
A Study on the Internet Capacity Dimensioning

Based on Traffic Measurement and its Statistical Analysis

Kazumine Matoba

Department of Informatics and Mathematical Science

Graduate School of Engineering Science

Osaka University

Abstract: Network dimensioning is becoming important in order to provide a stable Quality of Service (QoS)

to the customers. However, it is not an easy task because the Internet traffic changes dynamically and frequently.

We thus need a new approach for network dimensioning suitable to the Internet. Probably, it would be quite

different from the existing well-established method for the telephone network. Actually, our method proposed

in this thesis tries to establish a new paradigm of network dimensioning for the new communication era of the

Internet.

In this thesis, we first consider a new estimation method of the end-to-end traffic characteristics in the Internet,

which is necessary to determine the capacity of the current link. We improve an existing measurement tool

called pathchar, which measures the capacity of all links between end hosts. The measurement method of

pathchar is innovative, but it still has many problems. If unexpectedly large errors are included or if route

alternation is present during the measurement, the obtained estimation is much far from the actual one. We then

propose a new method to eliminate those errors in estimating the bandwidth. To increase the reliability on the

estimation, the confidence interval for the estimated bandwidth is important. For this purpose, two approaches,

parametric and nonparametric approaches, are investigated in order to add the confidence intervals. Another

important issue is the method for controlling the measurement period. If the link is stable, small measurement

data is sufficient, while if the data is not sufficient, many measurements is necessary to obtain an accurate and

reliable estimation. We propose a measurement method to adaptively control the number of measurement data

sets. By our approach, a reliable bandwidth estimation can be established.

1

We next move to the network dimensioning approach in order to resolve the bottleneck for stable and QoS-

rich data communications in the Internet. For that purpose, a possible cause of the bottleneck must be examined

not only within the network, but also at the end hosts, which originated in an intrinsic nature of the Internet

architecture. In our study, we first propose a method to identify the bottleneck for improving the performance of

the end users. Once the network is found to be bottleneck, the network operator should determine how much the

network resources is increased to meet the end user’s QoS requirements. We collected the measurement results

from the actual operating Internet, and provide an evidence to support an appropriateness of our approach. Based

on the measurements, we finally present the methodology to determine the link capacity.

Keywords

Bandwidth Measurement

Pathchar

Bottleneck

TCP (Transmission Control Protocol)

Network Dimensioning

2

Contents

1 Introduction 7

2 Improving Bandwidth Estimation 11

2.1 A Brief Description on Pathchar and its Problems . 11

2.1.1 A Brief Description on Pathchar . 11

2.1.2 Problems of Pathchar . 13

2.2 Accuracy and Reliability Improvements for Bandwidth Estimation 15

2.2.1 Accurate and Reliable Slope Estimation Methods . 16

2.2.2 Removal of Unnecessary RTT Values . 21

2.2.3 An Adaptive Mechanism to Control the Measurement Period 22

2.3 Experimental Results and Discussions . 24

2.3.1 Removing Irregular RTT Values due to Exceptionally Large Errors 24

2.3.2 Clustering RTT Values against Route Alternation . 26

2.3.3 Controlling the Measurement Period Adaptively . 29

2.3.4 On-line Estimation of Confidence Intervals . 31

3 Measurement Based Identification Method of Performance Bottlenecks 33

3.1 Framework for Bottleneck Identification . 33

3.2 Bottleneck Identification Method . 35

3.2.1 Measurement Parameters for Bottleneck Identifications 35

3.2.2 Bottleneck Identification Method . 38

3.3 Experimental Results . 38

4 Capacity Dimensioning Based on Traffic Measurements 43

4.1 Cases of Bottlenecks in Sender or Receiver Side Configuration 43

3

4.2 Cases of Bottlenecks in Network Conditions . 44

5 Concluding Remarks 48

Acknowledgements 50

References 51

4

List of Figures

1 Distribution of RTT Values vs. Packet Size . 12

2 A Sample of Errors not Following a Normal Distribution . 15

3 A Sample having Two Groups of RTTs . 16

4 The Biweight Function . 17

5 Result of Clustering . 22

6 Minimum RTTs Including Irregular Values . 25

7 Estimated Lines Including Irregular Values . 25

8 Minimum RTT for Mixed Groups . 27

9 Estimated Slopes in the case of Mixed RTT Values . 28

10 RTT Values and Estimated Slopes . 29

11 Measurement Environment . 33

12 Osaka City University: The Total Number of Lost Packets . 41

13 Distribution of Packet Size at Backbone Router . 47

5

List of Tables

1 Bandwidth Estimation and Confidence Intervals for the Measurement data with Irregular Values 26

2 Bandwidth Estimation and Confidence Intervals for the case of Mixed RTTs 28

3 Bandwidth Estimations and Confidence Intervals by Measurement Period Control 30

4 Variations on the Required Number of Probes per Packet Size 30

5 List of Sender Hosts . 39

6 Results on Measurement and Bottleneck Identification . 40

7 Confidence Intervals . 42

6

1 Introduction

Network dimensioning for the Internet is becoming more important to provide a stable Quality of Service (QoS)

to the customers of ISP (Internet Service Providers), and without it ISP would not be commercially successful,

since QoS provided by ISP is now recognized as one of important measures in a competitive market. However,

network dimensioning is not an easy task because the network is changing rapidly and frequently.

Several network architectures have recently been developed for providing QoS-rich communications. One

example is found in a diff-serv architecture [1], where the bandwidth could be prepared for QoS classes, and if

it is adequately provided, QoS can be guaranteed to the users. Another example is MPLS [2] and IP-over-WDM

networks, where the underlying network (ATM, SONET or WDM networks) provides physical paths to connect

IP routers in an end-to-end fashion. Then, the bandwidth between edge routers are guaranteed.

However, there is a fundamental limit in those architectures: the physical (and/or logical) path capacity should

be determined a priori by network providers. Network dimensioning takes an essential role in determining the

appropriate network capacity. For that purpose, the network providers should first determine QoS metrics for end

users. Traffic generated by computer applications should then be characterized. Finally, the appropriate network

resources satisfying those QoS metrics should be estimated. In the computer networks such as the Internet, those

are very complicated, and an interdependence among them makes it more difficult. For just one simple example,

let us consider Web applications. Even if the bandwidth provided by the network is insufficient, the application

still works since the underlying TCP can adjust the packet emission according to the network congestion status.

That is, the traffic characteristics by the end hosts are apparently influenced. Furthermore, it is not clear whether

the resultant QoS (the document transfer time in the case of Web browsing) may or may not satisfy the users.

Anyway, a problem is that we have no established QoS metric which satisfies the Web users.

In the telephone network, a historical experience on estimation of call demand (in Erlang) and an Erlang loss

formula has been successfully used for network dimensioning. The traffic estimation is not difficult because

the number of blocked calls is of primary concern for performance monitoring. Also, the Erlang loss formula

is robust in the sense that it does not require the information on the distribution of service times (connection

holding times), but only the average. Then it can be used for capacity planning of the links in operational

networks. Fortunately, the call blocking probability is user’s perceived QoS metric as well as the network-

7

oriented QoS metric. This simple feedback loop of network dimensioning has led to the success of the stable

and reliable telephone networks.

In the Internet offering data communication service, on the other hand, such an approach cannot be adopted

since it is difficult to know or to at least estimate the traffic demand in advance, mainly due to the following

two reasons. The one is that the Internet is growing drastically and therefore it cannot forecast future demands

of user traffic. The other is due to the inherent characteristics of the Internet traffic. The situation is very

different from telephone traffic, which is characterized by arrival rates of calls and holding times. A dominant

of the Internet traffic is TCP-based application having a capability of adapting to network congestion; i.e., if

the network falls into congestion, it defers transmission such that TCP connection is not blocked. Thus, the

packet-level metrics of, e.g., the transmission time and/or loss probabilities at the routers are quite insufficient

to identify the performance provided by the operating network. It suggests that the network monitoring only at

the node and/or link is not sufficient for capacity planning.

Probably, network dimensioning for the loosely-coupled network just like the Internet needs a different ap-

proach from the conventional telephone network, where the network carrier has a responsibility of maintaining

the network. Most important is that QoS metrics such as Web document download times can never be measured

by the network providers, but only by the end users, because in the Internet, the processing of protocols higher

than the layer-four (i.e., the transport layer) is performed at the end host. We believe that a first step for estab-

lishing a framework of network dimensioning in the Internet is to measure the network characteristics. It is then

used for dimensioning the network resources for the users.

Recently, various tools have been developed to measure the traffic characteristics on the Internet. See,

e.g., [3]. Essentially, there are two kinds of measurement tools; passive and active measurement tools. Us-

ing passive measurement tools like OC3MON [4] and MRTG [5], packets passing through the monitoring point

are captured, and analyzed by inspecting packet headers (and sometimes, packet contents). Obtained statistics

are very accurate in principle. As the name indicates, the passive monitoring tools do not consume network re-

sources. However, its fundamental drawback is that the behavior of the end host, which takes an important role

in data communications as described before, cannot be known from the obtained statistics. The QoS provided to

end users, which must be characterized by an end-to-end fashion, is also not known.

8

On the other hand, active measurement tools have an ability to resolve the above problems since it is used at

the end host (or, at the edge routers). Here, the “end user” includes ISP that wants to know the characteristics of

the networks provided by other ISP’s. In the active measurement tools, the packets are injected to the network

and collects the returned information. An apparent drawback of the active measurement tools is that it consumes

the network resources unless packet probing is adequately controlled. Another problem is that an accurate and

reliable estimation becomes difficult due to the dynamic nature of the Internet.

As an example of the active measurement tools is Pathchar [6, 7], which is recently developed in order

to measure latency, bandwidth, queueing delays and packet loss rate for every link between two end hosts. Its

advantage is that it is not necessary to deploy new protocols with any special functions at both of routers and end

hosts. Pathchar collects RTTs with various sizes of packets and estimates the link bandwidth according to

the relation of RTTs and packet sizes. However, pathchar has several problems. It requires a large amount of

statistics by throwing the large number of packets into the network, in order to improve the bandwidth estimation.

It leads to an intrinsic problem that the increased traffic may cause congestion and an estimated value is biased

by pathchar itself.

In this thesis, instead of pursuing the accuracy of the approach adopted by pathchar, we take another

approach: we try to add a confidence in the estimation results. A recent version of pathchar, which is now

called pchar, gives a confidence interval for the slope (by which the bandwidth estimation is derived), but it is

insufficient for the user to rely on the obtained results. We investigate the calculation method to determine the

confidence intervals for the estimated bandwidth. The control method for measurement time is also proposed to

limit the unnecessary probes injected into the network.

The second step towards network dimensioning is to identify the existing bottleneck for meeting QoS require-

ments of the users. As we have emphasized in the above, the bottleneck exists not only at the network resources

(including the bandwidth capacity, router’s packet forwarding capability, etc.), but also at the end hosts in the

Internet. It is apparent that increasing the network bandwidth does not necessarily lead to the QoS improvement.

It may only result in the meaningless bandwidth investment if the bottleneck is located at the end hosts. In the

current Internet where the major application is Web systems utilizing the http and TCP, we propose a bottleneck

identification method for TCP-based applications. In TCP, possible causes of the bottleneck include a socket

buffer size of the receiver, an available bandwidth of the link, and the packet processing at the sender. Actu-

9

ally, by carefully examining the characteristics of TCP connections, we can find the cause of the performance

bottleneck as will be described in Section 3.

Once the bottleneck is found within the network, and the current link capacity is known by our improved

bandwidth estimation method, we next determine how much the bottleneck link capacity should be increased to

meet the QoS requirement of users. For the case of TCP connections, we consider the TCP throughput as a QoS

metric, and propose the design framework for determining the link capacity. In determining the link capacity, it

is important to consider the characteristics of cross traffic, sharing the congested link with the connection of the

target user. By taking account of the cross traffic, we will describe the determination method for the new link

capacity in Section 4.

The rest of this thesis is structured as follows. Section 2 investigates how to improve the bandwidth estimation

of pathchar. In order to find the bottleneck, we measured the network characteristics including RTT (Round

Trip Time) and packet loss probability. Based on these characteristics, our bottleneck identification method

is proposed in Section 3. Based on the measurement of the previous sections, we explain how our capacity

dimensioning method works well in Section 4. Finally, we conclude our research in Section 5.

10

2 Improving Bandwidth Estimation

An accurate and reliable estimation of the bandwidth of links on the end-to-end path is a first step towards net-

work dimensioning. There are many researches about end-to-end bandwidth measurement [8-11]. Pathchar [6,

7] is one of such tools to measure latency, bandwidth, queueing delays and packet loss rate for every link be-

tween two hosts. The advantage of pathchar is that it is not necessary to deploy new protocols or any special

functions at both of routers and end hosts. Pathchar collects RTTs (Round Trip Time) with various sizes of

packets and estimates the link bandwidth according to the relation of RTTs and packet sizes.

However, pathchar still has many problems: pathchar needs a large amount of statistics to improve

the bandwidth estimation, which is obtained by throwing the large number of probe packets into the network.

However, it has an intrinsic problem that the increased traffic may cause congestion and an estimated value may

be biased by pathchar itself. Instead of pursuing the accuracy of the approach taken by pathchar, we take

another approach to add a confidence in the estimation. A recent version of pathchar, which is now called

as pchar [8], gives a confidence interval for the slope (by which the bandwidth estimation is derived), but it

is insufficient for the user to rely on the obtained results. In this thesis, we investigate the calculation method

to determine the confidence intervals for the estimated bandwidth. The control method for measurement time is

also proposed to limit the unnecessary probes injected into the network.

2.1 A Brief Description on Pathchar and its Problems

2.1.1 A Brief Description on Pathchar

In this subsection, we summarize a bandwidth estimation method taken in pathchar. For more details, refer

to [7].

Pathchar first collects RTTs between source and destination hosts. To measure RTTs, pathchar uses

one of the ICMP packet, called a TTL exceeded message, which is also used in traceroute [12]. An IP

packet has a TTL (Time To Live) field in the header. It shows the limit of the hop count that the packet can

traverse. Before the router forwards the packet to the next hop, the value of the TTL field is decreased by one.

When the TTL value becomes zero, the router discards the packet and returns the ICMP control packet to the

11

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

Figure 1: Distribution of RTT Values vs. Packet Size

source to inform that the validity of the packet is expired. This mechanism is necessary in order to avoid a loop

of packet forwarding due to, e.g, some misbehaviors of the router. When the packet is sent with the value of the

TTL field to be n, the ICMP control packet must be returned from nth hop router. The RTT value between the

source and nth router on the path can then be measured by the source. Pathchar collects RTTs between the

source and every intermediate router by changing the value of the TTL field.

The measured RTT value consists of (1) the sum of queueing delays, qi, at router i (1 ≤ i ≤ n), (2) the sum

of transmission times to transmit the packet by the intermediate routers, (3) the sum of forwarding times fi that

router i processes the packet, and (4) the sum of propagation delays pj of link j (1 ≤ j ≤ n). That is, RTTs,

the RTT value for given packet size s, is represented by

RTTs =
n∑

j=1

(
s

bj
+
sICMP

bj

)
+

n∑
i=1

(qi + fi) + 2
n∑

j=1

pj, (1)

where sICMP is a size of an ICMP error message and bj is the bandwidth of link j.

A typical example for the relation between packet sizes and measured RTTs is shown in Figure 1. The results

are obtained by setting the destination to be www.gulf.or.jp from our site. The TTL value was set to 16.

It was obtained on Dec 18, 1999 12:54 JST. The figure shows that the RTT values were widely spread even for

the fixed packet size. It is because the queueing delay at the router changes frequently by the network condition.

12

However, it is likely that several packets do not experience the queueing delays at any router by increasing the

trials. Such a case actually appears in the figure as a minimum value of RTTs for each packet size. The minimum

RTT for given packet size s, denoted by minRTTs, is thus obtained by

minRTTs =
n∑

j=1

s + sICMP

bj
+

n∑
i=1

fi + 2
n∑

j=1

pj. (2)

Note that the packet size of the ICMP error message sICMP is fixed (56 bytes). Then, by collecting terms

not related to the packet size and denoting it by α, the above equation can be rewritten as

minRTTs = s
n∑

j=1

1
bj

+ α. (3)

Eq.(3) is a linear equation with respect to the packet size s. It is just shown in Figure 1 if we look at the minimum

RTT values. By letting the coefficient of the above equation be βn, we have

βn =
n∑

j=1

1
bj
. (4)

Conversely, if we have βn−1 and βn, we can obtain the bandwidth of link j as

bj =
1

βn − βn−1
. (5)

It is a key idea of pathchar.

As indicated above, a difficulty of pathchar exists in that, the network condition changes frequently in

real networks such as the current Internet, and it is not easy to obtain proper minimum RTTs. Thus, pathchar

needs to send many packets with the same size; it is a weak point of pathchar since those waste a large amount

of link bandwidth to get a minimum RTT. Even after many RTTs are collected, some measurement errors must

be contained. Pathchar solves this problem by a linear least square approximation.

2.1.2 Problems of Pathchar

The approach of the bandwidth estimation taken by pathchar is innovative, but it still has several problems

as described below.

Reliability on Obtained Estimation

First, we cannot know whether the estimated bandwidth obtained by pathchar is reliable or not. Pathchar

uses the linear least square fitting to calculate βn, which implies that it assumes errors of minimum RTTs are

13

normally distributed [7]. However, we have no means to confirm whether errors follow a normal distribution or

not. From this reason, it is necessary to consider another approach that can lead to bandwidth estimation inde-

pendently from the error distribution. Such an approach is often called as a nonparametric approach. The non-

parametric approach is already developed in pchar [8], an updated version of pathchar. While in pchar,

the user can choose the parametric or the nonparametric method for estimation, it does not offer any criterion to

decide which approach is better.

Efficiency of Measurements

The second problem is the efficiency of pathchar. Pathchar sends a fixed number of packets, but the

amount of collected data must be changed according to the network condition to measure the link bandwidth

within a reasonable level of accuracy. The authors in [7] then propose an adaptive data collection method to

improve the efficiency of pathchar. They have shown that the required number of packets in pathchar can

much be reduced if pathchar is equipped with an ability to send a different number of packets for each link

estimation. In their proposal, the number of transmitted packets is decided by observing whether the even-odd

range of bandwidth is converged or not. However, the range is not based on the reliability on the result and the

method does not guarantee an accuracy in a statistical sense.

Exceptional Errors of RTTs

The third problem is that various kinds of errors are mixedly contained in minimum values of RTT. Never-

theless, pathchar assumes that the error of the minimum RTT is originated from the measurement noise only,

and assumes the normal distribution for measurement errors. Basically, pathchar relies on the fact that the

queueing delays at the intermediate routers can be removed by gathering a number of measurements since one

or more packets must fortunately encounter no queueing delay by increasing the number of measurements. If

the number of measurements is insufficient, the queueing delay may be involved. However, it may be able to be

viewed as a Gaussian noise.

The problem is that we encounter the errors which cannot be explained by the Gaussian noise. One example

is shown in Figure 2, which was obtained at Dec 21 08:39, 1999 JST by setting the destination as www.try-

net.or.jp and the TTL value as 13. Several small values were observed during the measurement as shown

in Figure 2. We need to introduce some method to remove such errors before the bandwidth estimation is

14

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

Figure 2: A Sample of Errors not Following a Normal Distribution

performed. For this purpose, we will apply a weighted least square fitting method as to be explained in Subsec-

tion 2.2.1.

A second example was obtained by route alternation. To get the bandwidth estimation, all probes should be

relayed on the same path. If pathchar detects the route changes by checking the field of the source IP address

in the returned ICMP packet, it simply discards the returned packet. The problem is that it cannot eliminate the

case where the source IP addresses of the returned ICMP packets are same, but the relayed paths are different.

Such a case may happen due to load balancing at routers [13]. In fact, we obtained such a measurement

which is presented in Figure 3. It was observed at 8-th link destined for www.kyotoinet.or.jp at Dec 10

12:29,1999 JST. Figure 3 clearly shows that there exist two (or maybe more) paths during the measurement. To

remove such an effect, we need to select the proper subgroup of RTTs for accurate estimation, which will be

explained in Subsection 2.2.2

2.2 Accuracy and Reliability Improvements for Bandwidth Estimation

As we have discussed in the previous section, we need to solve several problems for obtaining accurate and

reliable bandwidth estimation. For this purpose, we first examine two estimation methods; parametric and

15

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

Figure 3: A Sample having Two Groups of RTTs

nonparametric approaches. The approach to obtain the confidence interval is also described in order to increase

the reliability on estimation. Those are presented in Subsection 2.2.1. Our clustering method to pick up proper

RTTs from two or more groups of RTTs is then presented in Subsection 2.2.2. An adaptive mechanism to

control the measurement period is finally presented in Subsection 2.2.3. Our experimental results based on those

methods are shown in the next section.

2.2.1 Accurate and Reliable Slope Estimation Methods

As having been described in the previous section, using the linear least square fitting method in pathchar

implies that errors follow a normal distribution. Thus, unexpectedly large errors (as shown in Figure 2) signif-

icantly affect the accuracy of the estimated value. To eliminate such an negative influence, we introduce two

estimation methods instead of the linear least square fitting method. One is an M-estimation method with a

Tukey’s biweight function [14], which is a sort of the parametric approach. It is robust to produce results with

uniformly high efficiency. Because it presumes that almost all data is reliable and only some data includes un-

expectedly large errors, the result is robust even if the large errors are contained as in our case. The other is a

nonparametric linear least square fitting method which does not assume any distribution on measurement errors.

16

0

1

0

biweight function

c c

Figure 4: The Biweight Function

In what follows, we will describe two methods in turn.

M-estimation Method

In this subsection, we describe the weighted least square fitting method. With this method, the influence of

the large error can be limited. Note that this method is applicable when the number of large errors is rare but not

negligible. Otherwise, we need to use a nonparametric approach which is independent of an error distribution.

The latter approach is presented in the next subsection.

The M-estimation method is an extension of a maximum likelihood estimation method. In the M-estimation

method, the weighted least square fitting is iterated to calculate an appropriate weight. There are some variations

in the M-estimation method, and we apply the Tukey’s biweight function which is considered to be one of the

best estimation methods [14]. In the Tukey’s biweight function, a weight function is chosen as shown in Figure

4. It is apparent from the figure that the Tukey’s biweight function is robust against the unexpectedly large errors

if those occur infrequently. Let the number of kinds of the packet size be m. After we collect a minimum value

of RTT for each packet size, we can estimate the slope according to the following procedure. Note that the slope

means a coefficient βn for router n (see Eq. (4)). In the following equations, we omit n for brevity. We label m

kinds of packet size as xi(1 ≤ xi ≤ m) and denote the minimum RTT for the packet size xi as yi.

17

1. The straight line is expressed by y = α + βx, where x is a packet size and y is an ideal minimum RTT.

We set initial values of a vertical intercept α and a slope β with the least square fitting method;

α = ȳ − βx, β =
∑m

i=1 xiyi −mx̄ȳ∑m
i=1 xi

2 −mx̄2
, (6)

where x̄ and ȳ shows the mean of xi and yi.

2. Calculate the difference |vi| between the minimum RTT and the point on the straight line at the packet

size xi, i.e.,

|vi| = |yi − βxi − α|. (7)

3. By obtaining the median of differences, the standard size of an error s is calculated as

s = median{|vi|}. (8)

4. By using the biweight function, we set a weight adjustment factor ωadj
i for each difference;

ωi
adj =

[
1 − (vi

c s)
2
]2 if |vi| < c s,

0 otherwise
(9)

where c is a constant value used as an index for making the total weight to be zero.

5. Let ωi denote the weight of RTTs, which is given by

ωi =
mωi

adj∑m
i=1 ωi

adj
. (10)

We then estimate new values of α and β with the weighted least square fitting.

α =
∑m

i=1 ωi yi

m
, β =

∑m
i=1 ωi xi yi∑m
i=1 ωi x2

i

. (11)

6. After k iterations, we adopt α and β as solutions.

The parameter c in Eq. (9) controls a boundary for the errors contained in measured RTT values to be neglected.

Through our experiments, we found that c = 3 and the number of iterations k = 5 are sufficient. Note that

slopes of straight lines are always converged in our experimental results when we use above parameter values.

We then calculate a confidence interval with the M-estimation method. We introduce the following assump-

tions;

18

• For given packet size x, the random variable of the minimum RTT, Y follows the normal distribution,

whose mean and variance are given by α+ βx and σ2, respectively.

• The measurements for each packet size are mutually independent.

The above assumptions imply that the set of slopes follows the normal distribution with mean β and variance

σ2
B, which are obtained from

β =
∑m

j=1(xj − x̄)(Yj − Ȳ)∑m
j=1(xj − x̄)2

, (12)

σ2
B =

σ2∑m
j=1(xj − x̄)2

, (13)

where σ is the standard error of the RTTs from the estimated line. It can be estimated from the measurement

data as

σ̂2 =
1
m

m∑
j=1

(yj − α − βxj)2. (14)

From Eq. (12), we can calculate the values of the slope for links n − 1 and n as β̂n−1 and β̂n, respectively. The

variances for links n− 1 and n are also estimated as σ̂2
n−1 and σ̂2

n from Eq. (13), respectively.

Once those values are determined, we next calculate the confidence interval as follows. We can estimate the

mean and variance for the difference of slopes as

βu = β̂n − β̂n−1, σ
2
u = σ̂2

n − σ̂2
n−1. (15)

The value of 1/βu just gives an estimated bandwidth for link n, and βu must follow t-distribution with 2m − 4

degrees of freedom. Thus, we first obtain interval k as

k =
c σu√
2m− 4

, (16)

where c is a 97.5% value of the t-distribution if we want 95% confidence interval. Then we have the confidence

interval for the estimated bandwidth 1/βu as

1
(βu + k)

≤ 1
βu

≤ 1
(βu − k)

. (17)

We have a reliable estimation by adding the confidence intervals as described above. However, it was as-

sumed that measurement errors follow the normal distribution after few very large errors are excluded by the

biweight function. That is, when the number of large errors increases, this approach no longer gives a valuable

19

estimation. In the next subsection, we will present a nonparametric estimation method which does not require

any assumption on the error distribution.

Nonparametric Estimation Method

In the nonparametric approach, we do not need any assumption on the error distribution. Let m be the number

of obtained measurement data set for each packet size as before. The slope estimation can be obtained by the

following procedure.

1. By choosing the every combination of two minimum values of RTTs, and calculate the slope. That is, we

have m(m− 1)/2 slopes by this step.

2. We sort a set of obtained slopes and adopt its median as the proper slope.

A Kendall’s τ method [15] is known as one such a way of finding the confidence interval in the nonparametric

method. However, it cannot be directly applied to the current problem since it is necessary to calculate the

difference of two slopes. Alternatively, we use a Wilcoxon’s method [16], which is based on the difference

between medians of two data sets S and T.

In the current context, we use two sets of slopes obtained from the measurements for links n−1 and n, which

are denoted as S and T, respectively. By letting the numbers of elements of S and T be |S| and |T |, respectively,

we label elements of two sets S and T as s(j) and t(i) (1 ≤ i ≤ |T |, 1 ≤ j ≤ |S|). The bandwidth estimation

and its confidence interval are then obtained as follows.

1. Calculate the set of differences t(i) − s(j) (1 ≤ i ≤ |T |, 1 ≤ j ≤ |S|). Let us denote the obtained set of

the differences as U.

2. Sort the set U in an ascending order.

3. Let u(i)(1 ≤ i ≤ |S| × |T |) denote ith element of sorted set U. The confidence interval is then given by

u

(|T |(2|S |+ |T |+ 1)
2

+ 1− a

)
≤ βu ≤ u

(
a− |T |(|T |+ 1)

2

)
. (18)

If we want 95% confidence interval, parameter a should be determined such that the probabilityP (
∑
u(i) ≥

a) is equal to 0.975. When the numbers of measured data |S| and |T | are large, it is known that
∑
u(i)

20

follows the normal distribution with mean |T |(|S |+ |T | + 1)/2 and variance |S||T |(|S |+ |T | + 1)/12.

Thus, we can approximate a as;

a =
|T |(|S |+ |T |+ 1)

2
+

1
2

+ 1.96

√
|S||T |(|S |+ |T |+ 1)

12
. (19)

We still have a problem in the above procedure. Our final goal is to control the measurement time so that the

measurement is finished when the confidence interval of the bandwidth estimation is within a prespecified value.

For that purpose, on-line calculation is necessary. However, the above procedure requires much computational

time. Suppose that we gather RTT values with 46 kinds of packet sizes as in pathchar. The number of slopes

obtained for each link becomes 1035, and therefore the number of elements of U is beyond 1,000,000. It is too

large for the method described above.

We therefore use another method based on a Kendall’s rank correlation coefficient [15]. We obtain m(m −

1)/2 slopes from m trials for each link, and therefore the number of elements |S| and |T | becomes m(m−1)/2.

We therefore use the following procedure to estimate the confidence intervals.

1. Sort S and T, and obtain the set U’, the element of calculated by

u′(i) = s(i) − t(i)(1 ≤ i ≤ m(m− 1)
2

). (20)

2. The confidence interval of U’ is then determined by the following equation.

u′
(

m(m−1)
2 −C

2

)
≤ βu′ ≤ u′

(
m(m−1)

2 + C

2

)
, (21)

where C is the Kendall’s rank correlation coefficient. If K is 97.5% value of the standard normal distri-

bution, we obtain 95% confidence interval by using

C = K

√
m(m− 1)(2m− 5)

18
. (22)

The on-line calculation procedure and stopping rule for the RTT measurement will be described in Subsec-

tion 2.2.3.

2.2.2 Removal of Unnecessary RTT Values

As having been shown in Figure 3, it is necessary to pick up proper RTTs when the distribution of RTT consists

of several groups of RTTs. It is caused by the route alternation that pathchar can never detect. To divide data

21

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

Figure 5: Result of Clustering

into several groups, we use the clustering method [17]. After we obtain the measurement data, we first abandon

the upper z% of measured RTTs since those does not help estimating the link bandwidth. In the experiments in

Section 4, we will set z = 30 which was found to be a reasonable value for our purpose. Then, we divide them

into several clusters. We assume that the cluster having the largest number of measured elements contains the

actual minimum RTT. If route alternation does not occur during the measurement, it is not necessary to apply

the clustering. We can know it if divided clusters are very close with each other. Figure 5 plots the result of

the clustering using the data shown in Figure 3. Note that we divided the gathered data into three clusters. The

figure shows that we can extract the clusters of RTTs properly. A weak point of this procedure is that it takes

much time for clustering and therefore we cannot repeat clustering for every packet arrival. From this reason,

we perform clustering after the measurement of RTTs will have finished in the experiment.

2.2.3 An Adaptive Mechanism to Control the Measurement Period

To control the measurement period of the bandwidth estimation, our adaptive mechanism is based on an iterative

procedure which the number of probes is progressively increased until the confidential interval of the estimated

bandwidth becomes less than the prescribed value. In this mechanism, one problem is how to update the mini-

22

mum RTTs for each iteration. After measuring additional RTTs, there are two candidates for the minimum RTT;

one is the smallest value of additional RTTs, and another is the current minimum RTT. Usually, it is desirable

that the minimum RTT is updated by the smaller value of these two candidates. However, this approach some-

times leads to the inaccurate bandwidth estimation when the smallest value of measurements is caused by the

exceptional large error or route alternations. Even if our estimation approach can remove such errors, it requires

an additional number of iterations which directly leads to increase the processing overhead. From this reason, it

is necessary to eliminate the influence of errors as many as possible before the estimation. We then introduce the

following update process of the minimum RTT, which we will refer to as “Minimum RTT Update Procedure”.

Let the smallest value of measured RTTs and the current minimum RTT be y′i and yi, respectively. We

first compare y′i with yi. If y′i ≥ yi, we keep yi as the minimum RTT. If not, we next calculate the difference

d′ = |y′i − Y | and d = |yi − Y |, where Y is the estimated value of RTT on the line (e.g., Y = βxi +α from the

given packet size xi). By comparing d′ with d, we replace the minimum RTT with y′i when the difference d′ is

smaller than d or 30% larger than d. Without this approach, lots of accurate minimum RTTs are discarded and

then many additional probe packets are required to get the same accuracy as result of latter approach.

More specifically, the following procedure is performed during the RTT measurement. In describing the

procedure below, we suppose that the bandwidth estimation for link (n− 1) has already been finished.

1. For estimating the bandwidth of link n, we first send a fixed number of packets. For example, we send

10 packets in our experiments presented in the next section. Then, RTTs are collected for 46 kinds of the

packet size (from 40 bytes to 1,500 bytes). Namely, the source sends 10 × 46 = 460 packets in the initial

measurement.

2. For taking account of route alternation, we check the source address of the ICMP packets as in pathchar.

We take router n, the address of which appears most in the ICMP packets.

3. We then estimate the initial value of bandwidth and its confidence interval of nth link by either our para-

metric or nonparametric methods; (see Subsection 2.2.1).

4. To get the accurate bandwidth estimation and confidence interval, we iterate following procedure.

(a) We send an additional set of probes (e.g., 10 packets for each packet size) to get new RTTs for router

23

n.

(b) We update the minimum RTT by using the Minimum RTT Update Procedure.

(c) Because the accuracy of the bandwidth estimation for link n depends not only on the precision in

the slope estimation of link n, but also on the one of link (n − 1), we need to send additional

packets to router (n− 1) when the source sends more packets to router n. Note that these additional

measurements are not necessary for the bandwidth estimation for link (n− 1).

(d) By using our estimation approach (described in Subsection 3.1), we update the estimated bandwidth

and its confidential interval. The iteration terminates if the confidence interval of the estimated

bandwidth becomes less than the prescribed value (e.g., 10% of the mean value).

5. After the iteration terminates, we finally verify whether RTTs have reasonable values. A most important

task at this step is to apply the clustering technique. If the measurement is correct, the cluster having the

largest number of elements must contain the measured minimum RTTs. If RTTs are not proper because

of the route alternation, we retry the measurement process by going back to Step 4.

2.3 Experimental Results and Discussions

2.3.1 Removing Irregular RTT Values due to Exceptionally Large Errors

We first show experimental results for the case where RTT values apparently do not follow the normal distribu-

tion because of some large errors. The example was shown in Figure 2. Figure 6 plots only minimum values of

RTTs against the packet size from Figure 2. As shown in this figure, the variation of minimum RTTs exhibits

far from the linear relation. Figure 7 compares results of the slope estimations by pathchar, pchar, and our

methods (the M-estimation and nonparametric methods). Straight lines of pathchar and pchar are inaccu-

rate due to exceptionally large errors whose packet sizes are 288, 960, 1376, and 1440 bytes. On the other hand,

our approach can filter out such errors.

Table 1 shows the estimated values. In the table, two cases of the bandwidth estimation are shown; 13-th link

from 202.231.198.2 destined for 210.142.124.1 (corresponding to Figure 2) and 13-th link from 202.232.8.66

destined for 210.141.224.162. The capacities of those links were known a priori as 1.5 Mbps and 45 Mbps. For

each of two links, we show the estimated bandwidth obtained by all methods. Confidence intervals of 95% are

24

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

Figure 6: Minimum RTTs Including Irregular Values

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

pathchar,pchar

M-estimation
nonparametric

Figure 7: Estimated Lines Including Irregular Values

25

Table 1: Bandwidth Estimation and Confidence Intervals for the Measurement data with Irregular Values

bandwidth method estimated results (Mbps) the # of probe packet

Pathchar 0.87 200

1.5 Mbps M-estimation 1.34 ≤ 1.35 ≤ 1.36 10

Wilcoxon 1.32 ≤ 1.33 ≤ 1.36 20

Kendall 1.30 ≤ 1.33 ≤ 1.37 20

Pathchar 86.65 200

45 Mbps M-estimation 44.06 ≤ 46.58 ≤ 49.42 200

Wilcoxon 42.99 ≤ 53.44 ≤ 66.54 200

Kendall 52.22 ≤ 53.44 ≤ 54.69 200

also shown in our methods. As shown in the table, results obtained by pathchar and pchar are far from

the actual bandwidth, while our methods can give very close values. The difference of the actual bandwidth

and the estimated bandwidth is due to the overhead of the underlying network. In the table, the numbers of

packets transmitted for each packet size are also shown. In our methods, the very small number of packets were

sufficient to obtain the accurate results for 1.5 Mbps link. For 45 Mbps link, on the other hand, 200 packets

were necessary, which is same as pathchar. It is due to the fact that as the link bandwidth becomes large, the

accurate estimation becomes difficult, which has already been pointed out in [7].

In the case of 1.5 Mbps link, we cannot observe differences among our three methods, the M-estimation,

Wilcoxon’s and Kendall’s methods. In the case of 45 Mbps link, the M-estimation method seems to be best.

However we cannot decide the best one here because we found many cases that the other method gives the best

result, as will be presented in the below.

2.3.2 Clustering RTT Values against Route Alternation

If the distribution of RTT values consists of several groups due to route alternation, it is apparent that the

approach to cut off the exceptionally large errors mentioned above is not sufficient. See Figure 8, where we

plot minimum values of RTTs against the packet size. The RTT values fluctuate to a large extent. Of course, it

misleads us about the estimation, and the estimation obtained by pathchar and pchar are meaningless. Then,

26

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

Figure 8: Minimum RTT for Mixed Groups

our clustering approach presented in Subsection 2.2.2 becomes necessary to exclude the RTT values obtained

by an exceptional route.

Table 2 shows the estimation results. In the table, the cases of 10 Mbps and 12 Mbps links are shown. Those

are located at 8-th link from 150.100.59.2 towards 202.219.160.22 and 15-th link from 210.157.131.158 towards

210.224.236.1. The numbers of packets transmitted in each method are also shown in the table. From this table,

our estimations show the reasonable values while pathchar and pchar lead to even a negative value. The

reason becomes clear when we look at the slope estimation plotted in Figure 9. Since the estimated values of

pathchar and pchar is small, the resultant estimation on the bandwidth of the target link takes a negative

value. On the other hand, our methods can estimate the slope adequately.

27

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

M-estimation

pathchar,pchar

nonparametric

Figure 9: Estimated Slopes in the case of Mixed RTT Values

Table 2: Bandwidth Estimation and Confidence Intervals for the case of Mixed RTTs

bandwidth method estimated results (Mbps) the # of probe packet

Pathchar -22.6 200

10 Mbps M-estimation 10.07 ≤ 12.40 ≤ 16.11 200

Wilcoxon 16.59 ≤ 16.95 ≤ 24.07 200

Kendall 14.24 ≤ 16.95 ≤ 25.29 200

Pathchar 8.25 200

12 Mbps M-estimation 9.79 ≤ 9.94 ≤ 10.09 20

Wilcoxon 13.3 ≤ 13.8 ≤ 14.4 90

Kendall 13.6 ≤ 13.8 ≤ 14.1 90

28

34

36

38

40

42

44

0 200 400 600 800 1000 1200 1400 1600

R
ou

nd
 T

rip
 T

im
e

(m
s)

Packet Size (byte)

M-estimation

pathchar,pchar

nonparametric

Figure 10: RTT Values and Estimated Slopes

2.3.3 Controlling the Measurement Period Adaptively

We next show how our adaptive control of the measurement period works. Differently from previous cases,

we pick up the cases where pathchar can also show the reasonable results in this subsection. Figure 10

compares estimated slopes of minimum RTTs among pathchar, pchar and our methods. As shown in the

figure, there is no remarkable difference among all estimation methods. Table 3 also shows the same tendency;

estimated values of link bandwidths are quite close with each other. These results suggest that the error contained

in the minimum values of RTT can well be modeled by a normal distribution in usual cases if the amount of

measurement data is sufficiently large.

However, our estimation approaches have two advantages over pathchar (and pchar). First, our method

can control the number of probes adaptively. As shown in Table 3, the measurement terminates with a less

number of probes in our method except the case of 6 Mbps link. Table 4 summarizes the required number of

probes to obtain the 95% confidence intervals where minimum and maximum values are within 5% difference

from the mean value. Note that symbol ‘*’ in the table shows that the result does not reach within the prescribed

confidence interval by that number of probes. For several links, the number of probes for each packet size is less

than 200. On the other hand, the number of transmitted probes by pathchar was always 200; it implies that

29

Table 3: Bandwidth Estimations and Confidence Intervals by Measurement Period Control

bandwidth method estimated results (Mbps) the # of probe packet

Pathchar 5.75 200

6 Mbps M-estimation 6.48 ≤ 6.60 ≤ 6.72 200

Wilcoxon 5.65 ≤ 5.87 ≤ 5.92 200

Kendall 5.67 ≤ 5.87 ≤ 5.94 200

Pathchar 1.46 200

1.5 Mbps M-estimation 1.37 ≤ 1.40 ≤ 1.43 20

Wilcoxon 1.43 ≤ 1.45 ≤ 1.47 110

Kendall 1.42 ≤ 1.45 ≤ 1.48 110

Pathchar 10.6 200

12 Mbps M-estimation − ≤ 10.5 ≤ − 200

Wilcoxon 10.40 ≤ 11.34 ≤ 12.28 50

Kendall 11.04 ≤ 11.34 ≤ 11.59 50

Table 4: Variations on the Required Number of Probes per Packet Size

bandwidth link location M-estimation Nonparametric

10 Mbps 10 th 10 630

10 Mbps 12 th *1127 220

12 Mbps 15 th 10 10

12 Mbps 12 th 30 80

45 Mbps 13 th 370 *1007

100 Mbps 16 th 427 979

100 Mbps 9 th *1080 *1080

30

pathchar wastes the network bandwidth by unnecessarily transmitting packets. For other cases, the numbers

of probes are larger than pathchar, but we can expect that the resultant estimated values become more reliable

than the values obtained by pathchar.

A second advantage of our methods is that we can obtain unified degrees of confidence on all links. On the

other hand, the accuracy of estimation by pathchar is varied, and more importantly, there is no means to know

about reliability on the estimated values.

Between parametric and nonparametric approaches, the required number of probes by the nonparametric

approach is larger than that of the parametric approach. It is natural since the nonparametric approach does

not assume any distribution on errors. Then, it needs a larger number of probes for reliable estimation. The

large number of probes was necessary for the second link in the table in spite of 10 Mbps link. It is because

the utilization of that link was high. It verifies that our method can adaptively increase the number of probes

according to the link congestion.

2.3.4 On-line Estimation of Confidence Intervals

We last discuss on the derivation methods of confidence intervals in our methods. As having been described

in Section 2.2.1, the method based on Kendall’s rank correlation coefficient is approximate in obtaining the

confidence interval, and it must be less accurate than the one based on Wilcoxon’s method. However, differences

between Kendall’s and Wilcoxon’s methods were within 5% of the link bandwidth as having been shown in

Tables 1, 2, and 3. If we collect m kinds of the packet size, the calculation time by Wilcoxon’s method becomes

O(m4), while O(m2) in Kendall’s method. Therefore, Kendall’s method is useful for the on-line estimation of

confidence intervals.

In our experiments, the M-estimation method sometimes failed to determine the confidence interval, which

was shown in the last example of Table 3. It is caused by assuming that the variance of slopes σ2
n for link n is

larger than σ2
n−1 for link (n−1). See Eq. (15). That assumption is valid if we can measure RTTs of routers n−1

and n by the same packet. However, because it is impossible, RTTs of routers n − 1 and n must be measured

separately, and the above assumption does not hold.

As having been presented in the tables, the assumption that the measurement errors follow the normal dis-

31

tribution seems to be often valid. However, it can only be known examining the links, bandwidth of which is a

priori known.

32

3 Measurement Based Identification Method of Performance Bottlenecks

In the previous section, we have investigated on the estimation method of link capacities along the end-to-end

path. However, there exist many factors limiting the end-to-end performance. For network dimensioning, we

first need to determine which factor actually restricts the current performance. If the link capacity is found to be

a limiting factor of the performance, then it be increased. In this section, we propose a new bottleneck identifi-

cation method based on the measurement of network characteristics. Our proposal on the network dimensioning

is then described in the next section.

3.1 Framework for Bottleneck Identification

Figure 11 shows our framework of a measurement-based bottleneck identification method. As shown in the

figure, we consider the TCP connection through which the user receives data (e.g., Web documents) from the

destination host (server) to the measurement host (client). Then, we want to identify what is a bottleneck in the

current network configuration, and what restricts the end-to-end performance. The main goal of our study is to

find the limiting factor on the end-to-end performance, and our identification process is intended to be applied

to each TCP connection.

There exist many possible causes of limiting the TCP performance, but we can classify those in the following

Destination Host (Server)

Measurement Host (Client)

Backbone Network Target Network

Figure 11: Measurement Environment

33

three categories.

1. Network Configurations:

The capacity of one or more links is quite small than the one that the end users expect. A simple example

may be found in the case where the customer is connected by a telephony line. The throughput is lim-

ited to the speed of a modem (e.g., 33.6 Kbps or 56 Kbps). The second and most important reason for

performance limitation is due to the link congestion. It leads to many packet losses, and TCP throughput

decreases significantly. To resolve it, it is necessary to increase the capacity of the bottleneck link, which

is the main target of our bottleneck identification method.

However, even if the throughput is much lower than the one expected by the user, the performance may be

limited by other reasons. In such a case, the capacity increase does not help performance improvement.

Those reasons are due to the poor performance of the end hosts, which will be described in the below.

2. Receiver–Side Configurations:

In order to avoid mis-ordering of the packet sequence, the receiver host prepares a buffer to store the

received packets. In the TCP connection, the required size of buffer is basically given by the Bandwidth–

Delay Product, which is determined from Available Bandwidth×RTT. The buffer size of the receiver host

is notified to the sender via the Advertised Window field in the TCP header. The buffer size sometimes

becomes a bottleneck in the environment with the large Bandwidth–Delay Product (e.g., the network

offering high-speed link(s) and/or the large RTT). Once it is found to be a bottleneck, it can be solved by

a window scale option of TCP [18] after preparing the additional buffer. However, too large window leads

to the bursty packet emission due to the rapid growth of the window size, which may result in the frequent

packet losses. Thus, a careful consideration is necessary when the receiver’s advertised window size is

determined.

3. Sender–Side Configurations:

The content service providers or the operators of WWW and ftp servers sometimes limit a transmission

rate of each TCP connection, in order to share the resources of the access network and the end hosts fairly

among clients. If such a rate control is adopted as the service policy, there is no means to improve the

performance of individual users.

34

Another cause of the server–side bottleneck is due to the packet processing overhead at the sender host.

For example, if we connect to the busy WWW server, the document download rate is very limited because

of the processing overload of the sender host. This kind of the bottleneck should be solved by upgrading

the server’s power.

The first step of our method is to identify the location of bottlenecks based on the measurement, which will

be explained in the next subsection.

3.2 Bottleneck Identification Method

3.2.1 Measurement Parameters for Bottleneck Identifications

Our target of the bottleneck identification process is TCP connections. We use the following equations that

characterize the throughput of the TCP flow [19].

If the bottleneck is not located at the sender side configuration, the expected window size of TCP connection

is given by

E[W] =
2 + b

3b
+

√
8(1 − p)

3bp
+
(

2 + b

3b

)2

, (23)

where p and b are the packet loss rate and the number of arrival packets notified by one acknowledgement (ACK)

packet, respectively. In the original version of TCP, the receiver should send an ACK packet for each receipt

of the packet. Authors in [20], however, have shown that the overall network load can be reduced without

any performance degradation by applying a delayed ACK, in which the receiver sends an ACK packet for the

acknowledgement of multiple (two or more) received packets. The mechanism of the delayed ACK is widely

used in recent TCP implementations, and its parameter b is typically set to be 2. Note that if p = 0, E[W] cannot

be estimated. However, when the link bandwidth is a bottleneck, packet losses are likely to occur because of an

inherent nature of the TCP mechanism; the congestion control mechanism of TCP decreases the window size

(i.e., the transmission rate) by detecting packet losses. If the packet loss never occurs, there is no problem in the

current network configuration.

In the above equation, we need to know the packet loss probability along the path. As described before,

the end host cannot detect the packet loss directly. One approach is to introduce the upper layer protocol for

35

exchanging such an information. Such an approach can be found in RTP (Real Time Protocol) and RTCP (Real

Time Control Protocol) [21]. However, it limits the applicability of our approach because it requires a special-

purpose software at server and client hosts. Another approach is to utilize the active measurement tool such as

pchar. It requires the additional traffic measurement. Another simpler approach that we have adopted is to use

the following approximation. The packet loss rate p is determined by counting the number of Triple Duplicate

ACKs NTD, and the total number of packets Np. The packet loss rate is then estimated as p = NTD/Np.

Since these statistics can be collected during the ordinally network usage, no additional resource consumption is

introduced.

Once we have an estimated value of E[W], we next check whether the receiver buffer is sufficient or not by

comparing the buffer size Wmax and the expected window size E[W]. In [18], TCP throughput is also given:

B(p) =
1−p

p + E[W] + Q̂(E [W]) 1
1−p

RTT (b
2E[W] + 1) + Q̂(E [W])T0

f(p)
1−p

, ifE[W] < Wmax,

=
1−p
p + Wmax + Q̂(Wmax) 1

1−p

RTT (b
8Wmax + 1−p

pWmax
+ 2) + Q̂(Wmax)T0

f(p)
1−p

, otherwise, (24)

where Q̂ and f(p) are determined by the following equations:

Q̂(w) = min

(
1,

(1 − (1 − p)3)(1 + (1 − p)3(1 − (1 − p)w−3))
1 − (1 − p)w

)
, (25)

and

f(p) = 1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6. (26)

If the receiver buffer size is a cause of the bottleneck (found by Eq. (24)), TCP throughput is approximately

given as

B(p) ≈ Wmax

RTT
. (27)

T0 is obtained from the retransmission timeout value (RTO) which is necessary to detect the packet at the end

host. Since IP, the underlying protocol of TCP, is connectionless, the TCP sender is not directly notified of the

packet loss from the network, and therefore TCP uses an acknowledgement–based protocol to know the packet

losses. In TCP, there are two methods to detect the packet loss. The first one is that the sender host decides a

packet loss in case where the sender does not receive its ACK packet within the timeout threshold. This threshold

is called RTO, and it is calculated by the following equations:

RTO = RTTm + 4D (28)

36

Err = RTT − RTTm

RTTm = RTTm + 0.125Err

D = D + 0.25(|Err| −D).

Note that the RTO value is not used in a usual case for the timeout threshold because of the granularity of the

TCP timer. For example, FreeBSD 3.4 has a 500 msec timer, and the value of RTO is rounded off by the unit of

500 msec.

The second method to detect the packet loss is performed by checking the sequence number of the acknowl-

edgements. When the packet is lost within the network, the sender host receives the ACK packet with the same

acknowledgement number as the previous one. Those ACKs are called as Duplicate ACKs. However, the sender

host cannot determine whether a duplicate ACK is caused by a lost segment or just a mis-ordering of packets, and

some “margin” is necessary to ignore duplicate ACKs. Actually, when three or more duplicate ACKs (called as

Triple Duplicate ACKs) have been received, the sender host recognizes that the packet has been lost. The sender

then retransmits the packet and sets the congestion window size to be half.

To identify the bottleneck based on the above equations, we need to obtain (1) packet loss rate p, (2) maximum

window size at the receiver host Wmax, (3) number of packets notified by one ACK packet b, (4) a round trip

time RTT , and (5) a packet retransmission timeout T0. In addition, we need to measure the TCP throughput,

because the above prediction formula of TCP throughput is occasionally incorrect. The packet loss probability

can be determined from the method described above. Since Wmax and b are the configurable parameters, those

can simply be obtained by the kernel configuration of the operating system. Since the measurement is performed

at the receiver–side, it is not easy to get the round trip time (RTT) from the trace results of TCP headers. We

therefore need to obtain RTT values by active measurement tools such as ping. After we collect a set of RTTs,

we can evaluate the RTO value from Eq. (29) one by one, and get the mean value of RTOs. We finally calculate

the measured TCP throughput by observing traced TCP headers and counting the total bytes transmitted. The

physical capacity of the bottleneck link is helpful for the bottleneck identification, which can be obtained by our

proposed method described in the previous section.

37

3.2.2 Bottleneck Identification Method

In this subsection, we propose the bottleneck identification method. According to the identification described in

Subsection 3.1, we examine the receiver–side, sender–side, and the network configuration in turn to determine

the bottleneck.

1. Measure the network parameters, i.e., RTT, RTO, packet loss rate, TCP throughput, and physical capacity

of bottleneck link.

2. Change the receiver buffer size if it is a current cause of the bottleneck, and again measure the TCP

throughput. If the throughput is not improved, the bottleneck is likely to exist at the sender–side. Alterna-

tively, it can be conjectured by a degree of the difference between the estimated TCP throughput and the

measured throughput because Eq. (24) do not consider the sender–side bottlenecks.

3. Check whether the receiver buffer size is sufficient or not. It can be verified by Eq. (23). If the buffer size is

insufficient, increase it. Otherwise the current cause of the limited performance exists in the network. We

can confirm it by actually increasing the receiver buffer size. When the bottleneck is the link bandwidth,

it simply results in that the packet loss rate and RTT is increased.

4. When the receiver buffer size is not sufficient, the receiver buffer size should be increased so that desired

performance can be obtained. However, it should be performed carefully. As shown in Eq. (27), the

receiver buffer size and the resultant TCP throughput has a linear relation if the receiver buffer size is

a cause of the bottleneck. Anyway, as the receiver buffer size is increased, the bottleneck may shift to

another part.

3.3 Experimental Results

In this section, we show the experimental results based on our bottleneck identification method. In our exper-

iments, we use a ping program to obtain the round trip times (RTTs), and tcpdump [22] for capturing TCP

headers. Furthermore, we adopt our bandwidth prediction method presented in Section 2 to obtain the physical

link capacity of each links.

As shown in Figure 11, we placed the receiver host (client) at Osaka University, and choose five hosts (Osaka

38

Table 5: List of Sender Hosts

abbreviation name network host

ocu Osaka City University –

sonet Sony Communication Network Corporation ftp.so-net.ne.jp

iij Internet Initiative Japan Inc. ftp.iij.ad.jp

ryu Ryukoku University ftp.ryukoku.ac.jp

iamas Institute of Advanced Media Arts and Sciences ftp.iamas.ac.jp

City University, Sony Communication Network Corporation (ftp.so-net.ne.jp), Internet Initiative Japan

Inc. (ftp.iij.ad.jp), Ryukoku University (ftp.ryukoku.ac.jp), and The Institute of Advanced Me-

dia Arts and Sciences (ftp.iamas.ac.jp)) as the sender host (server). Table 5 shows the list of sender

hosts.

Table 6 summarizes our measurement and bottleneck identification results. Each row in the table consists of

nine fields; the sender host, the bandwidth of the bottleneck link, the receiver buffer size, the round trip time,

the packet loss rate, measured TCP throughput, estimated TCP throughput. The eighth field (“buffer”) shows

whether the buffer size is sufficient or not, which was determined according to Eq. (23). The last column of the

table is the result of bottleneck identification; the bottleneck is due to 1) network configuration, 2) sender–side

configuration, or 3) receiver–side configuration.

In the sonet case, the receiver buffer size was the bottleneck since 1) the RTT value is small, 2) the receiver

buffer size is evaluated as “insufficient,” and 3) the socket buffer size is in proportion to the measured TCP

throughput. The same results were obtained in ocu, iij, and iamas cases when the socket buffer size is set

to be 8 KB.

The ocu case shows a different result; the bottleneck is moved from the buffer size to the link bandwidth

when changing the buffer size from 8 KB to 64 KB. The total number of lost packets is shown in Figure 12,

where the receiver buffer size is set to be 8 KB and 64 KB. Note that the horizontal axis of the figure is the

sequence number of packets received by the receiver host. As shown in the figure, the number of lost packets

is quite small in the 8 KB buffer case, which means that the bottleneck is not due to the network configuration.

Furthermore, the number of lost packets is increased in proportion to time, which is a typical observation when

39

Table 6: Results on Measurement and Bottleneck Identification

sender bottleneck buffer size RTT (ms) loss (%) measure estimate buffer class

8 KB 4.03 0.000187 1.35 Mbps 1.62 Mbps insufficient

ocu 1.47 Mbps 32 KB 17.4 0.000946 1.36 Mbps 2.57 Mbps sufficient 1

64 KB 21.7 0.00268 1.35 Mbps 1.21 Mbps sufficient

8 KB 17.7 0.00007 2.13 Mbps 2.62 Mbps insufficient

sonet 19.3 Mbps 32 KB 23.4 0.00293 9.66 Mbps 10.5 Mbps insufficient 3

64 KB 23.4 0.00406 15.6 Mbps 20.8 Mbps insufficient

8 KB 20.8 0.000573 2.83 Mbps 3.03 Mbps insufficient

iij 29.6 Mbps 64 KB 22.9 0.000288 4.33 Mbps 35.3 Mbps sufficient 2

128 KB 20.7 0.000867 4.78 Mbps 21.7 Mbps sufficient

8 KB 35.8 0 0.76 Mbps 1.74 Mbps insufficient

ryu 1.51 Mbps 32 KB 34.4 0 0.79 Mbps 7.25 Mbps insufficient 2

64 KB 36.1 0 0.72 Mbps 13.8 Mbps insufficient

8 KB 56.7 0.00018 0.85 Mbps 1.16 Mbps insufficient

iamas 33.1 Mbps 32 KB 65.8 0 1.32 Mbps 3.86 Mbps insufficient 2

64 KB 65.7 0.000361 1.32 Mbps 11.1 Mbps sufficient

the bottleneck is the link bandwidth.

In the iij case, it is expected that the maximum TCP throughput is 30 Mbps from the measurement of the

bottleneck link bandwidth (see the second column). It is verified by the estimated TCP throughput (the seventh

column). However, the maximum throughput by the measurement was about 4.8 Mbps. If throughput is limited

by the network congestion, it is expected that the packet loss rate should be high. However, there is no changes in

the packet loss rate contrary to ocu. Such results are also found in ryu and iamas. These cases are classified

into the case that the sender–side configuration limits the performance. We have two possible causes for this

result.

• Bandwidth of the first link from the sender:

If the bandwidth of the first link is smaller than the packet processing speed at the server, the packet

40

0

50

100

150

200

250

300

350

400

0 4e+07 8e+07 1.2e+08 1.6e+08 2e+08

to
ta

l l
os

s
pa

ck
et

sequence number

8KB
64KB

Figure 12: Osaka City University: The Total Number of Lost Packets

sending rate becomes equal to or slower than the bandwidth of the first link. Accordingly, rest of packets

are waiting for forwarding at the input buffer. Contrary to intermediate routers, the input buffer of the first

link is seldom overflowed, since the sender can control its sending rate based on the available bandwidth

for the first link. Imagine the Ethernet–like network as an example. The data link layer protocol (the MAC

layer in the case of the Ethernet) can control the sending rate at the server. As a result, the packet loss rate

and RTTs are still small, in spite that the link bandwidth is the bottleneck.

• Available bandwidth limitation caused by a server:

Recently, some operating systems support the mechanism for the ftp server to limit the sending rate of

each user. Those include Linux, FreeBSD, and WindowsNT. If such a restriction is used, the server does

not send packets at the rate larger than the predetermined bandwidth. Then, the packet loss rate and RTTs

are kept low values because the packets are seldom queued within the networks.

In order to discriminate the above two causes, it is necessary to measure the link bandwidth of the first link from

the server. When the sender host is located within the target network, these two bottlenecks could be easily

distinguished to acquire information such as a link bandwidth and an existence of available bandwidth limita-

tions. If the server is located outside the target network, on the other hand, it would be difficult to discriminate

41

Table 7: Confidence Intervals

server buffer size min mean max

8 KB 1.64 1.64 1.64

ocu 32 KB 1.40 1.40 1.40

64 KB 1.97 1.98 1.98

8 KB 3.78 3.78 3.78

sonet 32 KB 12.98 12.98 12.98

64 KB 23.30 23.35 23.40

8 KB 3.30 3.30 3.30

iij 32 KB 11.33 11.34 11.35

64 KB 22.83 22.84 22.84

these two causes clearly. However, if we consider the capacity dimensioning on the target network as just in the

current case, this identification is no longer meaningful.

Finally, in order to investigate the accuracy of our measurement results, we present a confidence interval

of the estimated TCP throughput in Table 7. We can observe that the width of all confidence intervals is very

narrow, which indicates that the sufficient quantity of data was collected to put a confidence on results.

42

4 Capacity Dimensioning Based on Traffic Measurements

In this section, we will explain how our capacity dimensioning is performed. It is based on traffic measurements

described in previous sections. The aim of our capacity dimensioning method is to satisfy QoS from the end

user’s point of view. The target QoS metric that we will consider in this section is TCP throughput. We have

shown in Section 3 that the link capacity is not an only cause of the performance bottleneck; increasing the link

bandwidth does not necessarily lead to the performance improvement for the end users. Instead, the sender or

receiver side configurations might limit the performance. Thus, we have to first identify the bottleneck via the

statistical characterization of the current network and server configurations.

Our goal of the network dimensioning is to increase the end-user’s throughput from t to t′ = t + ∆t. For

that purpose, we want to determine the next action. Throughout this section, we will call the TCP connection

for improving its throughput from t to t′ as a target connection. Its difficulty is due to the fact that increasing the

bandwidth by ∆t does not necessarily lead to achieve our objective. That is, the additional capacity may not be

occupied by the target user willing to increase his throughput, since the other users may also enjoy the increased

capacity due to the capability of bandwidth sharing of TCP.

In determining the link capacity, it is better to have the future traffic demand on the basis of the current

traffic. However, since it is is very difficult and probably impossible, we have to realize the target throughput by

repeating the process mentioned in the below. We first explain the process of the capacity dimensioning in the

case where the bottleneck is not the link bandwidth in Subsection 4.1. In Subsection 4.2, the issue of capacity

planning is discussed for the case where the link capacity is actually the bottleneck.

4.1 Cases of Bottlenecks in Sender or Receiver Side Configuration

We consider the first case that the link bandwidth is not a bottleneck. Even if the link capacity along the

communication path is increased, the throughput improvement cannot be expected since the bottleneck exists

in the other part of the end-to-end communication path. When the sender-side configuration is the bottleneck,

the throughput is increased by e.g., eliminating the rate control or upgrading the processor power at the servers,

as we have discussed in the previous section. On the other hand, if the socket buffer size of the receiver is the

bottleneck, the user can increase its throughput by preparing a sufficient amount of the buffer size.

43

If the buffer size f at the receiver side is the bottleneck, the TCP throughput is given by [19]

B =
f

RTT
. (29)

Accordingly, in order to obtain the throughput t′, we prepare the buffer size fulfilling the following inequality.

f ′ ≥ t′RTT. (30)

If the buffer size is too large, however, packets might be sent at a higher rate than the bottleneck link bandwidth,

and it would result in throughput degradation. It is because the larger buffer incurs the faster fluctuation of the

congestion window size of TCP, and leads to the frequent packet loss occurrences. In order to avoid this, it is

necessary to set an appropriate buffer size based on Eq. (30).

Increasing the buffer size to f ′ solely is sometimes insufficient since the bottleneck may be moved to the

link bandwidth. Let us suppose that the buffer size is actually the bottleneck. Let C be the bandwidth of the

link that has the smallest value of the utilization (ρ) along the end-to-end path. ρ is not large since it is not the

current bottleneck. Furthermore, let A = ρC − t denote the bandwidth used by the background traffic (i.e.,

connections except the target connection). We can then obtain the available bandwidth of the link by (1 − ρ)C.

By increasing the buffer size to f ′, the throughput is expected to increase by ∆t. Of course, if ∆t > (1 − ρ)C,

the target throughput cannot be achieved. In such a case, we next have to consider the increase of the link

capacity.

Because the routing mechanism of IP is based on the shortest path finding algorithm, we can assume that

increasing the physical capacity of the bottleneck link does not affect IP routing. Furthermore, we can also

assume that the total throughput of the background traffic keeps A because the link was underutilized before

buffer resizing. Then, we have the updated link capacity C′ from

C′ ≥ A+ t + ∆t. (31)

4.2 Cases of Bottlenecks in Network Conditions

We next discuss the case in which the link bandwidth is the bottleneck. The bottleneck link must be almost fully

utilized in this case, i.e., ρ nearly reaches 1. Then, the packet loss of TCP connections occurs frequently. In this

case, we can consider the following two situations;

44

1. The bottleneck is caused by the target connection only.

2. The bottleneck is caused by multiple TCP connections (including the target connection).

If the bottleneck is caused by only the target TCP connection, the additional bandwidth will be occupied by

the target connection. Thus we can determine the required capacity of the bottleneck link from (31).

If the bottleneck is caused by multiple TCP connections, on the other hand, a careful consideration is nec-

essary: even if the link capacity is increased, we cannot obtain the target throughput because the amount of the

cross traffic is also increased. In what follows, we discuss how to attack this problem. For this purpose, we

assume that the bottleneck link is simply assumed by an M/M/1 queueing system, while our framework below

is not limited to it.

Let L denote the average size of the packets passing through the bottleneck link. The packet arrival rate is

then defined by λ = (A+ t)/L, and the service rate is given by µ = C/L. The utilization of the link capacity ρ

can be written as

ρ =
λ

µ
=

A + t

C
. (32)

Therefore, we get the packet service time T as

T =
1
µ

1
1 − ρ

. (33)

Increasing the bottleneck link capacity by α times leads to

µ′ =
αC

L
= αµ. (34)

Here, we assume that the amount of the cross traffic is still large, and the utilization of the bottleneck link is

unchanged. Using Eqs. (33) and (34), the new packet service time T ′ is obtained as

T ′ =
1
µ′

1
1 − ρ

=
T

α
. (35)

Note that the service time is decreased after the link bandwidth has been upgraded, and then the RTT of each

connection is also decreased.

In [19], TCP throughput is modeled as

t =
1

RTT

√
3

2bp
. (36)

45

By letting n be the number of intermediate routers in the round-trip end-to-end path, the RTT value is given by

RTT =
2n∑
i=1

Ti + S +
2n+2∑
i=1

Di, (37)

where Ti is the packet service time at the router i, S is the packet processing time at the sender host, and Di is

the propagation delay of the link i. We can get RTT after increasing link bandwidth by

RTT ′ = T ′ +
2n∑
i=1

Ti − T + S +
2n+2∑
i=1

Di = T ′ + To, (38)

where

To =
2n∑
i=1

Ti − T + S +
2n+2∑
i=1

Di (39)

After increasing the link capacity when the link bandwidth is is the bottleneck, the packet loss rate would

become smaller than p, but we assume it to be unchanged. Then, the following condition should be satisfied in

order to realize the target throughput t′:

t′ ≤ 1
RTT ′

√
3

2bp
. (40)

Using Eqs. (35), (38), and (40), we can determine the new link capacity as

α ≥ T

1
t′
√

3
2bp − To

. (41)

Noticeably, Eq. (41) suggests that that the new throughput values depend on the sum of delays except the

service time at the bottleneck router To. If To is small (e.g., if the sender is close to the receiver), the user can

occupy the large portion of the bottleneck link bandwidth by reducing the service time from T to T ′. In this

case, the increase rate of cross traffic is smaller than that of the user’s traffic, and therefore, we set the capacity

of the bottleneck link at C′ satisfying

C′ ≥ t′

t
C. (42)

The above equation can be derived by setting To = 0 in Eq. (41).

We next consider the case where the sender host is located far from the receiver host and RTT is very large.

In such a case, the improvement of the throughput of the target connection is quite limited because the sum of

delays To is still large, Accordingly, it is necessary to re-design the link capacity until the bottlenecks of the

background connections change from the current bottleneck link to another link. It is hard to estimate the above

capacity directly, but we can repeatedly get rid of the bottleneck based on our proposed framework.

46

1E-08

1E-06

1E-04

1E-02

1

0 200 400 600 800 1000 1200 1400

P
ro

ba
bi

lit
y

D
en

si
ty

Packet Length

Figure 13: Distribution of Packet Size at Backbone Router

We have assumed that the behavior of the packet forwarding at the bottleneck router follows an M/M/1

queueing system (see Eq. (41)). It seems to be insufficient. For example, the packet size does not exhibits an

exponentional distribution. See Figure 13 where the dotted line shows the exponential distribution with same

mean. In that case, we can apply the above-mentioned design framework by utilizing the M/G/1 queueing

system, by appropriately changing Eqs. (33), (34), and (35).

Of course, we cannot guarantee the target throughput to every user even if the our framework is applied. This

is an inherent problem of the best-effort based protocol including the Internet. We have to repeat our capacity

designing process until the throughput performance is satisfied of the end users.

47

5 Concluding Remarks

In this paper, we have proposed some measurement techniques for establishing the framework of capacity di-

mensioning in the Internet.

First, we have explained the bandwidth estimation method based on pathchar, and proposed two band-

width estimation methods. From experimental results, we have shown that our methods can produce the robust

estimations. Our findings are as follows;

1. Pathchar cannot estimate the bandwidth adequately due to two kinds of unexpected errors; a few but

very large errors and route alternation. Those pose that measurement errors do not follow some probability

distributions such as a normal distribution.

2. We can eliminate exceptionally large errors by utilizing either M-estimation or nonparametric least square

fitting methods.

3. By clustering the measured RTTs and selecting an appropriate cluster, errors introduced by route alterna-

tion can be avoided.

4. By obtaining the confidence interval, a measurement period can be controlled, which makes it possible to

avoid bandwidth waste caused by unnecessary probes in some cases. If the link is congested, on the other

hand, more probes are transmitted according to our method. Then accurate and, more importantly, reliable

estimation becomes possible.

5. Between parametric and nonparametric approaches, the latter is adequate for reliable bandwidth estima-

tion, but it requires more measurement time. The parametric approach (i.e., the M-estimation method) is

better in the measurement and computational time. Perhaps, the choice between them depends on the link

condition. If the link load is not high, the obtained measurement data is stable. Then, the assumption that

the measurement errors follow the normal distribution would be reasonable. Otherwise, the nonparametric

approach presented in this paper is necessary.

We have next proposed the bottleneck identification process based on the traffic measurement. We have

investigated the characterization method of the current network performance by measuring the packet loss rate,

48

RTT, RTO, TCP throughput, and socket buffer size of the client host. Our proposed identification method can

detect the three kinds of the bottlenecks: the network configuration, receiver–side configuration, and sender–

side configuration. Experimental results have shown that our identification process can work well to identify the

bottleneck in an end-to-end TCP communication.

Finally, we have proposed a design framework in order to determine the adequate link capacity based on

the end-to-end measurement. We have described a capacity dimensioning process using the to achieve the

TCP throughput to the target value. Using an M/M/1 queueing system for the router, an example capacity

dimensioning process is presented for the cases;

• The link bandwidth is not a bottleneck.

• The link bandwidth becomes a bottleneck caused by only the target connection.

• The bottleneck is the link bandwidth caused by multiple connections sharing the link.

For the first two cases in the above, we can resize the link capacity based on the amount of target bandwidth.

On the other hand, the capacity dimensioning is carefully performed since the background traffic sharing the

bottleneck link affects the performance of the target user.

As a future topic, the measurement technique and its accuracy improvement for some network parameters

like link utilization should be discussed, which is applicable to our network dimensioning method.

49

Acknowledgments

I would like to express my sincere and deep gratitude to my advisor, Professor Masayuki Murata of Osaka

University, who has guided me through this work. His continuous advice and encouragement is acknowledged

and greatly appreciated. Thanks for leading me into the area of computer networks.

Special thanks go to Research Associate Shingo Ata of Osaka City University, for his valuable comments

and suggestions. Without his support, this thesis would not have been possible.

I would like to express my gratitude to Professor Hideo Miyahara, Assistant Professor Naoki Wakamiya, Re-

search Associate Hiroyuki Ohsaki, Research Associate Go Hasegawa, and Research Associate Shn’ichi Arakawa

of Osaka University, for their comments and suggestions on the thesis proposal.

Finally, I thank many friends and colleagues in the Department of Informatics and Mathematical Science of

Osaka University for their generous help, enlightening and valuable suggestions.

50

References

[1] S. Blake, D. Black, M. Carlson, Z. W. E. Davies, and W. Weiss, “An architecture for differentiated services,” IETF

RFC 2475, December 1998.

[2] E.C.Rosen, A.V.Than, and R.Callon, “Multiprotocol label switching architecture,” IETF draft, http://search.

ietf.org/internet-drafts/draft-ietf-mpls-arch-06.txt.

[3] “Caida measurement tool taxonomy,” http://www.caida.org/tools/.

[4] J. Apisdorf, k claffy, K. Thompson, and R. Wilder, “OC3MON: flexible, affordable, high performance statistics

collection,” in Proceedings of INET’97, June 1997.

[5] T. Oetiker, “MRTG: Multi router traffic grapher,” http://ee-staff.ethz.ch/˜oetiker/webtools/

mrtg/mrtg.html.

[6] V. Jacobson, “pathchar,” ftp://ftp.ee.lbl.gov/pathchar/.

[7] Allen B. Downey, “Using pathchar to estimate Internet link characteristics,” in Proceedings of ACM SIGCOMM,

pp. 241–250, August 1999.

[8] B. A. Mah, “pchar: A tool for measuring Internet path characteristics,” http://www.ca.sandia.gov/˜bmah/

Software/pchar.

[9] K. Lai and M. Baker, “Measuring link bandwidth using a deterministic model of packet delay,” in Proceedings of

ACM SIGCOMM 2000, August 2000.

[10] R. L. Carter and M. E. Crovella, “Dynamic server selection using bandwidth probing in wide -area networks,” TR-

96-007, March 1996.

[11] K. Matoba, S. Ata, and M. Murata, “Improving accuracy of bandwidth estimation for Internet links by statistical

methods,” 13th ITC Specialist Seminar, pp. 29.1–29.10, September 2000.

[12] V. Jacobson, “traceroute,” ftp://ftp.ee.lbl.gov/traceroute.tar.Z.

[13] V. Paxson, “Measurements and analysis of end-to-end Internet dynamics,” Ph.D.Thesis, University of California

Berkley, April 1997.

[14] J. W. Tukey, “Introduction to today’s data analysis,” in Proceedings of the Conference on Critical Evaluation of

Chemical and Physical Structural Information, pp. 3–14, 1974.

[15] M. G. Kendall, Rank Correlation Methods. Griffin, 1970.

51

[16] G. E. Noether, “Some simple distribution–free confidencd intervals for the center of a symmetric distribution,” J. Am.

Statist. Assoc.,68, pp. 716–719, 1973.

[17] J. A. Hartigan, Clustering algorithms. John Wiley & Sons, 1975.

[18] W. R. Stevens, TCP/IP Illustrated, Volume1: The Protocols. Addison-Wesley, 1994.

[19] J. Padhye, V. Firoiu, D. Toesley, and J. Kurose, “Modeling TCP throughput: A simple model and its empirical

validation,” in Proceedings of ACM SIGCOMM’98, pp. 303–314, September 1998.

[20] D. D. Clark, “Window and acknowledgement strategy in TCP,” IETF RFC 815, July 1982.

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for real-time applications,”

IETF RFC 1889, January 1996.

[22] LBNL’s Network Research Group, “tcpdump,” ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.

52

