
Adaptive Playout Buffer Algorithm
for Enhancing Perceived Quality of Streaming Applications

Kouhei Fujimoto†, Shingo Ata‡, Masayuki Murata†,
†Graduate School of Engineering Science, Osaka University

1–3 Machikaneyama, Toyonaka, Osaka 560–8531, Japan
E-mail: {k-fujimo, murata}@ics.es.osaka-u.ac.jp

‡Graduate School of Engineering, Osaka City University
3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan

E-mail: ata@info.eng.osaka-cu.ac.jp

Abstract— The end-to-end packet delay is an important performance
parameter on the Internet, because it heavily affects the quality of real-
time applications. Currently, however, because the packet transmission
quality (e.g., transmission delay, jitter, packet loss) may vary dynami-
cally, it is not easy to handle real-time traffic. For UDP-based real-time
applications, a smoothing buffer (playout buffer) is typically used at the
client to compensate for variable delays. The issue of playout control has
been studied previously, and several algorithms for controlling the play-
out buffer have been proposed. These studies considered the network pa-
rameters (e.g., packet loss ratio and playout delay), but not the quality
perceived by end users.

In this paper, we first clarify the relations between mean opinion score
(MOS) of played audio and the network parameters (e.g., packet loss,
packet transmission delay, and transmission rate). Then, utilizing the
MOS function, we propose a new playout buffer algorithm that consid-
ers the user’s perceived quality for real-time applications. Our simulation
and implementation tests show that the algorithm can enhance the per-
ceived quality, more effectively than existing algorithms.

I. I NTRODUCTION

Due to the fast growth of the Internet, an increasing number
of network applications are being used. These include real-
time applications, such as IP telephony, voice conferencing,
Internet radio, and video on demand (VoD), which have be-
come widely used.

On the current Internet, however, because the packet trans-
mission quality (e.g., transmission delay, jitter, packet loss)
may vary dynamically, it is not easy to handle real-time traf-
fic. For UDP-based real-time applications, a smoothing buffer
is typically used at the client to compensate for variable de-
lays. The received packets are first queued into the smoothing
buffer. After several packets are queued, the actual decoding
starts. Then, the influence of the delay variations within the
network can be minimized. (We refer to this delay as the play-
out delay.) Choosing the playout delay is important because it
directly affects the communication quality of the application.
If the playout delay is set too short, the client application treats
packets as lost even if they eventually arrive. On the other
hand, a large playout delay may be unacceptably long so that
the client users cannot tolerate it. Thus, it is difficult to deter-
mine the proper playout delay. The packet transmission delay
between the server and client can be varied according to the
network conditions on the Internet, so the appropriate playout
delay heavily depends on the variations in the packet trans-
mission delays. The issue of playout control has been studied
previously [1], [2], [3], [4], and several algorithms for con-
trolling the playout buffer (we refer to these as playout buffer
algorithms (PBAs)) have been proposed. Most of these PBAs,
however, are based on a calculation method using the time-
out threshold in TCP [5]. For example, Moon et al. [3] trace
the packet delays and suggested a playout delay based on the
distribution of traced delays. However, they only focused on
adjustments of the playout delay, and did not consider control-
ling the packet loss ratio.

In our prior work [6], we analyzed the characteristics of the
packet transmission delays. We measured both the one-way

transmission delay and the round-trip delay, and determined a
suitable distribution function through a statistical analytic ap-
proach. We then introduced the use of the distribution function
to estimate the playout delay for real-time applications. We
proposed a new playout buffer algorithm, which manages the
packet loss ratio according to the users’ choices, while mini-
mizing the playout delay.

However, neither the packet loss ratio nor the playout delay
is a user-friendly metric for the perceived quality in streaming
applications. There are many factors affecting the perceived
quality of audio playback in streaming applications. Actually,
in addition to the packet loss ratio, other network parameters
such as the types of codecs, and the access lines also affect the
perceived quality. One important issue is how to map these
network metrics to the users’ perceived quality with real-time
traffic. Accordingly, we propose a new PBA to maximize the
MOS index directly for given network parameters. Our ap-
proach utilizes the data set shown in [7], which clarified the
relations between the MOS for played audio and the network
parameters (e.g., packet loss, packet transmission delay, and
transmission rate).

This paper is organized as follows. We first give a brief sum-
mary of existing PBAs and our prior work in Section II. In Sec-
tion III, we examine the relations between the MOS and the
network parameters. Then, we propose a new PBA to maxi-
mize the MOS. In Section IV, we evaluate the proposed and
existing algorithms through simulation and implementation.
Finally, we summarize our work and discuss future research
topics in Section V.

II. I NTRODUCTION TO ADAPTIVE PLAYOUT BUFFER

ALGORITHMS BASED ONNETWORK PARAMETERS

In this section, we review some existing playout buffer al-
gorithms for comparison with our proposed algorithm. Then
we describe our prior work, in which we proposed an adaptive
playout buffer algorithm based on analyzing packet delays.

A. Existing Playout Buffer Algorithms

For comparison purpose, we examine four algorithms which
were proposed in [1], [3], and give brief overviews of each.

Exponential-Average (Exp-Avg): In this algorithm, the
playout delaŷpi of the ith arriving packet is determined from
approximated values for the mean̂di and variancêvi of the
one-way delays, as given by

p̂i = d̂i + 4v̂i, (1)

d̂i = αd̂i−1 + (1 − α)ni, (2)

v̂i = αv̂i−1 + (1 − α)|d̂i − ni|, (3)

whereni denotes the one-way delay of theith packet. The
value ofα is defined as0.998002 according to [1]. Thus, the
playout time t̂i is determined from the playout delaŷpi and
the timesi when the host sends the packet according to the

equation;̂ti = p̂i + si. Here, the playout time means the time
when the client actually starts playing the audio data recorded
in the packet.

Thus,Exp-Avg estimates the playout time from means and
variances, and does not consider the distribution of the delays.

Fast Exp-Avg (F-Exp-Avg): This algorithm is a modified
version ofExp-Avg. F-Exp-Avg computes the weighted mean
of d̂′

is as

d̂′
i =

{
βd̂′

i−1 + (1 − β)ni if ni > d̂′
i−1,

αd̂′
i−1 + (1 − α)ni otherwise,

(4)

whereα andβ are constant values, satisfying0 < β < α < 1.
We setα = 0.998002 andβ = 0.750000 according to [1].

Spike Detection (SPD):This algorithm focuses onspikes,
which represents sudden and large increases in delay over a
sequence of a number of packets. Examples of spikes are
shown at 3,850 in Figure 4(a).SPDusually obtains the play-
out delay from Eq. (2), which is the same asExp-Avg. Dur-
ing a spike, however,SPD uses the following equation;̂di =
d̂i−1 + ni − ni−1, which accounts for the sudden increase in
delay. ForSPD, we useα = 0.875 according to [1].

Window: This algorithm, proposed in [3], is designed to
detect spikes likeSPD. During a spike, the first packet in the
spike is used as the playout delay. After the spike, the playout
delay is chosen by finding the delay corresponding to theqth
quantile of the distribution of the lastN packets received by
the client. In our evaluation, a value of 0.99 is used forq, and
10,000 is used forN , as described in [3].

B. Prior Work

To provide high-quality communication for streaming ap-
plications, it is desirable for the packet loss ratio and playout
delay to be kept small. However, there is a critical trade-off be-
tween the packet loss ratio and the length of the playout delay.

Hence, in our prior work [6], [8], we measured packet trans-
mission delays and analyzed their characteristics by taking the
network parameters into account. We then proposed a method
of modeling the tail distributions of the delays, which is avail-
able for applications. From the results of this statistical analy-
sis, we found that the Pareto distribution is most appropriate as
a model of the one-way delay distribution under any network
conditions. The Pareto distribution is widely known to be able
to represent a self-similarity [9], whose cumulative distribution
function (CDF) is given by

F (x) = 1 −
(

k

x

)α

, x ≥ k. (5)

whereα andk are the parameters of a Pareto cumulative dis-
tribution function. Next, we proposed a new playout buffer
algorithm based on our statistical analysis. The proposed algo-
rithm determines the playout delay so as to provide the packet
loss ratio specified by the users.

Here we discuss the design of our proposed playout buffer
algorithm more specifically. The algorithm records the his-
tory for the one-way delays of packets. Upon each packet ar-
rival, the parameters (k, α) of the Pareto cumulative distribu-
tion functionF (x) are updated to estimate the playout delayp i

from the equationF (pi) = X, whereX is a target value. The
target value is the reproduction ratio of packets specified by the
user. From the Pareto CDF, our proposed algorithm determines
the playout delay as

p̂i =
k

α

√
1 − X

100

. (6)

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

M
O

S

End-to-End One-way Delay [msec]

0% Loss
1% Loss
3% Loss
5% Loss

Fig. 1. Effects of PLR and Delay (Encoder: G.711)

We consider 95, 99, and 99.9% as target valuesX based on
our numerical results. We refer to this proposed playout buffer
algorithm as the loss-control playout buffer algorithm (Loss-
Control). Numerical examples have shown thatLoss-Control
can control the playout buffer while providing the target packet
loss probability. Section 4 includes evaluation results for this
control method, including results for our new algorithm de-
scribed in the next section.

III. PROPOSEDPLAYOUT BUFFER ALGORITHM TO

MAXIMIZE PERCEIVED QUALITY

In our previous work [6], we demonstrated thatLoss-
Control can control the packet loss ratio according to the
users’ choice. However, there is a high possibility that the
delay and other network parameters (types of codecs, access
lines) would affect the perceived quality, in addition to the
PLR. The end users can choose their preferred playout quality,
but there are still many other parameters left for them to con-
figure. It is hence necessary to introduce a simpler index that
directly relates to the perceived quality of multimedia commu-
nications. Today, many metrics expressing the playout quality
have been proposed and evaluated. The subjective metrics that
we adopt in this paper are more user-friendly because they are
based on scores determined by users according to their experi-
ences listening to or watching various media.

Our objective in this section is to maximize the subjective
index of the perceived quality for given network parameters,
which are automatically measured. We first model the relations
between the MOS and the network parameters shown in [7] in
terms of mathematical formulas. After modeling, we obtain
the MOS-relative form, which gives the appropriate packet loss
ratio and playout delay according to the MOS value. We then
modify ourLoss-Control PBA by applying this MOS-relative
function. Numerical comparisons are shown in the next sec-
tion.

A. Effects of Packet Loss Ratio and Delay on MOS

To clarify the relations between the MOS value and the net-
work parameters, we take data from [7], which shows the ef-
fects of the network parameters on the MOS. We show one
such piece of data in Figure 1. Each plotted curve shows a
relation between MOS and end-to-end one-way delay for a
given loss ratio. From the model of the one-way delay distribu-
tion described in our previous work [6], we can obtain feasible
combinations of the playout delay and the packet loss ratio to
maximize the MOS index. We describe our modeling method
in the next subsection.

B. Modeling Methods for MOS Functions

The first step in our modeling method is to formulate ap-
proximate relations among the MOS, packet loss ratio, and

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400

M
O

S

Playout Delay [msec]

0% Loss
1% Loss
3% Loss
5% Loss
M(0,d)
M(1,d)
M(3,d)
M(5,d)

Fig. 2. Results of Modeling MOS values and Network Parameters (Encoder:
G.711)

playout delay. That is, we plot the MOS curves shown in Fig-
ure 1 by using mathematical notations based on our modeling
method. Of course, the resulting formulas depend on the data
shown in Figure 1, but our modeling approach is also applica-
ble other results.

From Figure 1, we can obtain the following assumptions.
• The four curves shown in the figure are parallel. This

means that the packet loss ratio and one-way delay,
and hence the playout delay, affect MOS independently.
Therefore, we can separately consider the effects of
packet loss ratio and one-way delay on modeling MOS.

• The degree of degradation in MOS values is proportional
to the packet loss ratio, and does not depend on the play-
out delay.

Given these assumptions, we can obtain the MOS function
M (p, d) for a given packet loss ratiop and playout delayd
from M (p) andM (d) separately. We now determine the MOS
function as follows.

We first model the MOS functionM (d) for a given playout
delayd with a three-dimensional polynomial approximation,
where the packet loss ratiop is assumed to be zero (shown by
the crosses in Figure 1). The coefficients of the polynomial are
obtained by curve fitting. We then obtain the MOS function
M (d) as

M (d) ≈ 4.10 + 2.64× 10−3d − 1.86× 10−5d2

+1.22× 10−8d3. (7)

We then obtain the MOS curve by sliding inversely in the
horizontal direction. Based on our second assumption above,
the degree of degradation of the MOS values is proportional
to the packet loss ratio. We calculate the parameters of the
function by the least linear square method. The MOS function
M (p) for a given packet loss ratiop is thus expressed as

M (p) ≈ 4.10− 0.195p, (8)

where the playout delay is set tod = 0.
Because we assume that the packet loss ratio and the play-

out delay affect the MOS value independently, we can obtain
M (p, d) for givenp andd by combining Eqs. (7) and (8), i.e.,

M (p, d) = 4.10− 0.195p + 2.64× 10−3d

−1.86 × 10−5d2 + 1.22× 10−8d3. (9)

In Figure 2 we add the solid curves representing Eq. (9) to the
curves in Figure 1, and we can observe that our approximate
modeling agrees with the original data.

In a real network, however, there is a correlation between
the packet loss ratiop and the playout delayd. In streaming
applications, the packet loss ratiop is a summation of (1) the
packet loss ratio caused by packet drops within the network
(referred to aspn), and (2) the ratio of late-arriving packets
exceeding the playout threshold (pd). That is,p = pn + pd.

0

1

2

3

4

5

0 100 200 300 400 500 600

M
O

S

Playout Delay [msec]

Q(d)

Fig. 3. MOS FunctionQ(d) (Encoder: G.711)

From Eq. (5) in Section II, we determine the relation between
pd andd as follows:

pd = 100
(

k

d

)α

. (10)

By applying Eq. (10), Eq. (9) can then be rewritten as

M (pn, d) = 4.10− 0.195
(

pn + 100
(

k

d

)α)
+2.64 × 10−3d − 1.86× 10−5d2

+1.22 × 10−8d3. (11)

As shown by Eq. (11), the two parametersd andpn affect
the MOS value. For streaming applications, however, only the
playout delayd is controllable. We therefore redefine Eq. (11)
as a function ofd, denoted asQ(d), i.e.,

Q(d) = 4.10− 0.195pn − 19.5
(

k

d

)α

+2.64 × 10−3d

−1.86× 10−5d2 + 1.22× 10−8d3. (12)

We now examineQ(d). If d = 0, all packets are treated as
lost, and no packet is played. Thus, we setQ(0) = 0. As the
playout delay is increased,Q(d) takes larger values. However,
when the playout delay is too large,Q(d) is again degraded
due to the large delay for playback. Therefore, there is an op-
timum d that produces the maximum value ofQ(d). Figure 3
shows an example of variation inQ(d) dependent on the play-
out delayd, whereα andk in Eq. (12) are set to 9.10 and 15.53,
respectively, based on measured data. The optimald is calcu-
lated by thefalse position method [10] utilizing a differential
equation ofQ(d). BecauseQ(d) is a convex function, we can
use the false position method to determine the optimald from
thex-intercept of the differential equation ofQ(d).

C. Modified Playout Buffer Algorithm for Enhancing MOS In-
dex

We modified ourLoss-Control PBA to achieve MOS-based
control. In theLoss-Control algorithm, the playout delay is
determined from the target packet loss ratio. On the other hand,
our new algorithm controls the playout delay by maximizing
the MOS valueQ(d). More specifically, our new PBA consists
of the following steps;

1. Measure the transmission delays of arriving packets
2. Calculate the parameters of the Pareto distribution(α, k)

by the MLE method (see our prior work [6])
3. Use the values of(α, k) in the MOS functionQ(d)
4. Obtain the optimal value ofd to maximizeQ(d), by ap-

plying the false position method to the differential equa-
tion of Q(d)

5. Set the playout delay tod
6. Return to Step 1

We refer to this new playout buffer algorithm as the enhanced
MOS-based playout buffer algorithm (E-MOS).

TABLE I

COMPARISON OFPLR AND MEAN PLAYOUT DELAY AND MOS

Case Algorithm Target PLR [%] Mean ofdi [msec] MOS

95% 5.7 227.92 2.22
Loss-Control 99% 0.94 387.12 2.41

99.9% 0.12 770.44 0.59
“dynamic” E-MOS - 2.95 294.75 2.49

Exp-Avg - 4.54 247.91 2.38
F-Exp-Avg - 0.1 970.34 0.10

SPD - 5.44 198.74 2.33
Window 99% 1.34 362.57 2.47

95% 6.02 40.61 2.99
Loss-Control 99% 1.77 58.45 3.83

99.9% 0.60 375.28 3.61
“moderate” E-MOS - 0.10 77.71 4.17

Exp-Avg - 4.93 39.79 3.21
F-Exp-Avg - 0.04 102.26 4.13

SPD - 3.08 39.74 3.57
Window 99% 2.33 48.60 3.72

95% 3.94 9.40 2.94
Loss-Control 99% 0.72 9.87 3.60

99.9% 0.22 10.53 3.70
“quiet” E-MOS - 0.00 51.92 3.77

Exp-Avg - 0.18 10.49 3.71
F-Exp-Avg - 0.01 29.53 3.76

SPD - 0.77 10.19 3.59
Window 99% 1.05 9.76 3.53

IV. EVALUATION OF PLAYOUT BUFFER ALGORITHM

In this section, we evaluate the playout buffer algorithms by
trace-driven simulation, and we investigate the effectiveness of
our proposed algorithm.

A. Simulation Method

We prepared a set of one-way delays of packets for our trace-
driven simulation. For this purpose we measured the one-way
delays with various network parameters. In the simulation, the
recorded one-way delays are used one-by-one, and the playout
delaypi of theith packet is estimated according to each algo-
rithm for all the measured delays. Then, we check whether the
delay of the next packet is smaller than the estimated playout
delay. If it is larger than the estimated playout delay, the packet
is treated as lost. After tracing all the measured delays, the av-
erage playout delay and packet loss ratio are computed as the
output.

B. Simulation Results

Table I compares the packet loss ratios (PLRs), mean values
of the playout delays, and MOS evaluated by simulation for
three different cases. The first case is “dynamic”, in which the
values of the one-way delays often change, and many spikes
are observed. The packets were sent by the G.723.1 encoder at
2 PM and delivered to the receiver via a dial-up line. The sec-
ond case is a “moderate”, in which there are several spikes. We
used the G.711 encoder over ADSL and the delays were mea-
sured at 1 PM. The last case is “quiet”, in which no dynamic
changes in the delays are observed. These delays were sent
by the G.723.1 encoder at 2 PM and delivered to the receiver
over a LAN. InLoss-Control, we use 95, 99, and 99.9% as
the target values. The MOS values shown in the last column of
Table I were evaluated by Eq. (9) from the PLR and the play-
out delay. The maximum MOS values among all the PBAs are
shown in bold.

The results in Table I indicate thatE-MOS can provide the
highest perceived quality for users under any network condi-
tions. Looking at the playout delays and PLRs ofE-MOS,
we found that it has a tendency to minimize the PLR when

the one-way delays are small (the moderate and quiet cases
in Table I). From Figure 1, we can observe that the effect of
introducing the playout delay is quite limited when the delay
is small (less than 200 msec). In this region, it is effective to
prevent packet loss by lengthening the playout delay. How-
ever, as the one-way delay becomes larger,E-MOS tries to
intentionally accommodate the increasing PLR to reduce the
playout delay. This is a good solution to improve the users’
perceived quality. Other PBAs have their own approaches. For
example,Window gives a good result in the dynamic case but
is worse thanF-Exp-Avg in other cases. However,F-Exp-
Avg performs quite poorly in the dynamic case.Exp-Avg and
Loss-Control (99.9%) perform passably in all cases. How-
ever, these methods cannot attain the same improvement in the
perceived quality asE-MOS. Furthermore, theLoss-Control
method has a disadvantage in that it tries to shorten the playout
delay and forces the abandonment of packets even when the
playout delay is sufficiently short (less than 200 msec). Thus,
Loss-Control is not suitable for low packet transmission delay
environments.

Figure 4 shows the time-dependent behavior of the playout
delay, PLR, and MOS for each PBAs. Here, the target value of
Loss-Control is set to 99%. The playout delays ofE-MOS are
larger than those of the other algorithms except forF-Exp-Avg,
for which the one-way delays are small. From these results, we
found thatE-MOS tends to minimize the PLR when the one-
way delay is less than 200 msec. On the other hand, when the
one-way delay is over 200 msec,E-MOS tries to increase the
PLR to reduce the playout delay and thus enhance the MOS.
That is,E-MOS can achieve a good balance between the play-
out delay and PLR based on Eq. (12).

C. Evaluation through Implementation Experiments

We developed a streaming client on which our PBA was im-
plemented, and we verified the applicability of our algorithm
by running the application. More specifically, we implemented
our PBA as an input plug-in forWinamp [11], which is cur-
rently one of the major front-end real-time applications.

We set up the streaming server at Osaka University. The

30

40

50

60

70

80

90

100

110

120

130

3600 3800 4000 4200 4400

Pl
ay

ou
t D

el
ay

 [m
se

c]

Sequence Number

Delay

Exp-Avg

F-Exp-Avg
SPD

Window

Loss-Control (99%)
E-MOS

(a) Comparison of Playout Delay

0

2

4

6

8

10

3600 3800 4000 4200 4400

Lo
ss

 R
at

io
 [%

]

Sequence Number

Exp-Avg

F-Exp-Avg

SPD

Window

Loss-Control
(99%) E-MOS

(b) Comparison of PLR

0

1

2

3

4

5

3600 3800 4000 4200 4400

M
O

S

Sequence Number

Exp-Avg

F-Exp-Avg

SPD Window

Loss-Control (99%)E-MOS

(c) Comparison of MOS

Fig. 4. Performance Evaluation of Each PBA (“moderate” case)

server sent audio packets generated by the G.711 or G.728 en-
coders (the sizes of the packet and transmission intervals are
160 bytes and 20 msec for G.711 and 40 bytes, 20 msec for
G.728, respectively). The packets were transmitted via the In-
ternet to the client we developed. On the client, the smoothing
buffer was adjusted based on the playout delay calculated by
our PBA (E-MOS). The arriving packets were stored in the
buffer, and then the client started playback after the playout
interval. Figure 5 shows the operation window of our client.

Our implementation experiments included (1) checking
whether our PBA tries to maximize the MOS, and (2) verifying
whether the computational overhead of calculating the playout
delays is sufficiently small to operate our PBA inreal-time.

The platform was the Microsoft Windows 98 operating sys-
tem on an Intel Pentium III 750-MHz CPU. With this plat-
form, the computation overhead was about 0.02 msec for each
packet arrival; this is 0.1% of the packet transmission inter-
val for G.711, which is sufficiently small overhead. We also
confirmed that the audio playback was not interrupted by any
factors other than packet losses.

† c©Nullsoft Inc. 2002

Fig. 5. Operation Window of Client†

V. CONCLUDING REMARKS

In this paper, we have considered the perceived quality of
streaming applications and modified our previously proposed
algorithm so as to maximize the perceived quality. Simulation
and implementation experiments have shown that the modified
algorithm provides the highest quality of any PBA.

For future research, it will be necessary to improve the ac-
curacy of our model representing the delay distributions. To
achieve this, it might be useful to test other heavy-tailed prob-
ability functions as potential models for the delay distributions.
Moreover, although no serious problems occur at the client
with E-MOS, a smaller CPU load would be more efficient for
users. A more effective calculation method forE-MOS is thus
necessary.

REFERENCES

[1] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive play-
out mechanisms for packetized audio applications in wide–area net-
works,” in Proceedings of IEEE INFOCOM ’94, pp. 680–688, April
1994.

[2] B. J. Dempsey and Y. Zhang, “Destination buffering for low-bandwidth
audio transmissions using redundancy-based error control,,” inProceed-
ings of LCN, 21st Annual Conference on Local Computer Networks,
pp. 345–354, October 1996.

[3] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay
adjustment: performance bounds and algorithms,”ACM/Springer Multi-
media Systems, vol. 5, pp. 17–28, January 1998.

[4] S. Mohamed, F. Cervantes-P´erez, and H. Afifi, “Integrating networks
measurements and speech quality subjective scores for control purpose,”
in Proceedings of IEEE INFOCOM 2001, April 2001.

[5] J. Postel, “Transmission control protocol specification,”RFC 793,
September 1981.

[6] K. Fujimoto, S. Ata, and M. Murata, “Statistical analysis of packet de-
lays in the Internet and its application to playout control for stream-
ing applications,”IEICE Transactions on Communications, vol. E84-B,
pp. 1504–1512, June 2001.

[7] C. Savolaine, “QoS/VoIP overview,” inIEEE Communications Quality
& Reliability (CQR 2001) International Workshop, April 2001.

[8] K. Fujimoto, S. Ata, and M. Murata, “Playout control for streaming ap-
plications by statistical delay analysis,” inProceedings of IEEE Inter-
national Conference on Communications (ICC 2001), vol. 8, (Helsinki),
pp. 2337–2342, June 2001.

[9] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web;
traffic evidence and possible causes,” inProceedings of ACM SIGMET-
RICS ’96, pp. 160–169, May 1996.

[10] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Nu-
merical Recipes in C; The Art of Scientific Computing, ch. 9.2, pp. 263–
266. Cambridge University Press, 1988.

[11] NULLSOFT, “WINAMP.COM | now featuring self-transforming me-
chanical elves.” available athttp://www.winamp.com.

