly connected OXCs. An optical layer

path is a set of optical fibers between the two OXCs determined by the optical layer TE. An

optical layer path occupies one wavelength of each optical fiber on the route of the optical

layer path.

VNT

A topology constructed with optical layer paths. From the packet layer, an optical layer path

is regarded as a single directly connected link between IP routers.

76

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

Start of
the reconfiguration

Traffic demand

Stage 2 K3
VNT control
TM Estimation

Time

Traffic volume

1

Figure 3.1: Overview of gradual reconfiguration of VNT

Packet layer path

An end-to-end packet-layer traffic traversing the VNT. Packet layer paths traversing the same

optical layer path share the optical layer path bandwidth.

Route of a packet layer path

A set of optical layer paths passed by the packet layer path.

Utilization of an optical layer path

Amount of traffic traversing the optical layer path divided by the capacity of the optical layer

path.

5.2 Overview of Gradual Reconfiguration

Our goal is to develop a method that reduces the estimation errors while reconfiguring the VNT by

cooperating with the VNT reconfiguration. To achieve this goal, we deploy the gradual reconfig-

uration approach shown in Fig. 3.1. First, when the VNT reconfiguration is needed (e.g., the link

utilizations exceed a threshold), we start the gradual reconfiguration. In the gradual reconfiguration,

the VNT reconfiguration is divided into several stages. In each stage of the gradual reconfiguration,

we assume that routes of both packet and optical layer paths are calculated by a path computation

element (PCE) [82]. Then, the OXCs and the routers in the network are configured according to the

calculated routes.

The operations performed in each stage are shown in Fig. 3.2. At the beginning of each stage,

the PCE collects the monitored link loads and estimates the traffic matrix from them. Then, the

77

Section 5. Gradual Reconfiguration of Virtual Network Topology

Stage n Stage n+1

TM estimation

Calculate VNT and routes

Addition of optical layer paths

Change the routes of

packet layer paths

Monitor link loads

Collect the monitored link loads

time

Deletion of optical layer paths

Figure 3.2: Operations in each stage

PCE calculates the VNT and the routes of packet layer paths by using the estimated traffic matrix.

The calculated routes are used from the beginning of the next stage.

However, in order to avoid dropping packets, the addition of optical layer paths should be done

before the change of packet layer paths and the deletion of optical layer paths should be done after

the change of packet layer paths. Thus, in each stage, optical layer paths not included in the VNT of

the current stage are deleted after the change of routes of packet layer paths at the beginning of the

current stage. Optical layer paths used at the next stage are added in advance by using the resources

not used at the current stage after the calculation of the VNT for the next stage.

By iteratively performing the above operations, we reconfigure more suitable VNT as stages go

on. Finally, when the goal of the reconfiguration (e.g., making the maximum link utilization less

than a threshold) is achieved, the gradual reconfiguration is finished. Once the gradual reconfigu-

ration is finished, the VNT is fixed unless another VNT reconfiguration is needed. Therefore, the

performance degradations which may occur when changing the routes are only temporary.

When estimating the traffic matrix at each stage, we use the additional information obtained by

monitoring the amount of traffic on each optical layer path both before and after the VNT reconfig-

uration. By using the additional information, our estimation method improves the accuracy of the

estimation. Then, the reconfiguration method can use more accurate traffic matrix at the next stage.

The basic idea of our gradual reconfiguration is to avoid adding or deleting many optical layer

paths before the estimation errors are sufficiently reduced. Thus, any partial reconfiguration method

can be applied to our gradual reconfiguration. The challenges are how to reduce the estimation

78

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

errors of traffic matrices during the gradual reconfiguration. We discuss the details of our estimation

method in Subsection 5.3.

5.3 Traffic Matrix Estimation Method Suitable for Gradual Reconfiguration

When the VNT is reconfigured, several routes of packet layer paths are also changed. The change

in routes of packet layer paths directly impacts the amounts of traffic on optical layer paths that are

passed by the packet layer paths whose routes are changed. Assuming that the network is stable

(i.e., the variation in traffic is small) between two continuous stages, if the measured amount of

traffic on an optical layer path is changed by VNT reconfiguration, it is safe to conclude that the

difference is caused by the change in routes of packet layer paths. These differences can yield

additional equations for solving the traffic matrix calculation.

Hereafter, we call our estimation method the additional equation method. In this subsection,

we first describe its basic idea. In a real network, the traffic may change from the beginning of

the reconfiguration. A significant variation in traffic causes estimation error because it violates the

fundamental assumption that the network is stable. Thus, to deal with obvious variations in traffic,

we propose a method of eliminating the impact of the non-negligible change in traffic. In addition,

we propose a method to reduce the size of the data of the previous stages in order to save the

resources such as CPU and memories of a PCE.

Basic Idea

In our method, we use the amounts of traffic on optical layer paths monitored from the beginning of

the reconfiguration. That is, to estimate the traffic matrix at stage n, we use the amounts of traffic

monitored from stage 0 to stage n. In stage i, Ti, Ai, and Xi denote the actual traffic matrix, the

routing matrix (i.e., the matrix in which an element corresponding to a packet layer path and an

optical layer path is 1 if the packet layer path passes the optical layer path or is set to 0 if not) and

the matrix indicating amounts of traffic on optical layer paths, respectively.

Because amount of traffic on an optical layer path is the sum of the traffic for the packet layer

paths using the optical layer path, we have

Xi = AiTi

= AiTn + εi,n, (3.1)

where εi,n denotes the change in traffic between stages i and n. At stage n, by combining all

79

Section 5. Gradual Reconfiguration of Virtual Network Topology

relations from X0 to Xn, we also have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

...

Xi

...

Xn−1

Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0

...

Ai

...

An−1

An

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Tn +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0,n

...

εi,n

...

εn−1,n

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

According to Ref. [83], backbone IP traffic is stationary with a period of 1 to 1.5 hours. Thus,

unless the gradual reconfiguration takes more than 1.5 hours, εi,n is considered to be small.

To estimate the traffic matrix T̂n from Eq. (3.2), we apply the pseudo-inverse calculation method

described in [84]. The traffic matrix T̂n is obtained from

T̂n = Ā+
n X̄n, (3.3)

where Ā+
n is the pseudo-inverse of matrix Ān, and Ān and X̄n are the matrices defined as,

X̄n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0

...

Xi

...

Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

and

Ān =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0

...

Ai

...

An

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

A pseudo-inverse matrix is a generalized inverse matrix and by using pseudo-inverse matrix, Eq. (3.3)

can estimate T̂n so as to minimize the squared sum of εi,n(0 ≤ i ≤ n).

However, if we simply apply the pseudo-inverse of Ān to solve Eq. (3.3), some elements in

T̂n may have negative values, which are nonexistent as regards the traffic matrix. The following

80

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

iteration eliminates such negative values. We define the estimated traffic matrix for the i-th iteration

as T̂
(i)
n .

Step 1 Let T̂
(0)
n ← T̂n

Step 2 Calculate T̂
(i)
n from T̂

(i−1)
n by using

T̂ (i)
n = T̂ (i−1)

n + Ā+
n (X̄n − ĀnT̂

′(i−1)
n), (3.6)

where T̂
′(i)
n is a matrix in which we replace all negative values of T̂

(i)
n with zero.

Step 3 If all elements in T̂
(i)
n are non-negative values, go to Step 4, or else back to Step 2.

Step 4 Let T̂
(i)
n be the final result of traffic matrix T̂n

Dealing with non-negligible changes in traffic

The basic idea described above assumes that the network is stable (i.e., the variation in traffic is

small). However, in real networks, the traffic may change from the beginning of the reconfigu-

ration. Significant variation in traffic causes estimation error because it violates the fundamental

assumption of the additional equation method.

Therefore, we remove the information about non-negligible change in traffic from the infor-

mation monitored at previous stages in order to avoid violating the assumption. Our proposed

estimation method contains the following steps.

Step 1 Identify the packet layer paths including non-negligible changes

Step 2 Remove the information about the traffic of the identified paths from the information mon-

itored at previous stages

Step 3 Estimate the traffic matrix by using the information in which information about the traffic

of the identified paths is removed

In the rest of this paragraph, we describe these steps in detail.

Identify the packet layer paths, including non-negligible change First, we identify the packet

layer paths including non-negligible changes. To do this, we use the method proposed in Section 3,

81

Section 5. Gradual Reconfiguration of Virtual Network Topology

which identifies source nodes of DDoS attacks based on increase in traffic. We identify the packet

layer paths including non-negligible changes in stage n as follows.

First, we calculate differences Dn between the amounts of traffic monitored at stage n and the

utilization forecasted using the estimated traffic matrix from stage n− 1.

Dn = Xn −AnT̂n−1 (3.7)

Then, we estimate matrix Gn indicating the increases in traffic flows between all pairs of edge nodes

using Dn. Finally, if there are elements in Gn that are larger than a threshold Γ, we identify the

packet layer paths that correspond to the elements as the paths that include non-negligible changes.

Though this step requires estimation of Gn, we do not have to estimate it accurately. The aim

of this step is to identify packet layer paths that include traffic flows increasing significantly more

than others. Therefore, when estimating Gn, we have only to estimate the elements corresponding

to the packet layer paths with significantly increasing traffic as large values. In this study, we used

the tomogravity method to estimate Gn from Dn. In the tomogravity method, the elements of

Gn are estimated as the value proportional to the increase of incoming/outgoing traffic for each

edge node. Because elements in Dn corresponding to the incoming/outgoing traffic for the source

and destination nodes of the packet layer paths with significantly increasing traffic are large, the

tomogravity method can estimate the elements in Gn that correspond to the packet layer paths with

significantly increasing traffic as large values.

Removal of information about non-negligible changes We remove the information about packet

layer paths with non-negligible changes from the information monitored in the previous stages as

follows.

We first remove the information of the identified packet layer paths from the routing matrices Ai

by replacing the elements corresponding to the identified paths by 0. We denote the routing matrix

after the replacement as A′
i, in which the element corresponding to the packet layer path from n to

m and the optical layer path between k and l is given by

a
′n,m,k,l
i =

⎧⎨
⎩ 0, if traffic from n to m changes significantly

an,m,k,l
i , otherwise

, (3.8)

where an,m,k,l
i is the element of Ai indicating whether or not the packet layer path from n to m

passes the optical layer path between k and l.

82

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

Then, we create the matrix of traffic amount X ′
i in which the information about the identified

packet layer paths are removed, which is given by

X ′
i = Xi − (Ai −A′

i)T̂n−1. (3.9)

In this equation, (Ai−A′
i)T̂n−1 indicates the matrix of the identified traffic on each link calculated

by using the traffic matrix estimated at stage n− 1.

Estimate the traffic matrix To estimate the traffic matrix, we use the equation,

X ′
i = A′

iTn + εi,n (3.10)

instead of Eq. (3.1). Similar to Eq. (3.2), by combining all relations from X0 to Xn, we also have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′
0

...

X ′
i

...

X ′
n−1

Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′
0

...

A′
i

...

A′
n−1

An

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Tn +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0,n

...

εi,n

...

εn−1,n

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.11)

Because we remove the information about the traffic with non-negligible changes, X ′
i does not in-

clude the information about the traffic with non-negligible changes. That is, εi,n is small. Therefore,

as in Eq. (3.3), we can estimate T̂n as

T̂n = Ā′+
n X̄ ′

n, (3.12)

where Ā′+
n is the pseudo-inverse of the matrix Ā′

n, and Ā′
n and X̄ ′

n are the matrices defined as

X̄ ′
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′
0

...

X ′
i

...

X ′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

83

Section 5. Gradual Reconfiguration of Virtual Network Topology

and

Ā′
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′
0

...

A′
i

...

A′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.14)

Reduction of the size of matrix

Partial reconfiguration changes only a small number of paths at each stage. That is, most elements

of ΔA′
i = A′

i − A′
i−1 are expected to be 0. Thus, we introduce following procedure that reduces

the size of the matrix.

First, we transform X ′
i and A′

i into the matrices, ΔX ′
i = X ′

i − X ′
i−1 and ΔA′

i = A′
i − A′

i−1.

Second, we remove rows Δa
′(j)
i in ΔA′

i if Δa
′(j)
i = O. We also remove the same position of the row

Δx
′(j)
i in ΔXi. We denote ΔX ′

i and ΔA′
i after row removals as ΔX ′′

i and A′′
i respectively. Finally,

we use

T̂n = ΔĀ′′
n

+ΔX̄ ′′
n, (3.15)

where ΔĀ′′
n

+ is the pseudo-inverse of the matrix ΔĀ′′
n, and ΔĀ′′

n and ΔX̄ ′′
n are the matrices

defined as

ΔX̄ ′′
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔX ′′
1

...

ΔX ′′
i

...

ΔX ′′
n

X ′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.16)

and

ΔĀ′′
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔA′′
1

...

ΔA′′
i

...

ΔA′′
n

A′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.17)

instead of Eq. (3.12)

84

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

5.4 Evaluation of Gradual Reconfiguration

In this subsection, we describe the simulation conditions, explain how the simulations demonstrate

the effectiveness of the gradual reconfiguration method with the existing traffic matrix estimation,

and evaluate the gradual reconfiguration method using the additional equation method.

The partial reconfiguration method

Our gradual reconfiguration can use any partial reconfiguration method at each stage. In this eval-

uation, we use a heuristic method proposed in Ref. [66]. This method adds a new optical layer

path to mitigate congestion and, if possible, deletes a currently underutilized optical layer path for

reclamation. This method allows only one optical layer path to be added or deleted in each stage.

However, in our method, the number of optical layer paths added or deleted at each stage may affect

the number of additional equations and the estimation errors. We therefore extend the reconfigura-

tion methods in Ref. [66] such that it can add or delete multiple optical layer paths at each stage. N

denotes the maximum number of paths to be added or deleted. We set N =∞ to obtain results for

the full reconfigurations.

The extended method uses two thresholds for the utilization of each optical layer path to define

the congested and underutilized states. TH and TL denote thresholds for congested and underuti-

lized, respectively. In our evaluations, we set TL to 0.5×TH . The general sequence of the algorithm

to calculate the VNT at each stage is as follows:

Step 1 Check the utilization of all optical layer paths. If at least one congested optical layer path

(i.e., a path whose utilization exceeds the threshold TH) is found, go to the optical layer

path addition phase (Step 2). If there is an optical layer path whose utilization is less than

threshold TL, go to Step 3

Step 2 Execute the optical layer path addition phase described below, and then go to Step 4.

Step 3 Execute the optical layer path deletion phase described below, and then go to Step 4.

Step 4 Calculate the routes of packet layer paths over the new VNT and obtain the expected uti-

lization of all optical layer paths of the new VNT.

Step 5 Decrement the number of optical layer paths to be added/deleted in this stage, i.e., N =

N − 1. If N = 0, go to End. Otherwise, go back to Step 1.

End

85

Section 5. Gradual Reconfiguration of Virtual Network Topology

Finally, when utilizations of all optical layer paths become less than TH and any optical layer paths

cannot be deleted, the gradual reconfiguration finishes.

In the above steps, the routes of packet layer paths over the VNT are calculated so as to make

the maximum link utilizations less than TH−η, where η indicates the margin for the fluctuations of

traffic. In our evaluations, we set η to 0.1× TH . The calculation of the routes of packet layer paths

is performed as follows. 1) When utilizations of all optical layer paths on the route of a packet layer

path in the previous stage are lower than TH − η, the route is kept in the current stage because there

is no need to change it. 2) Otherwise, the route is calculated using constraint-based shortest path

first (CSPF) [85] so as to limit maximum utilizations to less than TH − η.

The details of optical layer path addition/deletion phases are as follows.

1. Optical layer path addition phase:

If the utilization of an optical layer path exceeds TH , a new optical layer path is set up to

reroute traffic away from the congested optical layer path. First, we collect a set of packet

layer paths that pass the most congested optical layer path. Then, we select the busiest of

the collected packet layer paths. Finally, we add the direct optical layer path (i.e., a single

directly connected link) from ingress to egress nodes of the selected packet layer path.

2. Optical layer path deletion phase:

If the utilization of an optical layer path is less than TL and the deletion of the optical layer

path is shown not to cause congestion, the path is torn down so the IP router ports and wave-

lengths can be reclaimed for future use. The optical layer path is checked for potential for its

deletion to cause congestion by calculating the utilization of optical layer paths after deletion

using the traffic matrix estimated in the current stage. If there is more than one candidate for

deletion, each candidate path is tested in ascending order of utilization.

In our evaluations, we implement the above algorithm and investigate the VNT reconfigured at each

stage by using C++.

Simulation Conditions

In our simulation, we use the European Optical Network (EON) (19 nodes, 37 links) shown in

Fig. 3.3 as the physical topology. In this figure, circles represent OXCs, and lines represent optical

fibers. The number of wavelengths for each optical fiber is set to 16.

In our simulation, we implement estimation methods by using LAPACK [86] which is a soft-

ware library for numerical computing. In the additional equation method, we use a parameter, Γ

86

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

1

5

8

7

6 10

9

12

13

14

15

16

17

18
11

4

3

2

0

Figure 3.3: EON topology

which indicates sensitivity for detection of change in traffic; the traffic whose increase is larger than

Γ is identified as traffic including non-negligible changes, and the previously monitored informa-

tion about the traffic is not used for estimating traffic matrix. If we set Γ to too large a value, there

is still a non-negligible change in traffic in the information used by the additional equation method.

This causes estimation errors. However, a too small Γ causes misdetection of traffic with no non-

negligible changes (false positives). As a result, the additional equation method cannot use many of

the amounts of traffic monitored in the previous stages. Therefore, we should set the Γ to as small

a value as possible such that it will not detect traffic with no non-negligible change by monitoring

the traffic in advance. In our simulations, Γ is set to 0.2× TH times of the bandwidth of an optical

layer path.

In our evaluations, we generate the initial traffic matrix where the elements of it follow the

lognormal distribution [83]. We set the parameters of lognormal distribution to be the same in

Ref. [83], and scale each element such that its average is 0.3 × TH . The initial VNT is configured

using the initial traffic matrix by the above VNT reconfiguration method with N =∞. The changes

are randomly generated within the range from −0.4 to 0.4 times the elements of the initial traffic

matrix, based on the observation that, in the Abilene [87], the amount of traffic increases about 1.4

times in 2 hours when the daily change of the traffic is the largest.

In our evaluations described below, we first use the static traffic matrix during the gradual

reconfiguration so as to focus on the impact of estimation errors. Then, we use the fluctuating

traffic matrix as more realistic case.

87

Section 5. Gradual Reconfiguration of Virtual Network Topology

The case without change of traffic

In this paragraph, to focus on the impact of estimation errors, we simulate the ideal case that the

traffic is constant in all stages.

Improvement of accuracy of the estimation First, we compare the accuracy of our estimation

method with tomogravity method [6] where N is set to 1, 3, and 5. We conducted the simulations

using ten different traffic matrices, and the averaged results are presented in following figures. In

our simulation, the estimated traffic matrix is obtained in 20 sec at stage 30 by using a computer

with 2.66 GHz Intel XEON Processor and 4 GB RAM.

To compare the accuracy of the estimated traffic matrices, we use the root mean squared relative

error (RMSRE) as follows,

RMSRE =

√√√√√ 1
N2

t̃

∑
1≤i,j≤N,ti,j>t̃

(
t̂i,j(n)− ti,j(n)

ti,j(n)

)2

(3.18)

where t̂i,j and ti,j are the estimated and actual amount of traffic from i to j, respectively. The

RMSRE gives a relative measure. For small matrix elements, however, the relative errors are not

really important. Thus, in computing the RMSRE, we consider only matrix elements greater than

a threshold t̃. Nt̃ is the number of elements greater than t̃ in a traffic matrix. In the following

simulations, t̃ was set so that the sum of the end-to-end traffic whose actual rate was greater than t̃

composed 75 % of the total traffic.

Figure 3.4 shows the RMSREs for each stage. In this graph, the horizontal axis represents the

number of stages after the beginning of the VNT reconfiguration, and the vertical axis represents

the RMSREs. As can be seen in this figure, the additional equation method reduces estimation

errors as the stages are completed, while estimation errors of the tomogravity method are large

in all stages. This is caused by the difference in the number of equations used in traffic matrix

calculation. The tomogravity method uses only the amounts of traffic monitored at each stage.

That is, the tomogravity method uses only the same number of equations as the number of optical

layer paths. On the other hand, when some routes of packet layer paths are changed, the additional

equation method adds the equations about the packet layer paths whose routes are changed. As a

result, the number of equations used by the additional equation method increases as it progresses

through the stages.

Figure 3.4 also shows that the estimation errors are reduced to the same level regardless of

88

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

R
M

S
R

E

Stage

N=1
N=3
N=5

(a) Additional equation method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

R
M

S
R

E

Stage

N=1
N=3
N=5

(b) Tomogravity

Figure 3.4: RMSREs of each stage (the case without changes of traffic)

89

Section 5. Gradual Reconfiguration of Virtual Network Topology

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(n
or

m
al

iz
ed

 b
y

T
H

)

Number of added/deleted optical layer paths

Gradual reconf with additional equation
Gradual reconf with tomogravity

Full reconf with tomogravity
Full reconf with actualTM

Figure 3.5: Number of added/deleted paths vs maximum utilization

N at each stage. This is because the number of packet layer paths whose routes are changed are

almost the same regardless of N . In this simulation, a packet layer path is routed on the VNT

according to the following policy; when a packet layer path can be accommodated to the same

route as the previous stages without causing utilizations higher than TH−η, the packet layer path is

accommodated on the same route as the previous stage, otherwise the routes are re-calculated using

CSPF so as to limit the maximum link utilization to less than TH − η. When one or more optical

layer paths are added, the packet layer path traversing the optical layer paths whose utilizations are

higher than TH−η moves to the optical layer paths whose utilizations are low. Because the number

of packet layer paths traversing optical layer paths whose utilizations are higher than TH −η before

the VNT reconfiguration is the same regardless of N , the number of packet layer paths whose routes

are changed is also almost the same regardless of N .

Effectiveness of gradual reconfiguration In this paragraph, we investigate the VNT reconfig-

ured by our gradual reconfiguration. First, we compare the following four methods.

• Gradual reconfiguration using the additional equation method

• Gradual reconfiguration using the tomogravity method

• Full reconfiguration using the traffic matrix estimated by tomogravity method.

• Full reconfiguration using the actual traffic matrix (i.e., ideal case)

90

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

Figure 3.5 compares the maximum utilization when optical layer paths of the same number are

added or deleted. In this figure, the horizontal axis represents the number of added or deleted optical

layer paths and the vertical axis represents maximum utilization normalized by the threshold TH .

We set N to 1 for the gradual reconfigurations.

From this figure, full reconfiguration using the traffic matrix estimated by tomogravity method

can never make the link utilization less than TH . This is because the full reconfiguration decides

whether additional optical layer paths are needed based on utilization calculated using the traffic

matrix estimated at the beginning of the VNT reconfiguration. Therefore, the optical layer path

whose actual utilization is more than TH is mistakenly identified as a path whose utilization is

less than TH . As a result, though the maximum utilization is still over the threshold, the VNT

reconfiguration is completed.

In the gradual reconfiguration, because we re-estimate traffic matrix based on the monitored link

loads at each stage, the VNT reconfiguration is never completed until the maximum link utilization

becomes less than TH . However, the gradual reconfiguration using the tomogravity method cannot

make the maximum utilization less than TH due to estimation errors of the tomogravity.

On the other hand, similarly to the case using the actual traffic matrices, the gradual recon-

figuration using the traffic matrix estimated by the additional equation method can reconfigure an

adequate VNT whose maximum utilization is under TH because the additional equation method

can reduce the estimation errors as it progresses through the stages.

Next, we investigate the impact of parameter N on the gradual reconfiguration using the addi-

tional equation method. Figure 3.6 compares the maximum utilization normalized by TH in the case

of setting N to 1, 3 and 5. From this figure, regardless to N , we can reduce the maximum utilization

as stages go on. In each stage, though the maximum link utilization of the case of N = 3 or N = 5

is slightly less than that of the case of N = 1, the difference is only small. This is because at the

early stages before the estimation errors are not reduced enough, we cannot set the VNT suitable to

the current traffic due to estimation errors. As a result, we cannot reduce link utilizations as much

as expected even when adding more optical layer paths.

.

Figure 3.7 shows the number of optical layer paths added or deleted by the gradual reconfigura-

tion using the additional equation method until the VNT becomes stable. In this figure, we compare

the cases where N = 1, 3, and 5. In this figure, if we set N to a smaller value, we can reconfigure

the adequate VNT by adding or deleting a small number of optical layer paths. Especially, if we set

N to 1, the number of added or deleted optical layer paths is significantly smaller than the cases of

91

Section 5. Gradual Reconfiguration of Virtual Network Topology

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(n
or

m
al

iz
ed

 b
y

T
H

)

Stage

N=1
N=3
N=5

Figure 3.6: Maximum utilization (with various N)

0

10

20

30

40

50

60

N=1 N=3 N=5 Actual TMN
u
m

b
e
r

o
f
a
d
d
e
d
/
d
e
le

te
d
 o

p
ti
c
a
l
la

y
e
r

p
a
th

s

Deleted optical layer path

Added optical layer path

Figure 3.7: Number of added/deleted optical layer paths of additional equation method

92

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

N = 3 and N = 5 though the number is larger than the case using the actual traffic matrices. This

is because many optical layer paths are added or deleted before the estimation errors are reduced

when there is a large N . As a result, due to estimation errors, many unnecessary optical layer paths

are added.

According to the above results in this paragraph, the gradual reconfiguration method can reduce

the estimation errors dramatically even when we allow only one optical layer path to be added or

deleted in each stage. In addition, by using the traffic matrices whose accuracies are improved

at each stage, the gradual reconfiguration can achieve the adequate VNT as is the case with the

reconfiguration using the actual traffic matrices. Especially, by limiting the number of added or

deleted optical layer paths at each stage, we can achieve the adequate VNT by adding or deleting a

small number of optical layer paths.

The case that traffic changes

The evaluation described above assumes that the traffic is constant after the beginning of the VNT

reconfiguration. However, real traffic changes over time. Therefore, in this paragraph, we evaluate

our methods in the case that traffic changes.

Adaptability to the fluctuations in traffic According to the dynamic stationary model proposed

in Ref. [83] which models traffic fluctuations with a period of 1 to 1.5 hours, we generate changes

in traffic as follows.

ti,j,n = αi,j + γi,j,n (3.19)

where ti,j,n is the amount of traffic from node i to node j at stage n, αi,j is the average of traffic

from node i to node j, and γi,j,n is the factor by which traffic fluctuates. In this simulation, we

generated the value of γi,j,n based on Gaussian random values whose average is 0 and variance is

(λαi,j)
2. Then, by changing the value of λ, we changed the size of the fluctuation in traffic.

Figure 3.8 shows the results for λ = 0.01, 0.05, and 0.10. In this simulation, we set N to 1. We

set αi,j equal to the element of the matrix used in the previous paragraph. Similar to the previous

paragraph, we simulated our gradual reconfiguration ten times by using different traffic matrices

and Fig. 3.8 shows the averages of results.

In this graph, the horizontal axis represents number of stages from the beginning of the VNT

reconfiguration, and the vertical axis represents the RMSREs. From this figure, the smaller λ is,

the faster we can reduce the estimation errors. However, even when λ = 0.10, the additional

93

Section 5. Gradual Reconfiguration of Virtual Network Topology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

R
M

S
R

E

Stage

λ=0.01
λ=0.05
λ=0.10

Figure 3.8: RMSREs of additional equation method (the case with changes of traffic)

equation method can reduce estimation errors significantly, because in this method, the number

of equations used to estimate the traffic matrix increases as it progresses through the stages. The

additional equations constrain the solution of the traffic matrix estimation. Because we generated

the fluctuation component of traffic according to Gaussian random values whose average is 0, no

traffic amount monitored in any stage is far from the traffic in the current stage. In addition, the

traffic amounts monitored in stages with temporally high or low traffic are balanced out. As a

result, since the constraints from the additional equations are appropriate to the current traffic, we

can increase the accuracy of the traffic matrix estimation as we progress through the stages.

Figure 3.9 shows the maximum link utilizations in each stage. Since the accuracy of the esti-

mated traffic matrix is dramatically improved as stages go on, the gradual reconfiguration can make

the maximum link utilizations less than TH after several stages from the beginning of the reconfigu-

ration as is the case with the previous paragraph. That is, the gradual reconfiguration can efficiently

work even in the case traffic fluctuates.

Adaptability to sudden change in traffic There is another type of change of traffic. According

to the results described in Ref. [88], some end-to-end traffic may change suddenly. We evaluated

our additional equation method when such sudden changes in traffic occur during the gradual re-

configuration. In this simulation, we generated sudden changes in traffic by doubling five randomly

selected elements in the traffic matrix described in the previous paragraph. We set λ to 0.05 and N

to 1 and added a sudden change in Stage 4.

Figure 3.10 compares estimation errors for the additional equation method with and without

94

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30M
ax

im
um

 li
nk

 u
til

iz
at

io
n

(n
or

m
al

iz
ed

 b
y

T
H

)

Stage

λ=0.01
λ=0.05
λ=0.10

Figure 3.9: Maximum utilization (the case with changes of traffic)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

R
M

S
R

E

Stage

w/ detection of non-negligible change
w/o detection of non-negligible change

Figure 3.10: RMSREs of the additional equation method when some traffic change suddenly

detection of non-negligible change. In this figure, the horizontal axis represents stages since the

beginning of the VNT reconfiguration and the vertical axis represents the RMSREs. From this

figure, at Stage 4, the estimation errors of the additional equation method without detection of

non-negligible change increase significantly. This is because the traffic amount before the sudden

change, which is far from the current traffic, is used to estimate the traffic matrix. On the other hand,

the additional equation method with detection of non-negligible change can reduce the estimation

errors even after Stage 4 because it can remove the information about the traffic with non-negligible

change. That is, even when there is a sudden change in traffic, by identifying and deleting the

95

Section 5. Gradual Reconfiguration of Virtual Network Topology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

R
M

S
R

E

Stage

loss rate=0.1
loss rate=0.2
loss rate=0.3

Figure 3.11: RMSREs of the additional equation method when some of link loads cannot be moni-
tored

information about the traffic with such changes, the additional equation method can estimate a

traffic matrix accurately. As a result, an accurate traffic matrix is available for VNT reconfiguration.

The case that monitoring link loads is less reliable

Finally, we investigate the robustness of the additional equation method to the loss or inaccuracy of

the monitored link loads.

Robustness to the loss of the link load information Typical methods to collect link loads (e.g.,

SNMP) use UDP transport. Thus, some of the link loads may not be collected due to the packet

loss. In this paragraph, we discuss how the additional equation method works in the case of the loss

of the link load information.

Figure 3.11 shows the RMSREs for each stage when the loss rates of the link load information

are 0.1, 0.2 and 0.3. In this simulation, we used the same traffic matrices in the case of λ = 0.05

used in Fig. 3.8. Similar to the above results, this figure shows the averages of the results using ten

different traffic matrices.

From this figure, even when the loss rate is 0.3, we can reduce the RMSREs dramatically. This

is because we can obtain the additional information from the collected link loads even if some of

link loads cannot be monitored, though the loss of the information reduces the number of additional

information.

96

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30

R
M

S
R

E

Stage

σ=0.01
σ=0.05
σ=0.10

Figure 3.12: RMSREs of the additional equation method when link load information includes some
errors

Robustness to the inaccurate link load information Monitored link loads may include moni-

toring errors. That is, monitored link load matrix X̂i is described by

X̂i = Xi + ei (3.20)

where Xi denotes the actual link loads and ei denotes monitoring errors. In this paragraph, we

evaluate the gradual reconfiguration method with the additional equation method when the link

load information is inaccurate. In this evaluation, we generated ei based on Gaussian random

values whose average is 0 and variance is (σXi)
2. We also used the same actual traffic matrices in

the above case of λ = 0.05 used in Fig. 3.8.

Figure 3.12 shows RMSREs in the cases of σ = 0.01, σ = 0.05 and σ = 0.10. We conducted

the simulations using ten different traffic matrices and this figure shows the averages of the results.

From this figure, the RMSREs are dramatically reduced even in the case of σ = 0.10, though

the reduction is smaller than the case of smaller σ. This is because the monitoring errors whose

corresponding elements of ei are positive or negative are balanced out, similar to the case of the

fluctuations of traffic described above.

97

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

5.5 Conclusion

We have proposed a method that reduces estimation errors during VNT reconfiguration. Our method

reconfigures the VNT gradually by dividing it into multiple stages. By dividing the VNT reconfig-

uration into multiple stages, our traffic matrix estimation method calibrates and reduces the estima-

tion errors in each stage by using information monitored in prior stages. We have also investigated

the effectiveness of our proposal using simulations. The results show that our method can improve

the accuracy of the traffic matrix estimation and achieve an adequate VNT as is the case with the

reconfiguration using the actual traffic matrices.

Section 6 Estimation of Current Traffic Matrices from Long-term Traf-

fic Variations

The estimation method proposed in the previous section obtains additional measurements by chang-

ing routes via a TE method. By performing TE a sufficient number of times, this approach obtains

a sufficient number of measurements and then estimates the traffic matrix by assuming that no or

only few elements of the true traffic matrix change significantly throughout the TE method execu-

tion. However, when it takes a long time to change routes sufficient times, the current traffic can

differ from the initial traffic monitored before the first route change. Therefore, we need a traffic

matrix estimation method that considers the time variations of traffic matrices. Ref. [10] proposes

a method for modeling traffic variations by using periodic functions and estimates these functions’

parameters. When traffic changes unpredictably, however, a TE method cannot configure routes

suitable for the current traffic by using the traffic variations estimated by this approach, since it can

only estimate the average variations of traffic for a period of a day by monitoring link loads for

several days.

Therefore, in this section, we propose a new estimation method, with which we can accurately

estimate current traffic matrices even when traffic changes. Unlike in Ref. [10], the purpose of our

method is to estimate not the long-term variations of traffic but the current traffic matrix, which

consists of both long-term variations and short-term variations. By using the accurate traffic matrix,

a TE method can properly work to configure routes suitable for the current traffic.

In our method, we first estimate the long-term variations of traffic by using the link loads moni-

tored the last M times. Then, we adjust the estimated long-term variations so as to fit the current link

loads. In addition, when the traffic variation trends change and the estimated long-term variations

cannot match the current traffic, our method detects mismatches between the estimated long-term

98

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

variations and the current traffic. Then, our method re-estimates the long-term variations after re-

moving information about the end-to-end traffic causing the mismatches, so as to capture the current

traffic variations.

We also evaluate our estimation method through simulation. According to the results, our es-

timation method can estimate current traffic matrices accurately without the root mean squared

relative error (RMSRE) larger than 0.1 even when traffic changes significantly.

6.1 Method for Estimating Current Traffic Matrix by Using Changes in Routes

In this section, we propose a new method for estimating current traffic matrices accurately. We

assume that a TE method sometimes changes routes in the network. Under this condition, we can

obtain additional information, which can be used in estimating the traffic matrices, by monitoring

link loads while some routes are changed.

When it takes a long time to change routes enough times to obtain a sufficient amount of addi-

tional information, however, the current traffic might be very different from the initially monitored

link loads. Therefore, we need to consider long-term variations. By using the link loads monitored

the last M times, our method estimates the long-term variations of traffic instead of estimating

the current traffic matrices directly. Then, we obtain the current traffic matrices by adjusting the

estimated long-term variations so as to fit the current link loads.

In addition, when the traffic variation trends change, the changes may cause significant estima-

tion errors if we also use information obtained before the changes, since this information can be

very different from the current traffic. Therefore, in our method, we check whether the estimated

long-term variations match the current link loads. Then, if the mismatch is detected, we re-estimate

the long-term variations.

Fig. 3.13 shows an overview of the proposed estimation method. Our method estimates the

traffic matrix through the following steps.

Step 1 Estimate the long-term variations of the traffic matrices by using the link loads monitored

the last M times.

Step 2 Obtain estimation results of the current traffic matrix by adjusting the estimated long-term

variations so as to fit the current link loads.

Step 3 Check whether the estimated long-term variations fit the current link loads. If they do not

match the current link loads, return to Step 1 after removing the previous information about

the end-to-end traffic causing the mismatch. Otherwise, proceed to Step 4.

99

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

T
ra

ff
ic

 V
o
lu

m
e
 b

e
tw

e
e
n
 O

D
 p

a
ir

Time

(1) Estimate long-term

variations of traffic

(2) Adjust estimated long-

term variations so as to fit

current link loads

(3) Detect mismatch between

estimated long-term variations

and current traffic

Figure 3.13: Overview of estimation method using long-term traffic variations

Step 4 Designate the estimation results from Step 2 as the final estimation results.

In this subsection, we first describe the method for estimating the long-term traffic variations.

Then, we explain how to adjust the estimated long-term variations so as to fit the current link loads.

Finally, we describe how to the detect mismatches between the estimated long-term variations and

the current traffic, and how to re-estimate the long-term variations and the current traffic matrix

after mismatch detection.

Estimating long-term traffic variations

Traffic variation model According to Ref. [10], the amount of traffic between each node pair

varies periodically with a certain cycle, such as one day or one week. Therefore, in this section, we

model the traffic amount between nodes i and j as

ti,j(n) = fi,j(n) + δi,j(n), (3.21)

where ti,j(n) is the traffic volume between nodes i and j at time n, fi,j(n) is a function modeling the

periodic variation, and δi,j(n) is the variation not included in fi,j(n). In our method, we estimate

the long-term variations by modeling fi,j(n) and estimating its parameters.

We model fi,j(n) by applying the model used in Ref. [10]. This approach models the peri-

odic traffic variation by using sin and cos functions. With this model, the periodic variation is

100

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

represented as

fi,j(n) =
Nf∑
h=0

αh,i,jcos
(

2πnh

N cycle

)
+

Nf∑
h=0

αh+Nf ,i,jsin
(

2πnh

N cycle

)
. (3.22)

where N cycle is the number of times monitoring link loads in each cycle, Nf is a parameter deter-

mining the number of terms in Eq. (3.22), and the αh,i,j are the variables to be estimated by our

estimation method. With Nf set to a large value, the traffic variation modeled by Eq. (3.22) captures

more of the short-term variation, but the number of variables to be estimated also increases. In our

method, we only have to roughly model the traffic variations, because we can estimate the current

traffic matrix by adjusting the roughly estimated long-term variations. That is, in our method, a

small Nf is sufficient.

Method for estimating long-term variations In the model described by Eq. (3.22), the variables

αh,i,j determine the long-term variations. Therefore, our method estimates the long-term variations

by estimating the αh,i,j . We estimate the αh,i,j by using the link loads monitored the last M times.

At any time n, the link loads and the traffic matrix have a relation described by

X(n) = A(n)T (n) (3.23)

where X(n) is a matrix indicating the amount of traffic on each link at time n, T (n) is the traffic

matrix at time n, and A(n) is the routing matrix (i.e., a matrix in which an element corresponding to

an instance of end-to-end traffic and a link is 1 if the end-to-end traffic passes the link or 0 if it does

not). Therefore, we estimate all variables so as to satisfy Eq. (3.23) in any time. In our method, we

use a least square algorithm to estimate the variables. That is, when the number of nodes is N , the

variables are basically estimated as

minimize
n∑

k=n−M+1

|X(k)−A(k)T̂ est(k)|2 (3.24)

101

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

where

T̂ est(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0,0(k)
...

fi,j(k)
...

fN,N (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.25)

By using Eq. (3.24), when some routes are changed, we can use additional equations for estimating

the variables.

With Eq. (3.24), however, we may not be able to estimate the long-term variations accurately

because of the effects of traffic variations that cannot be modeled by Eq. (3.22). Because the actual

traffic variations do include variations that cannot be modeled by Eq. (3.22) (i.e., δi,j(n) in Eq.

(3.21)), long-term variations modeled by Eq. (3.22) cannot completely fit all the monitored link

loads. With Eq. (3.24), however, we estimate the long-term variations so as to completely fit all

the monitored link loads. As a result, estimation results from Eq. (3.24) can be affected by traffic

variations that cannot be modeled by Eq. (3.22), making the results very different from the actual

traffic.

To mitigate the impact of δi,j on the estimated long-term variations, in our method, by plac-

ing constraints on the variables themselves, we avoid estimating the long-term variations so as to

completely fit all the monitored link loads. We thus use the following equation instead of Eq. (3.24):

minimize
n∑

k=n−M+1

|X(k)−A(k)T̂ est(k)|2 + Φ
∑
i,j

⎛
⎝mi,j

2Nf∑
h=0

(αh,i,j − α′
h,i,j)

2

⎞
⎠ , (3.26)

where the α′
h,i,j are the variables estimated the previous time, mi,j is the amount of information

monitored before, and Φ denotes a parameter by which we can set the weight to the constraints on

the variables themselves. Using this equation, we estimate all the αh,i,j(0 ≤ h ≤ 2Nf) of fi,j(n)

so as to fit all the monitored link loads while keeping the values close to the values estimated the

previous time.

When we estimate the long-term variations the first time, however, we have not obtained the

α′
h,i,j . Thus, in such cases, we set the α′

0,i,j to the elements of traffic matrices estimated by other

methods [1–3, 6, 89–91], and we set the α′
h,i,j(1 ≤ h ≤ 2Nf) to 0. By using this approach, we can

avoid estimating traffic variations as having significantly larger values than the actual variations.

In addition, even if the initial α′
h,i,j are not accurate, we can estimate the long-term variations

102

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

more accurately by using link loads monitored at multiple times as additional information. Then,

when we estimate the long-term variations the next time, we can use more accurate α′
h,i,j . That is,

as we estimate the long-term variations more times, the accuracies of these estimations increase.

Adjustment of estimated long-term variations

By the method proposed in the previous paragraph, we estimate the long-term variations. Because

these estimates do not include the δi,j(n) in Eq. (3.21), however, they do not fit the current link

loads. Therefore, we adjust the long-term variations estimated as given in the previous paragraph

so as to fit the current link loads.

The adjustment is performed through the following steps. First, by assigning n to the functions

corresponding to the estimated long-term variations, we obtain a roughly estimated traffic matrix

T̂ est(n). Then, we obtain a traffic matrix T̂ (n) that is close to T̂ est(n) and fits the link loads

monitored at time n. That is, we obtain the estimation results by applying a least square algorithm

so as to satisfy the following conditions:

minimize|T̂ (n)− T̂ est(n)|2 (3.27)

where

A(n)T̂ (n) = X(n). (3.28)

A traffic matrix estimated by a least square algorithm, however, can include negative values,

which are meaningless in the context of a traffic matrix. Therefore, we eliminate negative values

through the following steps. We denote the estimated traffic matrix for the i-th iteration as T̂ (i)(n).

Step 1 Let T̂ (0)(n)← T̂ (n).

Step 2 Obtain the matrix T̂
′(i)(n), in which we replace all the negative values of T̂ (i)(n) with zero.

Step 3 Obtain D(i)(n) satisfying the following condition:

minimize|D(i)(n)|2 (3.29)

where

A(n)
(
T̂

′(i)(n) + D(i)(n)
)

= X(n). (3.30)

Step 4 Let T̂ (i+1)(n)← T̂
′(i)(n) + D(i)(n).

103

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

Step 5 If all elements of T̂ (i+1)(n) are non-negative, proceed to Step 6. Otherwise, return to Step 1.

Step 6 Let T̂ (i+1)(n) be the final result for the traffic matrix T̂ (n).

Re-estimation of traffic matrix after mismatch of estimated long-term variations

When traffic variation trends change, long-term variations estimated by using all the link loads

monitored the last M times can exhibit mismatches with the current traffic. This is because the long-

term variations are estimated so as to fit the link loads before the change, which can be very different

from the current traffic variations. In such cases of mismatch, we cannot estimate the current traffic

matrices accurately even after adjustment, because the adjustment uses only the current link loads,

which are insufficient for estimating the traffic matrices accurately.

Therefore, in our method, when the estimated long-term variations exhibit mismatches with the

current traffic, we detect the mismatches and re-estimate the long-term variations without using link

loads that do not match the current traffic. In this paragraph, we describe how to detect mismatches

and identify the end-to-end traffic causing the mismatches, as well as how to re-estimate the long-

term variations after mismatch detection.

Detecting mismatches and identifying end-to-end traffic causing mismatches When the esti-

mated long-term variations are very different from the current traffic, the differences between the

current link loads and the link loads calculated using the estimated long-term variations are large.

In this case, because the results of adjusting T̂ (n) must satisfy Eq. (3.28), while A(n)T̂ est(n) is

very different from the current link loads X(n), the elements of T̂ est(n)− T̂ (n), corresponding to

the traffic causing the mismatches, become large. Therefore, we detect mismatches and identify the

end-to-end traffic causing the mismatches by evaluating T̂ est(n)− T̂ (n).

Because the size of traffic variation that cannot be included in Eq. (3.22) depends on the end-

to-end traffic [10], if we set a single threshold for the elements of T̂ est(n) − T̂ (n), traffic with

large variations that cannot be modeled by Eq. (3.22) will be erroneously detected as traffic causing

mismatches.

Therefore, we detect mismatches and identify their sources by comparing T̂ est(n) − T̂ (n)

with its previous values. Our method performs the comparison by using the Smirnov-Grubbs

method [92], which can easily detect outliers in sampled data.

Here, we define the elements of T̂ est(n) and T̂ (n) corresponding to the traffic between nodes

i and j as t̂esti,j (n) and t̂i,j(n) respectively. In the Smirnov-Grubbs method, we detect whether

104

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

|t̂esti,j (n)− t̂i,j(n)| is an outlier by calculating

di,j =
|t̂esti,j (n)− t̂i,j(n)| − μi,j

σi,j
, (3.31)

where μi,j and σi,j are the average and standard deviation of |t̂esti,j (k)− t̂i,j(k)|(n−M+1 ≤ k ≤ n),

respectively. Then, |t̂esti,j (n)− t̂i,j(n)| is detected as an outlier if di,j is larger than the threshold

τ = (M − 1)

√√√√ τ2
θ,M+2

M(M − 2) + Mτ2
θ,M+2

(3.32)

where M is the number of samples, θ is a parameter specifying the detection sensitivity, and τθ,M is

a value corresponding to the top θ/M% points of the T distribution with M−2 degrees of freedom.

Too small σi,j causes detection of points where |t̂esti,j (n)− t̂i,j(n)| is small. We do not, however,

need to detect such points, because the estimated long-term variations there fit the current traffic,

since |t̂esti,j (n)− t̂i,j(n)| is small. Therefore, to avoid detecting such points, we introduce a parameter

s and set σi,j to s if σi,j is smaller than s.

Re-estimation of long-term variations after detection When mismatches between the estimated

long-term variations and the current traffic are detected, we need to re-estimate the long-term varia-

tions so as to fit the current traffic. Because such mismatches occur when we estimate the long-term

variations by using previously monitored link loads that are very different from the current traffic

variations, we re-estimate the long-term variations by using link loads and routing matrices in which

information about the end-to-end traffic causing the mismatches has been removed.

Our method removes previous information corresponding to the end-to-end traffics causing mis-

matches at time n through the following steps. We first remove such information from the routing

matrices A(i)(n−M + 1 ≤ i < n) by setting elements corresponding to the identified end-to-end

traffic to 0. We denote the routing matrix after such replacement as A′(i).

Then, we create a link load matrix X ′(i)(n − M + 1 ≤ i < n) from which information

about the identified end-to-end traffic has been removed. The sum of the elements of traffic matrix

T corresponding to the identified end-to-end traffic traversing each link at time i is calculated as

(A(i)−A′(i))T . Therefore, X ′
i is given by

X ′(i) = X(i)− (
A(i)−A′(i)

)
T̂

′est(i). (3.33)

105

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

where T̂
′est(i) is the traffic matrix at time i calculated using the estimated long-term variations. In

calculating T̂
′est(i), we use the long-term variations estimated at time n − 1, since the long-term

variations estimated at time n can be affected by changing trends.

Next, our method re-estimates the long-term variations by using Eq. (3.34), which is refined

from Eq. (3.26) to use X ′(k) and A′(k):

minimize
n−1∑

k=n−M+1

|X ′(k)−A′(k)T̂ est(k)|2 (3.34)

+|X(n)−A(n)T̂ est(n)|2

+Φ
∑
i,j

⎛
⎝mi,j

2Nf∑
h=0

(αh,i,j − α′
h,i,j)

2

⎞
⎠ .

We only have to re-estimate the long-term variations so as to fit the current traffic, because

the purpose of our method is to estimate the current traffic matrix. Moreover, in estimating the

traffic amounts of the identified end-to-end traffic by using Eq. (3.34), we do not need to consider

the related traffic variations, because the traffic amounts corresponding to the identified traffic are

included only in X(n).

Therefore, in re-estimating the long-term variations, we model the amounts of the identified

end-to-end traffic by

fi,j(n) = α0,i,j , (3.35)

instead of using Eq. (3.22). By using Eq. (3.35), we can minimize the number of variables to be

estimated.

Re-estimation of traffic matrix after re-estimation of long-term variations After re-estimating

the long-term variations, we re-estimate the current traffic matrix so as to satisfy Eq.(3.27) through

the same steps described above.

6.2 Evaluation of Estimation Method

Metrics

In this subsection, we describe an evaluation of our method by simulation. In the simulation, we

evaluated our method by two general metrics: (1) the accuracy of estimation, and (2) the perfor-

mance of a TE method using the estimated traffic matrices.

106

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

To evaluate the accuracy, we used two specific metrics – the root mean squared error (RMSE),

and the root mean squared relative error (RMSRE) – as defined below:

RMSE =

√√√√ 1
N2

∑
1≤i,j≤N

(t̂i,j(n)− ti,j(n))2 (3.36)

RMSRE =

√√√√√ 1
N2

t̃

∑
1≤i,j≤N,ti,j>t̃

(
t̂i,j(n)− ti,j(n)

ti,j(n)

)2

(3.37)

The RMSE gives an overall measure for the errors in estimation, while the RMSRE gives a

relative measure. For small matrix elements, however, the relative errors are not really important.

Thus, in computing the RMSRE, we consider only matrix elements greater than a threshold t̃. Nt̃

is the number of elements greater than t̃ in a traffic matrix. In the following simulation, t̃ was set

so that the sum of the end-to-end traffic whose actual rate was greater than t̃ composed 75 % of the

total traffic.

To evaluate the performance of a TE method using the estimated traffic matrices, we investigated

whether the purpose of the TE method was achieved. The next paragraph describes the purpose of

the TE method used in our simulation.

Environment used in evaluation

In our method, we assume that a TE method changes routes sometimes. In this evaluation, we used

the optical layer TE as an example of a TE method. The optical layer TE establishes optical layer

paths between two IP routers over a physical network consisting of IP routers and optical cross-

connects (OXCs). A set of optical layer paths forms a virtual network topology (VNT). Traffic

between two routers is carried over the VNT by using IP layer routing. Under these conditions,

the optical layer TE accommodates traffic that fluctuates widely by dynamically reconfiguring the

VNT.

In our simulation, we used the European Optical Network (EON) (19 nodes, 37 links) shown

in Fig. 3.3 as the physical topology and executed the same optical layer TE method used in the

previous section once an hour. The purpose of this method is to keep the maximum link utilization

under the threshold TH . In this method, optical layer paths are added or deleted with a limitation on

the number of optical layer paths reconfigured at one time. Optical layer paths are added if at least

one path whose utilization exceeds the threshold TH exists. Otherwise, if there is an optical layer

107

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

path whose utilization is less than a threshold TL, the path is deleted. In this simulation, we set the

maximum number of optical layer paths reconfigured at one time to 30, TH to 0.7, and TL to 0.4.

In the simulation, end-to-end traffic was generated by adding variations to sin functions whose

amplitudes and phases were randomly generated.

Case without sudden traffic changes

In this paragraph, we investigate the accuracy of our method for estimating the long-term variations

and the effectiveness of adjusting the estimated long-term variations when there are no sudden

traffic changes. In the simulation, we set M = 160 and Nf = 2. Link loads were monitored once

per 20 minutes.

Accuracy of estimation of long-term variations In our method, we estimate long-term traffic

variations by using Eq. (3.26) instead of Eq. (3.24) to avoid the impact of traffic variations that

cannot be modeled by Eq.(3.22). Therefore, to verify the effectiveness of using Eq. (3.26), we

compared the estimation results obtained with Eqs. (3.24) and (3.26).

Note that estimation results obtained with Eq. (3.26) depend on previously estimated variables

(i.e., the long-term variations are accurately estimated when the estimation results of the previous

time are accurate). Here, however, because the purpose of this comparison was to verify the effec-

tiveness of adding constraints on the variables themselves even in the case of inaccurate α′
h,i,j , we

set α′
0,i,j = μ and α′

h,i,j = 0(1 ≤ i ≤ 2Nf), where μ is the total volume of incoming traffic divided

by the amount of end-to-end traffic.

Figure 3.14 shows the comparison results. As seen from this figure, both Eq. (3.24) and Eq.

(3.26) can be applied to accurately estimate the traffic between nodes 2 and 14. The traffic between

nodes 12 and 16, however, cannot be estimated accurately with Eq. (3.24), and the estimated traffic

variation is significantly larger than the actual traffic variation.

This is because Eq. (3.24) estimates the variables so as to completely fit all the link loads

monitored the last M times, even though the actual traffic variations include those that cannot be

modeled by Eq. (3.22) (i.e., δi,j(n) in Eq. (3.21)). As a result, the long-term variations estimated by

Eq. (3.24) are affected by δi,j(n), and the long-term variations of some end-to-end traffic become

very different from the actual variations.

On the other hand, by using Eq. (3.26), we can avoid estimating variations as significantly

larger than the actual variations. That is, by adding constraints on the variable themselves, we can

mitigate the impact of δi,j(n) and increase the accuracy of estimating long-term variations.

108

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt

Time

Estimated amount
Actual amount

(a) Traffic between nodes 2 and 14 (case of using
Eq.(3.24))

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt

Time

Estimated amount
Actual amount

(b) Traffic between nodes 12 and 16 (case of using
Eq.(3.24))

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt

Time

Estimated amount
Actual amount

(c) Traffic between nodes 2 and 14 (case of using
Eq.(3.26) with Φ=0.01)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt

Time

Estimated amount
Actual amount

(d) Traffic between nodes 12 and 16 (case of using
Eq.(3.26) with Φ=0.01)

Figure 3.14: Results of estimating long-term variations

109

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.005 0.01 0.015 0.02 0.025

A
ve

ra
ge

 o
f s

qu
ar

ed
 e

rr
or

s

Φ

Figure 3.15: RMSRE vs. Φ

Next, to evaluate the effectiveness of the constraints on the variables themselves in detail, we

estimated the long-term variations with various values of Φ. Figure 3.15 shows the relation between

Φ and the maximum RMSRE for the estimated long-term variations. According to this figure, when

Φ is set to a value close to 0, the RMSRE becomes larger. This is because with small values of Φ,

the estimation results become more sensitive to δi,j(n). As a result, δi,j(n) causes estimation errors

like that shown in Fig. 3.14(b). On the other hand, with large values of Φ, the variables in the

long-term variations are estimated so as to be close to the α′
h,i,j . As a result, when Φ is too large,

the long-term variations cannot be estimated so as to fit the monitored link loads. The optimal Φ

depends on the environment (e.g., the amplitudes of traffic variations), and determining optimal

value of Φ is a goal for our future works. From Fig. 3.15, however, we can see that the estimation

errors are not significant even if Φ is not optimal.

Effectiveness of adjustment In our method, we obtain estimation results by adjusting the esti-

mated long-term variations so as to fit the current link loads. Therefore, we investigated the effec-

tiveness of adjusting the estimated long-term variations, by comparing the accuracy of the estimated

traffic matrices after adjustment with the accuracies of the following methods:

• A method using only the current link loads. By comparison with this method, we investi-

gated the effectiveness of using the link loads monitored at previous times. For this method,

we used the tomogravity method with the simple gravity model [6]. Although the simple

110

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

gravity model does not fit the traffic matrices used in our simulation, because we use ran-

domly generated traffic matrices, this model also is not incorrect in some real networks [68].

The focus of this comparison is the effectiveness of using link loads monitored at previous

times when the simple gravity model is not correct.

• A method using the link loads monitored at previous times but not considering the time vari-

ations of traffic. By comparison with this method, we investigated the effectiveness of mod-

eling long-term traffic variations. For this method, we used the additional equation method

proposed in the previous section.

• A method using the link loads monitored at previous times but only estimating the long-term

variations. By comparison with this method, we investigated the effectiveness of adjusting

the estimated long-term variations so as to fit the current link loads. In this simulation, for

estimating the long-term variations, we set Φ to 0.01.

Figures 3.16 and 3.17 show the RMSE and RMSRE, respectively, at each time. The results

show that the errors for the tomogravity method are the largest. This is because the tomogravity

method uses only the current link loads, which is an insufficient amount of information.

The errors for the additional equation method are also large. This is because that method does

not consider traffic variations but assumes instead that the true traffic matrix does not change during

TE execution. Therefore, this method cannot estimate traffic matrices accurately when traffic varies,

even while monitoring the link loads a sufficient number of times.

On the other hand, the errors for the method estimating the long-term variations are relatively

small. That is, by including the link loads monitored at previous times in considering the time vari-

ations of traffic, we can estimate traffic matrices accurately. In addition, by adjusting the estimated

long-term variations, we can estimate traffic matrices even more accurately. This is because the

adjustment enables the estimation results to also follow traffic variations that cannot be modeled by

Eq. (3.22).

Case with sudden traffic changes

In the previous paragraph, we evaluated our method in the case without sudden traffic changes. In

real networks, however, traffic can change suddenly, and traffic variation trends can also change.

When the trends change and the estimated long-term variations do not match the current traffic,

our method detects mismatches and identifies the end-to-end traffic causing them, after which it re-

estimates the long-term variations. In this paragraph, we investigate the accuracy of this detection

111

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

R
M

S
E

Time

Long-term estimation + adjustment
Long-term estimation

Additional equation method
Tomogravity

Figure 3.16: Time variation of RMSE (the case without the sudden chages of traffic)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200

R
M

S
R

E

Time

Long-term estimation + modification
Long-term estimation

Additional equation method
Tomogravity

Figure 3.17: Time variation of RMSRE (the case without the sudden chages of traffic)

and the effectiveness of re-estimation after detection. In addition, we investigate how well a TE

method works when it uses traffic matrices estimated by our method. In all the simulations described

below, we set Φ to 0.01, θ to 0.01, and s to 1.

Accuracy of detection of trend changes To investigate the accuracy of mismatch detection, we

calculated d2,14 for the traffic generated by adding sudden changes to the traffic between nodes 2

and 14 in the scenario from the previous paragraph. Figure 3.18 shows the results. In Fig. 3.18, the

horizontal axis represents the rate of added traffic divided by the maximum rate of traffic before the

addition, and the vertical axis represents d2,14. In addition, we show the maximum relative error

112

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0

 2

 4

 6

 8

 10

 0 0.3 0.6 0.9 1.2 1.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

d

R
el

at
iv

e
er

ro
r

Rate of additional traffic

d
Estimation error

Figure 3.18: d2,14 vs. rate of added traffic

corresponding to the traffic between nodes 2 and 14 for the case without re-estimation.

From this figure, we can see that the larger the added traffic is, the larger d2,14 becomes. This

is because the difference between the estimated long-term variations and the current link loads

becomes large when the rate of added traffic is large. As a result, the differences between the traffic

matrices before and after adjustment also become large. In this simulation, because we set M to

160 and θ to 0.01, the threshold τ calculated from Eq. (3.32) is 3.75. Therefore, if the added traffic

is more than 0.3 times the rate of the traffic before addition (i.e., when the added traffic causes

a relative error of more than 0.20 in the case without re-estimation), we can detect mismatches

between the estimated traffic variations and the current traffic. In this situation, our method re-

estimates the long-term variations so as to fit the current traffic.

In detecting mismatches, false positives (i.e., the cases of mistakenly detecting end-to-end traffic

with no changes) can occur. Thus, we investigated the likelihood of such false positives. Figure 3.19

shows the complementary cumulative distribution of di,j in the case without adding sudden changes.

The vertical line in Fig. 3.19 represents 3.75, the threshold τ calculated above. This figure shows

that the probability of mistaken detection in the case with no changes is about 0.03 %. We discuss

the impacts of these false positives later.

Effectiveness of re-estimation When mismatches between the estimated long-term variations

and the current traffic are detected, we re-estimate the long-term variations after removing infor-

mation about the end-to-end traffic identified as causing the mismatches. We investigate the effec-

tiveness of the re-estimation through simulation. In this simulation, we used traffic generated by

113

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

 0.0001

 0.001

 0.01

 0.1

 1

-2 -1 0 1 2 3 4 5 6C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
di

st
rib

ut
io

n

d

Figure 3.19: Complementary cumulative distribution of di,j with no changes

adding sudden changes to the traffic used for the simulation described in the previous paragraph.

We added sudden changes to the traffic from nodes 2 to 4, 9 to 1, and 0 to 12 at times 70, 110, and

140, respectively. The rates of the sudden traffic changes from nodes 2 to 4, 9 to 1, and 0 to 12

were, respectively, 120 % , 150 %, and 160 % of the maximum rate of traffic before the addition.

Figure 3.20 shows the RMSE when we added these sudden traffic changes, for four different

methods: our method with re-estimation, our method without re-estimation, the additional equation

method, and the tomogravity method. For our method without re-estimation, we estimated the

long-term variations and adjusted them but did not re-estimate them even when the variation trends

changed.

From this figure, similarly to the results shown in Figs. 3.16 and 3.17, we can see that the

RMSEs for the tomogravity method and the additional equation method are large. The figure also

shows that the RMSE for our method without re-estimation is small before time 70 but increases

afterward, whereas the RMSE for our method with re-estimation remains small after time 70. This

difference is caused by the sudden changes, whose impact we discuss in detail later.

The results shown in Fig. 3.20 also verify that the impact of false positives is small. As described

above, about 0.03 % of the end-to-end traffic without changes in the traffic variation trends will be

mistakenly identified as causing mismatches between the estimated long-term variations and the

current traffic. For example, at time 76 in Fig. 3.20, the end-to-end traffic between nodes 14 and

0 is mistakenly identified as causing a mismatch. From the figure, however, we can see that the

RMSE for our method does not become significant even when such false positives occur; it always

114

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

R
M

S
E

Time

Our method with re-estimation
Our method without re-estimation

Additional equation method
Tomogravity

Figure 3.20: Time variation of RMSE (when some traffic variations change)

remains the smallest among the four methods. This is because we have sufficient information to

estimate the long-term variations and traffic matrices accurately even when some false positives

occur and information about the mistakenly identified end-to-end traffic is removed.

To investigate the impact of sudden changes in detail, we compared the estimation results ob-

tained for traffic with sudden changes added. Figures 3.21 and 3.22 show the estimation results for

our method with and without re-estimation, respectively.

These figures show that both methods can accurately estimate all the traffic amounts before

adding the sudden changes. After adding the changes, however, the traffic rate estimated by our

method without re-estimation cannot capture the changes. This is because that method also uses

the link loads monitored before adding the sudden changes, which are very different from the cur-

rent traffic variations. Therefore, because of this information that does not fit the current traffic

variations, the long-term variations cannot be estimated accurately. Even though we adjust the esti-

mated long-term variations so as to fit the current link loads, the adjusted results still do not capture

the sudden changes, because the adjustment process can use only the current link loads, which is

insufficient information for estimating the traffic matrices accurately.

On the other hand, our method with re-estimation can estimate all the traffic amounts accurately

even after adding the sudden changes. This is because by re-estimating the long-term variations after

removing information about the end-to-end traffic causing the mismatches between the estimated

long-term variations and the current traffic, we avoid the impact of information that is very different

from the current traffic variations.

115

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt
s

Time

Estimated amount
Actual amount

(a) Traffic between nodes 2 and 4

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt
s

Time

Estimated amount
Actual amount

(b) Traffic between nodes 9 and 1

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt
s

Time

Estimated amount
Actual amount

(c) Traffic between nodes 0 and 12

Figure 3.21: Estimation results for our method with re-estimation

Impact on performance of TE methods Finally, we evaluate the performance of TE methods

using traffic matrices estimated by our method. The TE method used in our simulations configured

the VNT and routes over the VNT so as to keep the maximum link utilization under the threshold

TH . When we use traffic matrices including estimation errors, however, these errors can cause

the maximum link utilization to be above TH . Therefore, in this evaluation, we investigated the

maximum link utilization after TE was performed. For this simulation, we used the same traffic

with sudden traffic changes described above.

Figure 3.23 shows the results of this simulation. The figure shows that when using the tomograv-

ity method or the additional equation method, the maximum link utilization becomes significantly

116

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt
s

Time

Estimated amount
Actual amount

(a) Traffic between nodes 2 and 4

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt
s

Time

Estimated amount
Actual amount

(b) Traffic between nodes 9 and 1

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

T
ra

ffi
c

am
ou

nt
s

Time

Estimated amount
Actual amount

(c) Traffic between nodes 0 and 12

Figure 3.22: Estimation results for our method without re-estimation

larger than the threshold TH . This is because the estimation errors of these methods are large, as

described above. When the estimation errors are large, the link utilizations after executing the TE

method, as calculated using the estimated traffic matrix, can be very different from the actual link

utilizations. As a result, the link utilizations after TE are mistakenly regarded as being lower than

TH , even though the actual link utilizations are still high and the necessary optical layer paths have

not been added.

This figure also shows that the maximum link utilizations in the case of using our method with-

out re-estimation sometimes become significantly larger than the threshold, as well. This is caused

by significant underestimation of the traffic including the sudden changes. As shown in Fig. 3.22,

117

Section 6. Estimation of Current Traffic Matrices from Long-term Traffic Variations

our method without re-estimation cannot capture the added sudden changes and significantly under-

estimates their amounts. Because of these underestimates, when the TE method changes the routes

of the underestimated traffic, it does not reserve enough bandwidth. As a result, since the actual

traffic rates are much higher than expected, the link utilizations become high.

On the other hand, in the case of using our method with re-estimation, we can reduce the

maximum link utilization to around TH at all times. This is because, with re-estimation, our method

can estimate traffic matrices accurately even when the traffic changes suddenly.

Although the maximum link utilization is reduced to around TH with traffic matrices estimated

by our method with re-estimation, however, it is not always smaller than TH . This is because

estimation errors can still be included in the results of our method with re-estimation, even though

this method is the most accurate of the four methods considered here.

Especially when multiple instances of end-to-end traffic are identified as causing mismatches

between the estimated long-term variations and the current traffic, the estimation errors increase,

because removing the previous information about these multiple instances decreases the amount

of information used for estimation. In the case of Fig. 3.23, two instances of end-to-end traffic

are erroneously identified as causing the mismatch at time 183. These false positives cause a slight

increase in the estimation error, leading to a link utilization higher than TH . Thus, to estimate traffic

matrices more accurately, we need to minimize the number of false positives by setting parameters

optimally or using a more sophisticated detection method. These considerations remain for our

future work.

Minimizing the number of false positives is insufficient, however, because it is possible for

multiple instances of end-to-end traffic to actually change suddenly, causing mismatches between

the estimated long-term variations and the current traffic. When this happens, increases in estima-

tion errors are difficult to avoid, because we cannot obtain sufficient information about such traffic

changing suddenly. Therefore, to avoid the impact of such errors on methods using estimated traffic

matrices, TE methods also need to consider estimation errors. This is another topic for our future

work.

6.3 Conclusion

In this section, we have proposed a method for estimating current traffic matrices by using the

changes in routing matrices introduced via a TE method. In this method, we first estimate the long-

term variations of traffic matrices by using the link loads monitored the last M times. Then, we

obtain the current traffic matrix by adjusting the estimated long-term variations of traffic so as to

118

Chapter 3. Measurement, Estimation and Topology Control to Changes of Traffic

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200
M

ax
im

um
 li

nk
 u

til
iz

at
io

n

Time

Our method with re-estimation
Our method without re-estimation

Additional equation method
Tomogravity

Figure 3.23: Variation in maximum link utilization after TE execution

fit the current link loads. In addition, when the traffic variation trends change and the estimated

long-term variations cannot fit the current variations, our method detects mismatches and identifies

the end-to-end traffic causing them. Then, our method re-estimates the long-term traffic variations

after removing information about the end-to-end traffic causing the mismatches.

In this section, we evaluated our method through simulation. According to the results, our

method can obtain accurate traffic matrices by adjusting the estimated long-term variations. In ad-

dition, when some end-to-end traffic changes suddenly and the estimated long-term variations do

not match the current traffic, our method can detect mismatches accurately. Then, by re-estimating

the long-term variations after removing information about the end-to-end traffic causing the mis-

matches, the method can estimate current traffic matrices accurately even when some end-to-end

traffic changes suddenly.

119

Chapter 4

Conclusion

121

Chapter 4. Conclusion

Network operators design their networks according to the predicted traffic so as to accommo-

date all traffic efficiently (e.g., without congestion or large delays). However, if the current traffic

significantly differ from the predicted one, the previously constructed network becomes no longer

suitable to the current traffic; for example, it may happen that utilizations of some links are ex-

tremely high and cause congestion or large delays. Similarly, if a server receives unexpectedly

many requests, the server cannot respond to the requests.

Thus, when the current traffic becomes significantly different from the predicted one, we need

to handle the changes of traffic so as not to degrade the performances of network. Such significant

changes of traffic are caused either by the malicious traffic or by the increases of legitimate traffic.

In this thesis, we have proposed methods to handle both cases.

To handle the changes caused by malicious traffic, we have proposed the methods to detect

attacks, identify attack nodes and protect legitimate traffic as described below.

First, in Section 2 we have proposed a method to detect attacks. In our detection method, we

focus on SYN flood attacks which are the most frequent attacks among DDoS attacks. One of the

problems in detecting SYN flood traffic is that server nodes or firewalls cannot distinguish the SYN

packets of normal TCP connections from those of SYN flood attack. Moreover, since the rate of

normal network traffic may vary, we cannot use an explicit threshold of SYN arrival rates to detect

SYN flood traffic. Thus, we have investigated the difference of statistics of arrival rates of normal

TCP SYN packets and SYN flood attack packets by using the traffic data monitored at the gateway

of our university. According to the results, the arrival rate of normal TCP SYN packets can be

modeled by a normal distribution while the arrival rate of TCP SYN packets when attack starts

is far from a normal distribution. Based on the analytical results, our detection method detects

attacks by checking the difference between the sampled SYN rates and the normal distribution.

The simulation results show that our method can detect attacks whose rates are even lower than

20 SYNs/sec. In addition, the results also show that our method can detect attacks faster than the

existing detection method.

Then, in Section 3 we have proposed a method to identify attack nodes which can work with

legacy routers unlike the traditional traceback methods. In our identification method, we identify the

egress routers that attack nodes are connecting to by estimating the traffic matrix between arbitral

source-destination edge pairs from the traffic volumes of each link which can be monitored by

legacy routers. By monitoring the traffic variations obtained by the traffic matrix, we identify the

edge routers that are forwarding the attack traffic, which have a sharp traffic increase to the victim.

According to the simulation results, even when we can monitor only the link loads, our method can

122

Chapter 4. Conclusion

identify attack sources accurately and limit the total attack rate from unidentified attack sources by

setting parameters adequately.

Finally, in Section 4 we have proposed a method to defend legitimate traffic. Our defense

method also focuses on SYN flood attacks. In our defense method, all of the TCP connections

to the victim servers from a domain are maintained at the gateways of the domain (i.e., near the

clients). We call the nodes maintaining the TCP connection defense nodes. The defense nodes

check whether arriving packets are legitimate or not by maintaining the TCP connection. That is,

the defense nodes delegate reply packets to the received connection request packets and identify the

legitimate packets by checking whether the clients reply to the reply packets. Then, only identified

traffic are relayed via overlay networks. As a result, by deploying the defense nodes at the gateways

of a domain, the legitimate packets from the domain are relayed apart from other packets including

attack packets and protected. According to our simulation results, our method can make the proba-

bility of dropping legitimate SYN packets less than 0.1 even when the attack rate exceeds 600,000

SYNs/sec.

On the other hand, if the significant changes of traffic are caused by the increases of legitimate

traffic, we should not block any traffic unlike the case of the malicious traffic. Thus, in this case, we

reconfigure the network settings so as to accommodate all current traffic efficiently. To reconfigure

the network settings, a traffic matrix, which indicates traffic volumes between all pairs of edge

nodes, is required as an input. However, the traffic matrices are hard to monitor directly. Though

several methods to estimate traffic matrices have been proposed, the estimated traffic matrices may

include estimation errors which degrade the performance of the reconfigured network significantly.

Therefore, we have proposed methods that reduce estimation errors during the reconfiguration.

First, in Section 5, we have proposed a gradual reconfiguration method in which the recon-

figuration of network settings is divided into multiple stages instead of reconfiguring the suitable

settings at once. By dividing the reconfiguration into multiple stages and assuming that no or only

few elements of the true traffic matrix change significantly throughout the TE method execution,

we can calibrate and reduce the estimation errors in each stage by using information monitored in

prior stages. We have evaluated the effectiveness of the gradual reconfiguration by simulation. Ac-

cording to the results, the gradual reconfiguration can reduce the root mean squared relative error

(RMSRE) to 0.1 and achieve adequate network settings as is the case with the reconfiguration using

the actual traffic matrices.

However, when it takes a long time to achieve adequate network settings, the current traffic can

differ from the initial traffic monitored before the first route change. This violates the fundamental

123

Chapter 4. Conclusion

assumption of the above method. Therefore, in Section 6, we have also proposed a new estimation

method, with which we can accurately estimate current traffic matrices even when traffic changes.

In this method, we first estimate the long-term variations of traffic by using the link loads monitored

the last M times. Then, we adjust the estimated long-term variations so as to fit the current link

loads. In addition, when the traffic variation trends change and the estimated long-term variations

cannot match the current traffic, our method detects mismatches between the estimated long-term

variations and the current traffic. Then, our method re-estimates the long-term variations after re-

moving information about the end-to-end traffic causing the mismatches, so as to capture the current

traffic variations. According to our simulation results, our estimation method can estimate current

traffic matrices accurately without RMSRE larger than 0.1 even when traffic changes significantly.

According to the results discussed in each section, even when network traffic changes signif-

icantly, we can identify the causes of the changes by measuring and analyzing the network state

information and we can avoid the performance degradation of networks by controlling networks

based on the results of the analysis.

There are several challenging tasks as future works. One of them is to defend servers and

networks from other kinds of attacks than SYN flood attacks. For example, some attackers send

many packets to degrade the quality of service (e.g. delays or packet loss rate). These attacks are

known as QoS attacks and cause serious impact on communication between clients and the server

especially in the case of real-time application. Even against these attacks, our methods can identify

the attack sources and can also verify that the packets are not spoofed by delegating the connection

requests. However, to avoid such attacks, we also need a method which efficiently filters attack

traffic after the identification and verification.

Another future work is constructing a TE method that considers estimation errors. Though we

can reduce the estimation errors by our methods proposed in Chapter 3, it is very hard to esti-

mate traffic matrices without any estimation errors. Therefore, TE methods also need to consider

estimation errors.

124

Bibliography

[1] C. Tebaldi and M. West, “Bayesian inference on network traffic using link count data,” Journal

of the American Statistical Association, vol. 93, pp. 557–576, June 1998.

[2] J. Cao, D. Davis, S. V. Wiel, and B. Yu, “Time-varying network tomography,” Journal of the

American Statistical Association, vol. 95, pp. 1063–1075, Feb. 2000.

[3] I. Juva, S. Vaton, and J. Virtamo, “Quick traffic matrix estimation based on link count covari-

ances,” in Proceedings of IEEE ICC 2006, vol. 2, pp. 603–608, June 2006.

[4] L. Tan and X. Wang, “A novel method to estimate IP traffic matrix,” IEEE Communications

Letters, vol. 11, pp. 907–909, Nov. 2007.

[5] L. Tan and X. Wang, “On IP traffic matrix estimation,” in Proceedings of IEEE International

Conference on Computer Communications and Networks (ICCCN 2007), pp. 617–624, Aug.

2007.

[6] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate computation of large-

scale IP traffic matrices from link loads,” in Proceedings of ACM SIGMETRICS 2003, pp. 206–

217, June 2003.

[7] J. Fang, Y. Vardi, and C.-H. Zhang, “An iterative tomogravity algorithm for the estimation

of network traffic,” Complex Datasets and Inverse Problems: Tomography, Networks and

Beyond, vol. 54, pp. 12–23, Aug. 2007.

[8] G. Liang, N. Taft, and B. Yu, “A fast lightweight approach to origin-destination IP traffic

estimation using partial measurements,” IEEE/ACM Transactions on Networking, vol. 14,

pp. 2634–2648, June 2006.

125

BIBLIOGRAPHY

[9] D. Jiang, J. Chen, and L. He, “An accurate approach of large-scale IP traffic matrix estimation,”

IEICE Transactions on Communications, vol. E90-B, pp. 3673–3676, Dec. 2007.

[10] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft, “Estimating dynamic traffic matrices by

using viable routing changes,” IEEE/ACM Transactions on Networking, vol. 13, pp. 485–498,

June 2007.

[11] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with estimated traffic matrices,”

in Proceedings of Internet Measurement Conference 2003, pp. 248–258, Oct. 2003.

[12] “CERT advisory CA-1998-01 smurf IP Denial-of-Service attacks.” available at http://

www.cert.org/advisories/CA-1998-01.html, Jan. 1998.

[13] “CERT advisory CA-1996-01 UDP port Denial-of-Service attack.” available at http://

www.cert.org/advisories/CA-1996-01.html, Feb. 1996.

[14] “CERT advisory CA-1996-21 TCP SYN flooding and IP spoofing attacks.” available at

http://www.cert.org/advisories/CA-1996-21.html, Sept. 1996.

[15] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Inferring Internet Denial-

of-Service activity,” ACM Transactions on Computer Systems, vol. 23, pp. 115–139, May

2006.

[16] “Symantec internet security threat report.” available at http://www.symantec.com/

enterprise/threatreport/index.jsp, Mar. 2005.

[17] Y. Ohsita, S. Ata, and M. Murata, “Detecting distributed Denial-of-Service attacks by ana-

lyzing TCP SYN packets statistically,” IEICE Transactions on Communications, vol. E89-B,

pp. 2868–2877, Oct. 2006.

[18] Y. Ohsita, S. Ata, and M. Murata, “Detecting distributed Denial-of-Service attacks by analyz-

ing TCP SYN packets statistically,” in Proceedings of IEEE Globecom 2004, vol. 4, pp. 2043–

2049, Nov. 2004.

[19] Y. Ohsita, S. Ata, and M. Murata, “Detecting distributed denial of service attacks by utilizing

statistical analysis of TCP SYN packets,” Technical Reports of IEICE(IN2003-201), pp. 23–

28, Feb. 2004. (in Japanese).

126

BIBLIOGRAPHY

[20] J. Mirkovic, D-WARD: DDoS network attack recognition and defence. PhD thesis, Computer

Science Department, University of California, Los Angels, June 2003.

[21] T. M. Gil and M. Poletto, “MULTOPS: A data-structure for bandwidth attack detecrion,” in

Proceedings of USENIX Security Symposium 2001, pp. 23–38, Aug. 2001.

[22] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks,” in Proceedings of

IEEE INFOCOM 2002, vol. 3, pp. 1530–1539, June 2002.

[23] T. Peng, C. Leckie, and K. Ramamohanarao, “Detecting distributed denial of service at-

tacks using source IP address monitoring.” available at http://www.cs.mu.oz.au/

˜tpeng/mudguard/research/detection.pdf, Nov. 2002.

[24] Y. Ohsita, S. Ata, and M. Murata, “Identification of attack nodes from traffic matrix estima-

tion,” IEICE Transactions on Communications, vol. E90-B, pp. 2854–2864, Oct. 2007.

[25] Y. Ohsita, S. Ata, and M. Murata, “Identification of attack nodes from traffic matrix estima-

tion,” in Proceedings of 4th International Trusted Internet Workshop, Dec. 2005.

[26] Y. Ohsita, S. Ata, and M. Murata, “Traffic matrix estimation for identification of attack

sources,” IEICE Society Conference, Sept. 2005. (in Japanese).

[27] Y. Ohsita, S. Ata, and M. Murata, “Identification of attack nodes from traffic matrix esti-

mation,” Technical Reports of IEICE(NS2005-86, IN2005-86, CS2005-32), Sept. 2005. (in

Japanese).

[28] B. Wang and H. Schulzrinne, “A denial-of-service-resistant IP traceback approach,” in Pro-

ceedings of IEEE Symposium on Computers and Communications, vol. 1, pp. 351–356, June

2004.

[29] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network support for IP trace-

back,” in Proceedings of ACM SIGCOMM 2000, pp. 295–306, Aug. 2000.

[30] D. X. Song and A. Perrig, “Advanced and authenticated marking schemes for IP traceback,”

in Proceedings of IEEE INFOCOM 2001, vol. 2, pp. 878–886, Apr. 2001.

[31] K. Law, J. C. Lui, and D. K. Yau, “You can run, but you can’t hide: An effective methodol-

ogy to traceback DDoS attackers,” in Proceedings of International Symposium on Modeling,

127

BIBLIOGRAPHY

Analysis, and Simulation of Computer and Telecommunications Systems, pp. 433–440, Oct.

2002.

[32] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, B. Schwartz, S. T.

Kent, and W. T. Strayer, “Single-packet IP traceback,” IEEE/ACM Transactions on Network-

ing, vol. 10, pp. 721–734, Dec. 2002.

[33] T.-H. Lee, W.-K. Wu, and T.-Y. W. Huang, “Scalable packet digesting schemes for IP trace-

back,” in Proceedings of IEEE International Conference on Communications 2004, pp. 1008–

1013, June 2004.

[34] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical methods for anomaly

detection,” in Proceedings of Internet Measurement Conference 2005, pp. 331–344, Oct. 2005.

[35] A. Lakhina, M. Crovella, and C. D. February, “Diagnosing network-wide traffic anomalies,”

in Proceedings of ACM SIGCOMM 2004, pp. 219–230, Aug. 2004.

[36] A. Lakhina, M. Crovella, and C. Diot, “Detecting distributed attacks using network-wide flow

traffic,” in Proceedings of FloCon 2005 Analysis Workshop, Sept. 2005.

[37] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change detection: Meth-

ods, evaluation, and applications,” in Proceedings of Internet Measurement Conference 2003,

pp. 234–247, Oct. 2003.

[38] “Cisco NetFlow.” available at http://www.cisco.com/en/US/products/

ps6601/products_ios_protocol_group_%home.html.

[39] Cisco, “NetFlow performance analysis.” available at http://www.cisco.com/en/US/

tech/tk812/technologies_white_paper0900aecd8%02a0eb9.shtml.

[40] L. Huang, X. L. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft, “Distributed

PCA and network anomaly detection.” Technical Report UCB/EECS-2006-99, Electrical En-

gineering and Computer Science Department, University of California Berkeley, July 2006.

[41] Y. Ohsita, S. Ata, and M. Murata, “Deployable overlay network for defense against distributed

SYN flood attacks,” to appear in IEICE Transactions on Communications, vol. E91-B, Aug.

2008.

128

BIBLIOGRAPHY

[42] Y. Ohsita, S. Ata, and M. Murata, “Deployable overlay network for defense against distributed

SYN flood attacks,” in Proceedings of IEEE International Conference on Computer Commu-

nications and Networks (ICCCN 2005), pp. 407–412, Oct. 2005.

[43] Y. Ohsita, S. Ata, and M. Murata, “Deployable overlay network for defense against distributed

SYN flood attacks,” Technical Reports of IEICE(IN2004-125), pp. 13–18, Dec. 2004. (in

Japanese).

[44] A. Zuquete, “Improving the functionality of SYN cookies,” in Proceedings of 6th IFIP Com-

munications and Multimedia Security Conference, pp. 57–77, Sept. 2002.

[45] J. Lemon, “Resisting SYN flooding DoS attacks with a SYN cache,” in Proceedings of

USENIX BSDCon’2002, pp. 89–98, Feb. 2002.

[46] S. Floyd, S. M. Bellovin, J. Ioannidis, K. Kompella, R. Manajan, and V. Paxson, “Pushback

messages for controlling aggregates in the network.” draft-floyd-pushback-messages-00.txt,

internet-draft, July 2001.

[47] G. Oikonomou, P. Reiher, M. Robinson, and J. Mirkovic, “A framework for collaborative

DDoS defense,” in Proceedings of the 2006 Annual Computer Security Applications Confer-

ence, pp. 33–42, Dec. 2006.

[48] Y. Kim, W. C. Lau, M. C. Chuah, and H. Chao, “PacketScore: Statistics-based overload con-

trol against distributed denial-of-service attacks,” in Proceedings of IEEE INFOCOM 2004,

vol. 3, pp. 141–155, Mar. 2004.

[49] P. E. Ayres, H. Sun, and H. J. Chao, “ALPi: A DDoS defense system for high-speed networks,”

IEEE Journal on Selected Areas in Communications, vol. 24, pp. 1864–1876, Oct. 2006.

[50] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R. Govindan, “Cossack: Coor-

dinated suppression of simultaneous attacks,” in Proceedings of DISCEX III, pp. 2–13, Apr.

2003.

[51] H. Fuji, E. Y. Chen, K. Okada, and D. Kashiwa, “Movingfirewall: A countermeasure against

distributed denial of service attacks,” NTT Technical Review, vol. 1, pp. 85–88, Aug. 2003.

[52] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: An architecture for mitigating DDoS

attacks,” IEEE Journal on Selected Areas in Communications, vol. 22, pp. 176–188, Apr.

2004.

129

BIBLIOGRAPHY

[53] H. R. Nagesh and K. C. Sekaran, “Design and deployment of proactive models for mitigating

denial-of-service and distributed denial-of-service attacks,” International Journal of Computer

Science and Network Security, vol. 7, pp. 167–175, July 2007.

[54] A. D. Keromytis, V. Misra, and D. Rubenstein, “WebSOS: An overlay-based system for pro-

tecting web servers from denial of service attacks,” The International Journal of Computer

and Telecommunications Networking, vol. 48, pp. 781–807, Aug. 2005.

[55] D. G. Andersen, “Mayday: Distributed Filtering for Internet Services,” in Proceedings of 4th

USENIX Symposium on Internet Technologies and Systems, Mar. 2003.

[56] J. Kurian and K. Sarac, “FONet: A federated overlay networks for DoS defense in the Inter-

net,” in Proceedings of Global Internet Symposium, Apr. 2006.

[57] Y. Ohsita, T. Miyamura, S. Arakawa, S. Ata, E. Oki, K. Shiomoto, and M. Murata, “Gradually

reconfiguring virtual network topologies based on estimated traffic matrices,” submitted to

IEEE/ACM Transactions on Networking.

[58] Y. Ohsita, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Increasing the ac-

curacy of traffic matrix estimation for gradual reconfiguration of virtual network topologies,”

Technical Reports of IEICE(PN2006-90), pp. 37–40, Oct. 2007. (in Japanese).

[59] B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for de-

signing a wide-area WDM optical network,” IEEE/ACM Transactions on Networking, vol. 4,

pp. 684–696, Oct. 1996.

[60] R. Hayashi, T. Miyamura, M. Aoki, and S. Urushidani, “Simulation of a dynamic multi-layer

optimization algorithm with SRLG consideration,” in Proceedings of OECC/COIN 2004, July

2004.

[61] D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation,

resource budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Transactions on Net-

working, vol. 8, pp. 598–607, Oct. 2000.

[62] J. Wei, C.-D. Liu, S.-Y. Park, K. Liu, R. Ramamurthy, H. Kim, and M. Maeda, “Network

control and management for the next generation Internet,” IEICE Transactions on Communi-

cations, vol. 83-B, pp. 2191–2209, Oct. 2000.

130

BIBLIOGRAPHY

[63] L. Zhang, K. Lee, and C.-H. Youn, “Adaptive virtual topology reconfiguration policy employ-

ing multi-stage traffic prediction in optical Internet,” in Proceedings of Workshop on High

Performance Switching and Routing, pp. 26–29, May 2002.

[64] K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, “Distributed virtual net-

work topology control mechanism in GMPLS-Based multiregion networks,” IEEE Journal on

Selected Areas in Communications, vol. 21, pp. 1254–1262, Oct. 2003.

[65] A. Gencata and B. Mukherjee, “Virtual-topology adaptation for WDM mesh networks under

dynamic traffic,” IEEE/ACM Transactions on Networking, vol. 11, pp. 236–247, Oct. 2003.

[66] S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for

optical WDM mesh networks,” in Proceedings of IEEE ICC, vol. 3, pp. 1787–1791, June

2005.

[67] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci, M. Crovella, and

C. Diot, “Traffic matrices: Balancing measurements, inference and modeling,” in Proceedings

of ACM SIGMETRICS 2005, pp. 362–373, June 2005.

[68] A. Gunnar, M. Johansson, and T. Telkamp, “Traffic matrix estimation on a large IP back-

bone –a comparison on real data,” in Proceedings of Internet Measurement Conference 2004,

pp. 149–160, Oct. 2004.

[69] Y. Ohsita, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Estimation of

current traffic matrices from long-term traffic variations,” submitted to IEICE Transactions on

Communications.

[70] Y. Ohsita, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Estimating cur-

rent traffic matrices accurately by using long-term variations information,” to be presented at

Broadnets 2008, Sept. 2008.

[71] “Tcpdump public repository.” available at http://www.tcpdump.org/.

[72] V. Brazauskas and R. Serfling, “Robust and efficient estimation of the tail index of a one-

parameter pareto distribution,” North American Actuarial Journal, vol. 4, pp. 12–27, Apr.

2000.

131

BIBLIOGRAPHY

[73] D. Watson and C. Labovitz, “Experiences with monitoring OSPF on a regional service

provider,” in Proceedings of IEEE International Conference on Distributed Computing Sys-

tems (ICDCS), pp. 204–213, 2003.

[74] A. Fedmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, “NetScope: Traffic engi-

neering for IP networks,” IEEE Network Magazine, vol. 14, pp. 11–19, Mar. 2000.

[75] “Scilab development team.” available at http://www-rocq.inria.fr/scilab/.

[76] I. Maki, G. hasegawa, M. Murata, and T. Murase, “Throughput analysis of TCP proxy mech-

anism,” in Proceedings of Australian Telecommunication Networks and Applications Confer-

ence 2004, pp. 341–348, Dec. 2004.

[77] S. Ata, M. Murata, and H. Miyahara, “Efficient cache structures of IP routers to provide

policy-based services,” in Proceedings of IEEE ICC 2001, vol. 5, pp. 1561–1565, June 2001.

[78] W. R. Stevens and G. R. Wright, TCP/IP Illustrated, vol. 2. Addison-Wesley Longman Pub-

lishing Co., Inc., 1995.

[79] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay net-

works,” in Proceedings of 18th ACM Symposium on Operating Systems Principles, pp. 131–

145, Oct. 2001.

[80] Z. Li and P. Mohapatra, “Qron: Qos-aware routing in overlay networks,” IEEE Journal on

Selected Areas in Communications, vol. 22, pp. 29–40, Jan. 2004.

[81] D. Moore, G. M. Voelker, and S. Savage, “Inferring Internet Denial-of-Service activity,” in

Proceedings of 2001 USENIX Security Symposium, pp. 9–22, Aug. 2001.

[82] A. Farrel, J. P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture.”

RFC 4655, Aug. 2006.

[83] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically generating IP traffic matri-

ces: Initial recommendations,” ACM SIGCOMM Computer Communication Review, vol. 35,

pp. 19–32, July 2005.

[84] J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Min-

imisation. Adam Hilger, 1990.

132

BIBLIOGRAPHY

[85] B. S. Davie and Y. Rekhter, MPLS: Technology and Applications. Morgan Kaufmann Pub-

lishers, 2000.

[86] “Lapack – linear algebra package.” available at http://www.netlib.org/lapack/.

[87] “Internet2 network real time atlas.” available at http://atlas.grnoc.iu.edu/I2.

html.

[88] R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix reloaded: impact of

routing changes,” in Proceedings of PAM 2005, pp. 251–264, Mar. 2005.

[89] A. Medina, K. Salamatian, N. Taft, I. Matta, and C. Diot, “A two-step statistical ap-

proach for inferring network.” available at www.cs.bu.edu/techreports/pdf/

2004-011-two-step-tm-inference.pdf, Mar. 2004.

[90] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An information-theoretic approach to traffic

matrix estimation,” in Prodceedigs of ACM SIGCOMM 2003, pp. 301–312, Aug. 2003.

[91] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from link

data,” Journal of the Americal Statistical Association,, vol. 91, pp. 365–377, Mar. 1996.

[92] S. Burke, “Missing values, outliers, robust statistics & non-parametric methods,” LC-GC Eu-

rope Online Supplement, Statistics & Data Analysis, vol. 2, pp. 19–24, Jan. 2001.

133

