Cooperative Video Streaming Mechanisms with Video Quality Adjustment

Naoki Wakamiya
Osaka University, Japan
Video streaming system with proxies

- To provide low-delay and high-quality streaming service
Issues

- Segmentation of video streams
- Video quality adjustment
- Locating the appropriate server
- Cache management
- Prefetching
• Each system entity communicates with each other
Video block transfer

Cache Hit
1. Read block from cache
2. Quality adjustment

Prefetching
1. Check cache
2. Request block transfer
3. Cache

Cache Miss
1. Determine helper server
2. Request block transfer
3. Quality adjustment & cache

- Video Server
- Neighboring Proxy
- Proxy Cache Server
- Client

PLAY message with QoS

Initial buffering

Freeze time

2001/11/07

N. Wakamiya
Cache table

• Cache table is used to maintain information of locally cached blocks
 – block number i
 – quality of cached block $q(i)$
 – marker $M(i)$

• Marker is used to imply the possibility that the block will be required by the other proxies

• Range of marking is limited by inquiry window I

• QUERY and REPLY messages are exchanged to update markers
Remote table

- Remote table is used to maintain information of blocks cached at the other servers (video server, proxies)
 - estimated one way delay d_k^S
 - estimated throughput r_k^S
 - quality of offerable block $O_k (i)$
- Delay and throughput are estimated using measurement tools or TCP-friendly control mechanisms
- QUERY and REPLY messages are exchanged to update remote tables
Block retrieval algorithm

- The proxy determines the quality of block i to offer to client j based on:
 - Request $q_j(i)$
 - Cache and remote tables
 - Estimations d_j^C, r_j^C
 - The number of blocks in the client’s prefetch buffer p_j
 - Parameter β_j

- If the quality of block offerable using cache $q_j^P(i)$ satisfies $q_j^P(i) > \beta_j q_j(i)$, it is regarded as “cache hit”
The proxy retrieves the block preparing for the future cache miss.
Cache replacement algorithm

- Some blocks might be replaced with a newly retrieved block

Client 1

Client 2

Marker

Victim

Inquiry window

Start

End

Quality adjustment

Removal
Evaluation

- Measurements
 - average freeze time
 - required buffer size
 - degree of satisfaction ratio of provided quality to requested quality

- 1 sec block
- P=10, I=20
- initial wait 4 sec
- parameter $\beta_j = 0.6$
- 35 Gbit buffer
Comparison

- Four mechanisms are compared

Graph 1:
- Average Freeze Time [sec] vs. Client
- Independent w/o Prefetch
- Independent c/w Prefetch
- Cooperative w/o Prefetch
- Cooperative c/w Prefetch

Graph 2:
- Quality ratio vs. Client
- Independent w/o Prefetch
- Independent c/w Prefetch
- Cooperative w/o Prefetch
- Cooperative c/w Prefetch

2001/11/07
N. Wakamiya
Conclusion

• The low-delay and high-quality video streaming service is accomplished
• Further efficient control is required
• We have to consider implementation issues