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Abstract

AQM (Active Queue Management) mechanisms support an end-to-end congestion control

mechanism of TCP (Transmission Control Protocol). Researchers have claimed several advan-

tages of AQM mechanisms over a conventional Drop-Tail gateway such as the small average

queue length (i.e., the number of packets in the buffer). Several AQM mechanisms have been

recently proposed and studied by many researchers. One of promising AQM mechanisms is the

RED (Random Early Detection) gateway, which randomly discards arriving packets. Although

its steady state performance has been fully investigated, its transient behavior has not been well

understood. RED randomly drops the arriving packet with a probability proportional to its average

queue length. However, it is unclear whether the packet marking function of RED is optimal or

not. In this paper, we first analyze the transient behavior of the RED gateway for various types of

TCP connections variations. We use a control theoretic approach by utilizing the transfer function,

which describes the relation between the input and the output in frequency domain. By presenting

several numerical and simulation results, we discuss how control parameters of the RED gate-

way affect its transfer behavior. We also investigate what type of packet marking function, which

determines the packet dropping probability from the average queue length, is suitable from the

viewpoint of steady state performance and transient behavior. By presenting several numerical

examples, we investigate advantages and disadvantages of three packet marking functions: lin-

ear, concave, and convex. We show through numerical examples that although the average queue
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length in steady state becomes larger, use of the concave function makes the transient behavior of

RED and the robustness against network status changes better.

Keywords

Internet, TCP (Transmission Control Protocol), RED (Random Early Detection), Active Queue

Management Mechanism, Transient Behavior, Packet Marking Function, Steady State Perfor-

mance, Robustness
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1 Introduction

In the last few years, an AQM (Active Queue Management) mechanism, which supports an end-to-

end congestion control mechanism of TCP, has been studied by many researchers [1]. For instance,

a RED (Random Early Detection) is a representative AQM mechanism, which randomly drops an

arriving packet at the gateway for improving the performance of TCP traffic [2]. The authors of [2]

have claimed advantages of the RED gateway over a conventional Drop-Tail gateway as follows:

(1) the average queue length is kept low, (2) the performance degradation caused by a global

synchronization problem found in the Drop-Tail gateway is avoided, and (3) the RED gateway

improves the fairness among TCP connections. Although the effectiveness of the RED gateway is

fully dependent on a choice of its four control parameters, it is difficult to configure them [2, 10,

15, 3].

A number of studies on the RED gateway have been extensively performed by many re-

searchers. Most of those studies (e.g., [2, 3]) have used a simulation technique for clearly revealing

characteristics of the RED gateway in various network configurations and for investigating how

control parameters of the RED gateway affect its efficiency. There have been, however, only a few

analytical studies on the RED gateway. In [4-8], the performance evaluations of the RED gateway

in the steady state have been performed. The authors of [2] have proposed a recommended set of

control parameters, which is an empirical guideline by simulation experiments. The authors of [5,

8] have proposed another guideline, which is based on their analytic results.

Although there have been a great number of researches on the RED gateway, most of them

simply focus on its steady state behavior. There have been very few researches on the transient

behavior of the RED gateway. Stability and transient behavior of the RED gateway in the steady

state have been analyzed in [6-9] by assuming that the number of TCP connections is constant.

It has not been cleared how the variation of the number of TCP connections affects the transient

behavior of the RED gateway. In a real network, the number of TCP connections changes fre-
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quently. When the number of TCP connections is increased or decreased, either buffer overflow

or buffer underflow may occur, resulting in the performance degradation of the RED gateway. It

is therefore important to evaluate the transient behavior of the RED gateway by taking account of

the variation of the number of TCP connections.

As explained above, RED has a problem that its effectiveness is greatly dependent on a set-

ting of four control parameters such as minth, maxth, maxp, and qw, and effectiveness of RED

has been denied by many researchers [3, 10]. Another problem of RED is that the average queue

length of RED is dependent on the number of active TCP connections; i.e., the optimal setting of

RED control parameters changes according to the number of TCP connections. For solving such

problems of RED, various researches have so far been devoted [11-15]. For example, SRED (Sta-

bilized RED) is proposed in [14]. SRED estimates the number of active TCP connections at the

router, and controls its average queue length regardless of the number of active TCP connections.

In SRED, the packet loss probability is determined based on the estimated number of TCP con-

nections. Moreover, Adaptive RED is proposed in [15]. Adaptive RED dynamically increases or

decreases the maximum packet loss probability maxp, which is one of RED control parameters,

according to the average queue length. When the average queue length is smaller than minth,

Adaptive RED decreases maxp by (1/α − 1)maxp. On the other hand, when the average queue

length is larger than maxth, maxp is increased by (1− β)maxp.

These approaches for solving several problems of RED are only ad hoc approaches. This is

because those problems of RED originate from the fact that the algorithm of RED is designed by

an ad hoc approach. For instance, RED randomly discards an arriving packet with a probability

that is proportional to the average queue length. Considering purposes of AQM mechanisms, it

seems plausible to increase the packet loss probability when the average queue length is large,

and to decrease when the average queue length is small. However, little investigation has been

done for clarifying “whether the packet loss probability should be proportional to the average

queue length or not”. Originally, RED randomly discards an arriving packet with a probability,
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which is determined by a linear function to the average queue length. More specifically, when the

difference between the average queue length and minth increases by α, RED increases its packet

loss probability by α. However, it is known that the throughput of TCP is inversely proportion

to
√

p, which is the packet loss probability in the network [16]. Also known is that, provided

that the bottleneck router can be modeled by a single M/M/1 queue, the average queue length of

the bottleneck router is given by ρ/(1 − ρ), which is the utilization of the network [17]. Hence,

considering that the primary purpose of AQM mechanisms is to control the average queue length,

it is expected that the packet loss probability of RED should not be changed linearly to the average

queue length. Of course, rather than using a simple queuing model such as M/M/1, it is necessary

to model the interaction between the TCP congestion control mechanism and the network.

In the literature [8, 4, 18], there have recently been analytical studies on AQM mechanisms,

which model both the TCP congestion control mechanism and the AQM mechanism. For instance,

in [8], TCP and RED are first modeled as independent discrete systems. By combining these two

systems, the entire network is modeled as a single feedback system between TCP and RED. By

applying control theory, the authors of this paper analyze stability, steady state behavior, and tran-

sient behavior of RED. Moreover, in reference [4], TCP and RED are modeled as independent

continuous systems, and stability and steady state behavior of RED are analyzed. In particular,

in [18], a new AQM mechanism is proposed by applying classical control theory to the mathe-

matical model of TCP. In [18], the PI (Proportional Integral) controller in classical control theory,

rather than an ad hoc approach, is proposed as the AQM mechanism. However, the PI controller is

a simple linear controller that uses the difference between the average queue length and the target

queue length. Still, there is little investigation on how the packet loss probability should be de-

termined from the average queue length; i.e., the function determining the packet loss probability

should be a linear function to the average queue length?

In the first part of this thesis, we analyze the transient behavior of the RED gateway by extend-

ing the analytic results obtained in [8]. More specifically, we analyze the dynamics of the number
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of packets in the RED gateway’s buffer (i.e., the queue length) when one or more TCP connections

newly start or terminate their data transmissions. We analyze the transient behavior of the RED

gateway for various types of TCP connections variations. We use a control theoretic approach

by utilizing the transfer function, which describes the relation between the input and the output

in frequency domain. We also validate our approximate analysis on the transient behavior of the

RED gateway by comparing analytic results with simulation ones. Showing numerical results, we

reveal how control parameters of the RED gateway affect its transient behavior. However, it has

not been cleared whether the packet marking probability should be proportional to the average

queue length or not.

In the second part of this thesis, using an analytic approach, we therefore investigate how the

function determining the packet loss probability affects the RED performance for evaluating its

impact on steady state behavior and transient behavior of RED. Specifically, we utilize results of

the TCP steady state analysis in [16] and the RED steady state analysis in [8], and show how

the packet loss probability function of RED should be determined. In numerical examples, we

consider three classes of functions as the packet loss probability function — linear, concave, and

convex — and show how the RED performance is affected by a choice of the packet loss proba-

bility function. We show that, when the packet loss probability function is concave, the transient

behavior and the robustness of RED are improved compared with the case of a linear function,

which is adopted by the original RED.

In addition, by applying the analysis method proposed in this thesis to Adaptive RED, we

discuss steady state behavior and transient behavior of Adaptive RED. The algorithm of Adaptive

RED is essentially the same with that of RED except that the maximum packet loss probability

maxp is dynamically changed according to the network status for realizing robustness [19]. Our

analytic result shows that the control of Adaptive RED is quite effective for improving steady

state performance compared with the original RED, but has little effect on improving the transient

performance.
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The rest of this thesis is organized as follows. In Section 2, we briefly explain the operation

algorithm of RED. In Section 3, we analyze the transient behavior of the RED gateway for various

types of TCP connections variations. Several numerical examples are presented to clearly show

how control parameters of the RED gateway or system parameters affect the transient performance.

In Section 4, we investigate what type of function is appropriate as a packet loss probability func-

tion of RED using analytic results in [16, 8]. By presenting numerical examples, we show that,

when the packet loss probability function is concave, the transient behavior and the robustness of

RED are improved compared with the case of a linear function. Section 5 presents concluding

remarks and also discusses open issues.
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2 RED (Random Early Detection)

RED has four control parameters called minth, maxth, maxp, and qw [2]. minth and maxth are

the minimum and the maximum thresholds, respectively. These thresholds are used to determine

a packet marking probability, according to which RED randomly discards an arriving packet.

Moreover, RED estimates its average queue length, which is calculated from the current queue

length and its history using a low-pass filter. Let q and q be the current and the average queue

length, respectively. When a new packet arrives at the gateway, RED updates its average queue

length q using the following equation.

q ← (1− qw) q + qw q, (1)

where qw is a control parameter which determines the weight of the current queue length on the

previously estimated average queue length.

RED then calculates the packet marking probability pb using the estimated average queue

length. Specifically, RED determines the packet marking probability pb with

pb =















































0 if q < minth

maxp

(

q−minth

maxth−minth

)

if minth ≤ q < maxth

(1−maxp)
(

q−maxth

maxth

)

+ maxp if maxth ≤ q < 2maxth

1 if q ≥ 2maxth

where maxp is a control parameter which determines the upper bound of the packet marking

probability (see Fig. 1). RED does not distinguish each TCP connection; i.e., RED applies the

same packet marking probability pb to all arriving packets. In what follows, Eq. (16) is referred to

as the packet marking function.

Finally, RED discards the arriving packet with the probability pa defined by

pa =
pb

1− count× pb

, (2)

where count is the number of packets that have arrived at the gateway since the last packet discard.

13



minth maxth 2maxth
q

maxp

Pb

average queue length

pa
ck

et
 m

ar
ki

ng
 p

ro
ba

bi
lit

y

1

Figure 1: Packet marking function of RED — calculation of packet marking probability pb from

average queue length q.
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Figure 2: Analytic model.

3 Transient Behavior Analysis of RED using a Control Theoretic Ap-

proach

3.1 Analytic Model

In this thesis, we analyze the transient behavior of the RED gateway using the analytic results

obtained in [8]. We show our analytic model in Fig. 2. The analytic model consists of a single RED

gateway and multiple TCP connections. We assume that all TCP connections have an identical

(round-trip) propagation delay (denoted by τ ). We also assume that the processing speed of the

RED gateway (denoted by B) is the bottleneck in the network. Namely, transmission speeds of all

links are assumed to be sufficiently faster than the processing speed of the RED gateway.

We model the congestion control mechanism of TCP version Reno [20] at all source hosts. We

further assume that all TCP connections change their window sizes (denoted by w) synchronously.

Source hosts are allowed to send w packets without receipt of an ACK (ACKnowledgement)

packet. Thus, the source host can send w packets during its RTT (Round Trip Time). In our
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Table 1: Definitions of symbols.

minth minimum threshold value

maxth maximum threshold value

maxp maximum packet marking probability

qw weight factor for averaging

τ propagation delay of TCP connections

B processing speed of the RED gateway

w(k) window size at slot k

q(k) current queue length at slot k

q(k) average queue length at slot k

n(k) the number of TCP connections at slot k

analysis, we model the entire network as a discrete-time system, where a time slot of the system

corresponds to an RTT of TCP connections. We define w(k) as the window size of the source host

at slot k. All source hosts are assumed to have enough data to transmit; that is, the source host is

assumed to always send the number w(k) of packets during slot k. We define q(k) and q(k) as the

current and the average queue lengths (i.e., the current and the average number of packets in the

buffer of the RED gateway). We assume that both q(k) and q(k) will not change during a slot [8].

For taking account of a TCP connections variations, the number of TCP connections at slot k is

denoted by n(k). The definitions of symbols are summarized in Tab. 1.

3.2 Average State Transition Equations

In this subsection, we present the derivation of average state transition equations, which describe

the dynamics of the RED gateway [8]. Refer to [8] for the detail of the analysis.
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3.2.1 Derivation of State Transition Equations

Provided that the average queue length q(k) lies between minth and maxth, and that the number

n(k) of TCP connections is constant, pb(k) is given by

pb(k) = maxp

(

q(k)−minth

maxth −minth

)

The RED gateway discards an incoming packet with a probability pa(k):

pa(k) =
pb(k)

1− count · pb(k)

where count is the number of unmarked packets that have arrived since the last marked packet.

The number of unmarked packets between two consecutive marked packets, X , can be represented

by an uniform random variable in {1, 2, · · · , 1/pb(k)}. Namely,

Pk[X = n] =















pb(k) 1 ≤ n ≤ 1/pb(k)

0 otherwise

Let X(k) be the expected number of unmarked packets between two consecutive marked packets

at slot k. Xk is obtained as

Xk =
∞
∑

n=1

nPk[X = n] =
1/pb(k) + 1

2

The probability that at least one packet is discarded from w(k) packets, p, is given by

p = min

(

w(k)

1/pb(k)
, 1

)

Therefore, by assuming that all TCP connections are in the congestion avoidance phase, the win-

dow size at slot k + 1 is given by

w(k + 1) =















w(k)
2 with probability p

w(k) + 1 otherwise
(3)
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Note that in the above equation, it is assumed that all packet losses can be detected by duplicate

ACKs [8]. The current queue length at slot k + 1 is given by

q(k + 1) = q(k) + n(k + 1)w(k + 1)−B

(

τ +
q(k)

B

)

= n(k + 1)w(k + 1)−B τ (4)

The average queue length at slot k + 1 is given by

q(k + 1) = (1− qw)n(k) w(k)q(k)

+
qw{1− (1− qw)n(k) w(k)}

1− (1− qw)
q(k)

3.2.2 Derivation of Average State Transition Equations

We derive average state transition equations that represent a typical behavior of TCP connections

and the RED gateway [8]. We introduce a sequence, which is a series of adjacent slots in which

all packets from a source host have been unmarked by the RED gateway (Fig. 3). We then treat

the entire network as a discrete-time system where a time slot corresponds to a sequence, instead

of a slot. Let s(k) be the average number of slots that consists of a sequence that begins at slot k.

The average state transition equation from w(k) to w(k + s(k)) is obtained from Eq. (3) as

w(k + s(k)) =
w(k) + s(k)− 1

2
(5)

Note that w(k) represents the expected value of the minimum window size. Similarly, the average

state transition equations from q(k) to q(k + sk) is obtained from Eq. (4) as

q(k + s(k)) = n(k + s(k))w(k + s(k))−B τ (6)

The average state transition equation from q(k) to q(k + sk) is obtained as

q(k + s(k)) ' (1− qw)X(k)q(k)

+{1− (1− qw)X(k)}q(k) (7)
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Figure 3: Relationship between slot and sequence.

Average state transition equations given by Eqs. (5), (6), and (7) describe the average behaviors of

the window size, the current queue length, and the average queue length, respectively. An average

equilibrium value is defined as the expected value in the steady state. Let w∗, q∗, q∗, and n∗

be the average equilibrium values of the window size w(k), the current queue length q(k), the

average queue length q(k), and the average number of TCP connections n(k), respectively. Let us

introduce x(k) as the difference between the state vector x(k) and the average equilibrium point.

x(k) ≡

























w(k) − w∗

q(k)− q∗

q(k)− q∗

n(k)− n∗

























By lineally approximating w(k), q(k), q(k), and n(k) around their average equilibrium values,

x(k + s) can be written as

x(k + s(k)) ' Ax(k) (8)
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where A is a state transition matrix.

3.3 Transient Behavior Analysis

We assume that N TCP connections exist in the steady state. We also assume that all TCP con-

nections are in the congestion avoidance phase. In this case, there are four types of changes in the

number of TCP connections.

The first case (denoted by C1) is that ∆N (∆N < N ) TCP connections of N TCP connec-

tions end their data transmissions. In this case, N −∆N TCP connections are in the congestion

avoidance phase and will reach the steady state again. The second and the third cases (C2 and C3)

are that ∆N TCP connections resume their data transmissions after an idle period. In these cases,

the behavior of these ∆N TCP connections depends on the length of the idle period. When the

idle period is short (C2), ∆N TCP connections operate in the congestion avoidance phase with

using their previous window sizes. In this case, there exist totally N + ∆N TCP connections in

the congestion avoidance phase.

On the other hand, when the idle period is long (in general, longer than the TCP’s retransmis-

sion timer) (C3), ∆N TCP connections operate in the slow start phase with the initial window size.

Moreover, the fourth case is that ∆N TCP connections newly start their data transmissions (C4).

In this case, similar to the third case, there exist N TCP connections in the congestion avoidance

phase and ∆N TCP connections in the slow start phase. In this thesis, we analyze the transient

behavior of the RED gateway in each case. We use two different approaches for the cases that all

TCP connections are in the congestion avoidance phase (C1 and C2) and for the cases that some

TCP connections are in the slow start phase (C3 and C4).

1. Cases C1 and C2: Congestion Avoidance Phase Only

First, the cases C1 and C2, where all TCP connections will operate in the congestion avoid-

ance phase after the TCP connections variation, are considered. Let u(k) be the difference
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in the numbers of TCP connections at slot k − 1 and slot k. Also let y(k) be the queue

length of the RED gateway at slot k (Fig. 4). The linearized state transition equations given

by Eq. (8) can be extended to include u(k) and y(k) as the input and the output, respec-

tively [21]. Namely,

x(k + s(k)) = Ax(k) + Bu(k) (9)

y(k) = Cx(k)

B = [ 0 0 0 1 ]T

C = [ 0 1 0 0 ]

Namely, the variation of the number of TCP connections, u(k), is added to the number of

active TCP connections, n(k), by B. And the current queue length of the RED gateway,

q(k), is extracted from the state vector by C.

Using such a SISO (Single-Input Single-Output) model given by Eq. (10), the dynamics of

the current queue length of the RED gateway can be precisely analyzed. For example, the

evolution of the current queue length, q(k), for a given TCP connections variation, u(k),

can be calculated by

q(k) =
k
∑

i=0

u(i)x(k − i) (10)

The great advantage of this approach is that various analytic techniques used in the control

theory can be directly applied. For example, if the number of TCP connections is increased

by ∆N at slot k, the input u(k) becomes the impulse function [22]. Therefore, it is easy

to analyze the dynamics of the current queue length, q(k), by investigating the impulse

response of the system. We can investigate the dynamics of the current queue length not only

for an instantaneous TCP connections variation but also for an arbitrary TCP connections

variation.

2. Cases C3 and C4: Congestion Avoidance Phase and Slow Start Phase
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Figure 4: Cases C1 and C2 where all TCP connections in congestion avoidance phase.

Second, the other two cases (C3 and C4), where a part of TCP connections will operate in

the slow start phase after the TCP connection variation, are considered. Let u(k) be the

difference in the total numbers of packets sent from source hosts being in the slow start

phase at slot k − 1 and slot k. Let y(k) be the queue length of the RED gateway at slot

k (Fig. 4). Similar to the previous cases, the linearized state transition equations given by

Eq. (8) can be extended to include u(k) and y(k) as the input and the output, respectively.

x(k + s(k)) = Ax(k) + Bu(k) (11)

y(k) = Cx(k)

B = [ 1 0 0 0 ]T

C = [ 0 1 0 0 ]

In this thesis, we analyze the transient behavior of the RED gateway for various types of TCP

connections variations by utilizing the transfer function. The transfer function of a linear system

describes the relation between the input and the output in frequency domain [22]. We define z-

transforms of the input u(k) and the output y(k) as U(z) and Y (z), respectively. The transfer
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function G(z) of a system satisfies

Y (z) = G(z)U(z) (12)

The transfer function of the system described by Eqs. (9) and (11) is given by the following equa-

tion [22].

G(z) = C(z I−A)−1
B

It is known that the stability and the transient behavior of a closed-loop system are determined

by the poles of its transfer function. By investigating the modulus of poles λi, the stability and the

transient behavior of the system can be easily known. In our transient behavior analysis, the input

is the z-transform of either the difference in the numbers of TCP connections (C1 and C2) or the

difference in the sum of window sizes of all source hosts (C3 and C4). The transient performance

of the RED gateway is therefore determined by poles of G(z) × U(z). However, Eq. (12) always

has the modulus of 1.0 since the number of TCP connections n(k) is changed only by the input

U(z). It is therefore necessary to exclude the modulus of 1.0 for analyzing the transient behavior

since the pole corresponding to the modulus of 1.0 has no impact on the transient behavior of the

queue length of the RED gateway. Note that we have lineally approximated the system around its
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equilibrium values in deriving Eq. (8). It is therefore expected that the approximation error be-

comes large when the value of the window size or the queue length deviates from their equilibrium

values. In Subsection 3.4, we therefore validate our approximate analysis by comparing analytic

results with simulation ones.

First, we explain examples of the input U(z) in cases C1 and C2, where all TCP connections

will operate in the congestion avoidance phase.

1. Case of temporary change in the number of TCP connections

A temporary change in the number of TCP connections can be formulated by an impulse.

For example, when the number of TCP connections is increased by ∆N (or decreased if

∆N is negative) at sequence i, the input u(k) and its z-transform U(z) are given by

u(k) =















∆N if k = Si

0 otherwise

U(z) = ∆N z−i (13)

2. Case of generic change in the number of TCP connections

A generic change in the number of TCP connections can be given by the convolution of

multiple impulses. For instance, when the number of TCP connections is increased (or

decreased) by ∆Ni at sequence ti, the z-transform of the input, U(z), is given by

U(z) =
∑

i

∆Niz
−ti (14)

3. Case of continuous change in the number of TCP connections

A continuous change in the number of TCP connections can be formulated by the step

function. For example, when the number of TCP connections is increased (or decreased) by

∆N at each sequence, the z-transform of the input, U(z), is given by

U(z) =
∆N z

z − 1

24



Second, we explain examples of the input U(z) in cases C3 and C4, where a part of TCP

connections will operate in the slow start phase.

1. Case of temporary increase in the number of TCP connections

When a part of TCP connections will operate in the slow start phase, window sizes of these

connections are doubled every round-trip time. Hence, when the number of TCP connec-

tions in the slow start phase is increased by ∆N at sequence i, u(k) and U(z) are approxi-

mately given by

u(k) '















∆N
n(k) × 2s(k)(k−Si−1) if k > Si

0 otherwise

U(z) ' 2s∗(−Si−1) ∆N z

n∗ (z − 2)
(15)

In the above equation, we approximate as n∗ ≡ n(k) since the number n(k) of TCP con-

nections in the congestion avoidance phase does not change. Similarly, we approximate as

s∗ ≡ s(k).

2. Case of generic increase in the number of TCP connections

A generic increase in the number of TCP connections can be formulated by the convolution

of Eq. (15). For instance, when the number of TCP connections operating in the slow start

phase is increased by ∆N at sequence ti, z-transform U(z) is given by

U(z) =
∑

i

∆Ni 2
s∗(−i−1) z−ti+1

n∗ (z − 2)

3.4 Numerical Examples and Discussions

In this section, presenting several numerical examples, we discuss the relation between a choice

of control parameters of the RED gateway and its transient behavior. We also validate our approx-

imate analysis presented in subsection 3.1 by comparing analytic results with simulation ones. In

all analytic and simulation results, without explicitly stated, the following parameters are used: the
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number of TCP connections in the steady state n∗ = 5, the processing speed of the RED gateway

B = 0.2 [packet/ms], the propagation delay τ = 1 [ms]. Four control parameters of the RED

gateway are configured according to the recommendation in [2], i.e., minth = 5, maxth = 15,

maxp = 0.1 and qw = 0.002. We note that with these control parameters RED operates success-

fully; i.e., the average queue length is stabilized between minth and maxth [2].

3.4.1 Performance Measures for Transient Behavior

Three performance measures called overshoot, rise time and settling time are widely used for

evaluating the transient behavior of dynamic systems (Fig. 6) [23]. These are criteria for the

damping performance (the overshoot), the response performance (the rise time), and both the

response and the damping performance (the settling time). In this thesis, we define the overshoot

as the difference between the maximum and the equilibrium queue lengths. The rise time is defined

as the time taken for the current queue length to reach the 90 % of the equilibrium queue length.

The settling time is the time taken for the current queue length to converge within 5% of the

equilibrium queue length. In general, all of these performance measures should be small for

achieving better transient behavior. However, there is a tradeoff among the overshoot, the rise

time, and the settling time. It is therefore important to balance these three performance measures

according to the desired transient behavior.

These performance measures have the following implications to the RED gateway. A large

overshoot means that the current queue length of the RED gateway grows excessively when the

number of TCP connections is changed. Since the current queue length is limited by the buffer

size, a large overshoot sometimes causes buffer overflow at the RED gateway. Otherwise, it results

in a long queueing delay in the buffer. Hence, a small overshoot is desirable for preventing buffer

overflow and minimizing the queueing delay. In addition, the rise time represents the convergence

speed of the current queue length after a change of the number of TCP connections. As can be

seen from Eq. (4), the current queue length, q(k), directly reflects the window sizes w(k). So it
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Figure 6: Performance measures for transient behavior (overshoot, rise time, and settling time).

is possible to estimate the convergence speed of TCP connections from the rise time. The settling

time implies the convergence speed of the current queue length to its equilibrium value after the

number of TCP connections is changed.

3.4.2 Overshoot, Rise Time, and Settling Time

Due to space limitation, we only show numerical examples for the case (C2): when ∆N TCP

connections resume their data transmissions in the congestion avoidance phase after a short idle

period. We use the equilibrium values, w∗, q∗, and q∗, as the initial values for w(k), q(k), and

q(k). We calculate the dynamics of the queue length q(k) of the RED gateway using Eq. (12)

when ∆N TCP connections resume at slot 0; i.e.,

n(k) =















N if k < 0

N + ∆N if k ≥ 0

Note that the dynamics of the queue length q(k) of the RED gateway can be obtained from direct

calculation using Eq. (12).

Figure 7 shows performance measures for the transient behavior (the overshoot, the rise time,
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Figure 7: Performance measures for transient behavior (the number of previous TCP connections

N = 1–7).

and the settling time) for different number N of TCP connections in the steady state, n∗. In the

following figures, unless explicitly stated, we use a set of control parameters of the RED gateway

recommended by the authors of [2]. We also use the following system parameters: the processing

speed of the RED gateway B = 0.2 [packet/ms], the propagation delay τ = 1 [ms], and the

number of resumed TCP connections ∆N = 1. Figure 7 shows that the current queue length of

the RED gateway changes more dynamically (i.e., a larger overshoot) when N is smaller. It is

because when the number of TCP connections in the steady state, N , is smaller, the impact of

the resumed TCP connection becomes larger. The figure also shows that the overshoot is smaller

than 1 [packet] when the number of TCP connections, N , is greater than 4. It suggests that the

buffer overflow at the RED gateway is not likely to happen when the number of TCP connections

is sufficiently large.

Shown in Fig. 8 is the case that the processing speed of the RED gateway, B, is changed from

1 to 10 [packet/ms]. One can find from this figure that as the processing speed of the RED gateway
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Figure 8: Performance measures for transient behavior (the processing speed of the RED gateway

B = 1–10 [packet/ms])

decreases, the overshoot and the settling time become small and long, respectively. This implies

that the effect of TCP connections variation on the current queue length of the RED gateway

sustains for a long period if the processing speed of the RED gateway is small.

Figure 9 illustrates the effect of the (round-trip) propagation delay of the TCP connection

on the transient behavior of the RED gateway. In this figure, the propagation delay of the TCP

connection, τ , is changed from 1 to 6 [ms]. This figure clearly shows that the transient behavior

of the RED gateway is degraded when the propagation delay of the TCP connection is large. For

example, as the propagation delay increases, both the overshoot and the rise time increase. This

phenomenon can be understood by the fact that when both TCP connections and the RED gateway

are considered as a single feedback system, a longer propagation delay corresponds to a longer

feedback delay. In general, both the stability and the transient performance of a feedback system

are degraded by a long feedback delay.

Figure 9 also shows that the settling time is minimized when the propagation delay of the TCP
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Figure 9: Performance measures for transient behavior (the propagation delay of the TCP connec-

tion τ = 1–5 [ms])

connection, τ , is about 4 [ms]. It can be conjectured from this phenomenon that the current queue

length of the RED gateway will change slowly when the propagation delay of the TCP connection

is short, and that the current queue length changes oscillatory when the propagation delay is long.

From this observation, it is expected that the operation of the RED gateway becomes unstable if

the propagation delay of the TCP connection is very long. In most feedback-based systems, a

small feedback delay improves both the stability and the transient performance. However, in the

congestion avoidance phase of TCP, the window size of the source host is increased every its RTT.

In other words, the congestion avoidance phase of TCP has a feedback gain, which is dependent

on the feedback delay.

We then investigate the effect of the maximum packet marking probability, maxp, on the tran-

sient behavior of the RED gateway. Figure 10 suggests that three performance measures — the

overshoot, the rise time, and the settling time — are slightly increased as maxp increases. Namely,

the maximum packet marking probability, maxp, has little impact on the transient behavior of the
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Figure 10: Performance measures for transient behavior (the maximum packet marking probability

maxp =0.025–0.15)

RED gateway. The maximum packet marking probability, maxp, should therefore be configured

by taking account of the steady state performance of the RED gateway (e.g., the average through-

put and the average queue length). Although we do not include results due to space limitation,

we found that two threshold values, minth and maxth, also have little impact on the transient

behavior of the RED gateway.

We finally show the dynamics of the current queue length of the RED gateway for a different

number of resumed TCP connections ∆N . In this figure, ∆N is changed from 1 to 10. It can be

found from this figure that the current queue length of the RED gateway changes more excessively

with a larger number of resumed TCP connections, ∆N . This phenomenon can be intuitively

understood. Namely, when the number of resumed TCP connections is large, more packets arrive

at the RED gateway. It gives a larger impact on the transient behavior of the RED gateway.
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Figure 11: Performance measures for transient behavior (the number of resumed TCP connections

∆N = 1–10)

3.4.3 Stability Analysis

Figure 12 shows the stability region when the number of TCP connections, operating in the con-

gestion avoidance phase, is incremented by one. This figure shows the maximum modulus of poles

of U(z) × G(z) (Eq. (12)) in the minth–maxth plane when the input U(z) is given by Eq. (13)

with i = 0. This figure means that the operation of the RED gateway becomes unstable (i.e., the

queue length of the RED gateway never converges) when the maximum modulus of pole is larger

than 1.0. This figure also means that the smaller the maximum modulus of pole is, the better the

transient behavior of the RED gateway becomes. One can find from this figure that the control

parameter minth has a large impact on the transient behavior of the RED gateway. For instance, in

this case, the transient behavior of the RED gateway is optimal if minth is chosen around 8.0. On

the contrary, one can also find that the control parameter maxth has little impact on the stability

and the transient behavior. Note that similar tendency is discovered in [8], where the steady state

analysis of the RED gateway is performed. From these observations, we can conjecture that if con-

32



0  

0.2

0.4

0.6

0.8

1  

5 10 15 20 25

10

20

30

40

50

60

70

80

90

100

Minimum Threshold [packet]

M
a
x
i
m
u
m
 
T
h
r
e
s
h
o
l
d
 
[
p
a
c
k
e
t
]

Figure 12: The maximum modulus of poles in the minth–maxth plane.

trol parameters of the RED gateway are configured for optimizing its steady state performance,

the transient behavior is also optimized.

In Fig. 13, we next show the stability region for minth = 5 and maxth = 15. In this figure, the

maximum modulus of poles of U(z)×G(z) is plotted in the B–τ plane. This figure indicates that

both the processing speed of the RED gateway B and the propagation delay τ affect the transient

behavior of the RED gateway. This figure also indicates that the maximum modulus of poles are

mostly determined by the bandwidth–delay product (B × τ ).

3.4.4 Transient Behavior Analysis using Transfer Function

Figures 14 through Fig. 16 present numerical results from our transient behavior analysis based

on the transfer function. These figures are for the cases that the number of TCP connections,

operating in the congestion avoidance phase, is increased. In all these figures, Eq. (14) is used as

the input U(z), but ti’s and ∆Ni’s are set to different values. In Fig. 14, t1 = 5 and ∆N1 = 1
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Figure 13: The maximum modulus of poles in the B–τ plane.

are used for analyzing the case that the number of TCP connections is incremented by one. In

Fig. 15, (t1, t2, t3) = (5, 10, 15) and (∆N1,∆N2,∆N3) = (1, 1, 1) are used for analyzing the

case that the number of TCP connections is incremented by three. Finally, in Fig. 16, (t1, t2, t3) =

(5, 10, 15) and (∆N1,∆N2,∆N3) = (1, 2, 1) for analyzing the case that the number of TCP

connections is incremented by four.

In each figure, the impulse response of the transfer function U(z) × G(z) (upper) and the

gain characteristic of U(z) × G(z) (lower). The impulse response illustrates the evolution of the

queue length of the RED gateway. The gain characteristic illustrates the amplitude of the transfer

function U(z)×G(z) at different frequencies. Note that these impulse responses are obtained not

from iterative computation using Eq. (8), but from direct calculation using the transfer function and

the MATLAB language. By analyzing these impulse responses, we can investigate the transient

behavior of the RED gateway for various types of TCP connections variations. For example,

comparing gain characteristics of Figs. 15 and 16 tells us that the amplitude of the queue length
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Figure 14: Impulse response and gain characteristic of U(z)×G(z) for ∆N1 = 1.

of the RED gateway in Fig. 16 is larger than that in Fig. 15. In other words, using the transfer

function enables us to analyze the transient behavior of the RED gateway not in time domain but

in frequency domain.

Finally, in Fig. 17, we show a simulation result when all TCP connections operate in the

congestion avoidance phase (i.e., case C2). This figure shows the evolution of the queue length

when the number of TCP connections operating in the congestion avoidance phase is incremented

by one at t = 10 [s]. In this simulation, we use the ns-2 simulator for the same network model with

Fig. 2. The size of all TCP packets is set to 1,000 [bytes]. In this figure, the analytic result is also

plotted for comparison purposes. This figure shows that the analytic result roughly coincides to

the simulation result. In particular, after the change in the number of TCP connections, the settling

time of the queue length in simulation is almost identical to the analytic result. However, one can

find that the amplitude of the queue length in our analysis is smaller than that of simulation. Such

difference might be caused by approximation errors in linearization or conservative estimation of

35



0 5 10 15 20 25 30

7

8

9

Sequence Number

Q
ue

ue
 L

en
gt

h 
[p

ac
ke

t]

10
−3

10
−2

10
−1

10
0

100

200

300

400

500

Frequency [rad/sequence]

A
m

pl
itu

de

Figure 15: Impulse response and gain characteristic of U(z) × G(z) for (∆N1,∆N2,∆N3) =

(1, 1, 1).

w(k) or q(k). As a future work, more investigation for minimizing the difference between analytic

and simulation results would be appropriate.
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Figure 16: Impulse response and gain characteristic of U(z) × G(z) for (∆N1,∆N2,∆N3) =

(1, 2, 1).
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4 Packet Marking Function of Active Queue Management Mecha-

nism: Should It Be Linear, Concave, or Convex?

4.1 Analysis

In what follows, we consider the case when the AQM mechanism of RED is operating as expected,

i.e., minth ≤ q < maxth because control parameters of the RED gateway are configured appro-

priately. In this case, the packet marking probability pb is determined based on the average queue

length q as

pb = maxp

(

q −minth

maxth −minth

)

. (16)

When the average queue length q is large, pb takes a value close to maxp. On the contrary, when

the average queue length q is small, pb takes a value close to zero. As can be seen from Eq. (16),

the packet marking function of RED is a linear function in relation to (q−minth). However, use of

a linear function has not been fully validated by taking account of both steady-state and transient-

state performances of RED. For example, the window-based flow control of TCP changes its

window size non-linearly according to the packet loss probability in the network. For this reason, if

the packet marking probability pb is determined by taking account of the characteristic of the TCP

window-based flow control, the steady state performances and/or transient state performances of

RED can be improved. In what follows, we therefore discuss how the packet marking probability

pb should be determined by utilizing the analytic results of TCP [16] and RED [8].

In our analysis, by combining the stochastic model of the TCP window size and the determin-

istic model of the RED queue length, we analyze how the average queue length is affected by the

RED’s packet marking mechanism. Specifically, we analyze toward what value the average queue

length converges with the packet marking mechanism of RED when the average queue length is

given at some time. Consequently, we clarify the effect of the packet marking function on the av-

erage queue length of RED in steady state (i.e., steady state performance) the average queue length
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of RED in transient state (i.e., transient state performance), and robustness against variation in the

number of active TCP connections.

First, the packet marking function of RED as defined by Eq. (16) is replaced by

pb = maxp f

(

q −minth

maxth −minth

)

, (17)

where f is a monotonically increasing function satisfying f(0) = 0 and f(1) = 1. We then

introduce the notion of queue occupancy to indicate how many packets exist in the gateway’s

buffer. The queue occupancy is defined by

x ≡ q −minth

maxth −minth

for minth ≤ q < maxth. The purpose of the remainder of this subsection is to investigate how

the packet marking function f affects the steady state and transient state performances of RED.

We consider the expected value of the TCP window size when the packet loss probability in

the network is given. In [16], the TCP throughput in steady state is derived. In the derivation

process, W (p), which is the expected value of TCP window size just before TCP detects a packet

loss, is also derived (see Eq. (18) in [16]).

W (p) =
2 + b

3b
+

√

8(1 − p)

3bp
+

(

2 + b

3b

)2

(18)

In the above equation, b is the number of packets required for the destination host to return an ACK

packet (usually, b = 1 or b = 2), and p is the packet loss probability in the network. In the analysis,

the authors assume (1) TCP is operating in the congestion evasion phase, (2) all packet losses are

detectable by duplicate ACKs (i.e., no timeout is triggered), (3) the packet loss probability in the

networks is constant, and (4) the maximum window size is sufficiently large. Note that in [16], the

second assumption (i.e., no timeouts) is relaxed and the more detailed result of the TCP window

size is derived. However, we use a simple result given by Eq. (18) since it is more tractable than

the detailed result, allowing us to know more insight on the packet marking function of RED.

Also, note that Eq. (18) gives the expected value of TCP window size just before a packet loss is
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Figure 18: Evolution of TCP window size in congestion avoidance phase.

detected. Immediately after detecting the packet loss, the TCP window size is decreased to one

half. Then, the TCP window size is slowly increased until the next packet loss is detected. In this

thesis, we therefore use w(p) as the expected value of TCP window size (Fig. 18):

w(p) =
1

2

(

W (p)

2
+ W (p)

)

=
3W (p)

4
. (19)

Furthermore, we consider the queue length of RED in steady state when the TCP window size

w is given. In [8], the queue length q of RED is derived when the number N of TCP connections

have the identical window size w.

q = N w −B τ, (20)

where B is the maximum transmission capacity of the RED gateway (i.e., the smaller value be-

tween the processing speed of the RED gateway and the bandwidth of the outgoing link). τ is the

two-way propagation delay of the TCP connection excluding the queueing delay at the buffer. In

the analysis, almost the same assumptions as those of [16] are made.

As we have explained in Section 2, RED randomly discards an arriving packet with proba-

bility pb. Hence, for a given packet marking probability pb, the packet loss probability to TCP
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connections is given by [2]

p =

(

1

2pb

+
1

2

)

−1

. (21)

From Eqs. (17), (20), and (21), the average queue length q can therefore be given by

q = N w(p)−B τ

=
N

4 b







2 + b + b

√

4− 8 b + b2 + 12 b
maxp f(x)

b2







−B τ. (22)

This equation indicates that the queue length of RED converges to q, when the packet marking

probability pb is determined according to the function f . Note that q is the expected value of the

queue length since Eq. (19) is also the expected value. Let x∗ be the queue occupancy converged

by the packet dropping mechanism of RED (i.e., the average queue length in steady state if pb is

fixed). x∗ is given by

x∗ =
q(x)−minth

maxth −minth

. (23)

Namely, this means that the probabilistic packet marking mechanism of RED with the packet

marking function f and the queue occupancy x governs the queue occupancy toward x∗. For

example, by plotting Eq. (23) on the x–x∗ plane, the effect of the packet marking function f on

the steady state and transient state performances of RED can be rigorously analyzed.

To analyze the relation between Eq. (23) and RED performance, we graphically plot the re-

lation between queue occupancies x and x∗. An example of Eq. (23) is shown in Fig. 19. The

straight line x∗ = x is also plotted in the figure. The following points can be inferred from this

figure.

1. The queue occupancy in steady state (t → ∞) is given by the intersection of the curve of

Eq. (23) and the straight line x∗ = x.

2. The steeper the gradient (dx∗/dx) of Eq. (23), the larger the impact of variation in the queue

occupancy x on the average queue length of RED.
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Figure 19: Queue occupancy in the x-x∗ plane.

3. Conversely, when the gradient (dx∗/dx) of Eq. (23) is gentle, variation in the queue occu-

pancy x has a negligible effect on the average queue length of RED.

4. In order for the average queue length of RED to be stable when minth < q < maxth, the

gradient (dx∗/dx) of Eq. (23) must be negative.

On the basis of these observations, we find the following points with regard to the steady state

and transient state performances of RED.

1. When Eq. (23) is convex (i.e., d2x∗/dx2 < 0), the average queue length of RED in steady

state becomes small. Moreover, when the queue occupancy is small, transient state perfor-

mance is good. Conversely, when the queue occupancy is large, transient state performance

becomes degraded.

2. When Eq. (23) is linear (i.e., d2x∗/dx2 = 0), the average queue length of RED in steady

state is larger than that with a convex function. Also, transient state behavior is not affected
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by the queue occupancy.

3. When Eq. (23) is concave (i.e., d2x∗/dx2 > 0), the average queue length of RED in steady

state is large, and the transient state behavior is not good when the queue occupancy is small.

On the contrary, transient state performance is good when the queue occupancy is large.

On the basis of the above observations, it is considered that the packet marking function f should

be chosen such that Eq. (23) becomes a linear function in relation to x. Namely, it is desirable for

the gradient dq/dx of Eq. (22) given by the following equation to be constant.

dq

dx
=

−3N f ′(x)

2maxp

√

4− 8 b + b2 + 12 b
maxp f(x) f(x)2

(24)

This equation suggests that the gradient of Eq. (22) is determined by the parameter at the TCP

destination host b, the number of active TCP connections N , and the maximum packet marking

probability maxp. Conversely, it suggests that the gradient of Eq. (22) is almost independent of

the propagation delay of TCP connections τ and the capacity of the RED gateway B. This result

agrees with conventional research results that the average queue length q of RED is dependent on

the number of TCP connections [8, 14, 6]. Therefore, when considering how the packet marking

function f should be determined, the number of active TCP connections N should be primarily

taken account of.

Moreover, the packet marking function f that makes Eq. (23) a linear function in relation to

x can be derived by equating dq/dx from Eq. (24) with a constant value α and by solving this

ordinary differential equation. The solution is given by

f(x) = 12

{

maxp

(

8− 4

b
+ b

(

16α2 x2

N2
− 1

))

−
48α b

√
maxp xC(1)

N
+ 36 bC(1)2

}

−1

,

where C(1) is a constant. As can be seen from the above equation, for determining f so that

Eq. (22) becomes linear, f must be changed according to the number of active TCP connections

N . Our analytic results clearly indicates that information on the number of active TCP connections

is necessary for determining the packet marking probability pb to optimize the steady state and
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transient state performances of RED. However, the RED gateway has no capability of knowing

the number of active TCP connections since it does not distinguish each TCP connection. Of

course, it is not impossible to estimate the number of active TCP connections, for example, by

distinguishing each TCP connection as is done in SRED. However, adding such processing to the

AQM gateway makes its implementation very complex. Since implementation simplicity is one

of important features of RED, in reality, it is desirable to choose a packet marking function f such

that f is as independent of the number of TCP connections as possible, and that Eq. (23) has as

much linearity in relation to x as possible.

Hence, in the next subsection, we consider three types of packet marking functions — linear,

concave, and convex —and examine which packet marking function is most suitable for optimiz-

ing RED performance. Note that the actual steady state and transient state performances of RED

such as throughput is determined by not only the type of packet marking function but also the

setting of its control parameters such as minth, maxth, maxp, and qw. However, in what follows,

we limit our attention to the packet marking function, and carefully investigate how the packet

marking function affects the steady state and transient state performances of RED.

4.2 Numerical Examples and Discussions

4.2.1 Case of RED (Random Early Detection)

In the following numerical examples, three types of function classes, Fφ, Gφ, andHφ, are consid-

ered as the packet marking function f .

• Linear

Fφ(x) = xφ

Note that this function is linear when φ = 1, is concave when φ > 1, and is convex when

φ < 1.
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• Concave

Gφ(x) =
(

1−
√

1− x2
)φ

φ(> 0) is a parameter determining concavity. Namely, when φ is large, Gφ(x) takes a small

value. In order for Gφ to be concave,

d2Gφ(x)

dx2
=

1

(1− x2) 3
2

{

φ
(

1−
√

1− x2
)φ−2

×
(

1 +
√

1− x2
(

(φ− 1) x2 − 1
))

}

≥ 0

must be satisfied. By solving the above inequalities for φ, we have

φ ≥ lim
x→0

−1 +
√

1− x2 + x2
√

1− x2

x2
√

1− x2
=

1

2
.

• Convex

Hφ(x) =

(

√

1− (1− x)2
)φ

φ(> 0) is a parameter determining convexness. Namely, when φ is large, Hφ(x) takes a

small value. In order forHφ to be convex,

d2Hφ(x)

dx2
= φ (− ((x− 2) x))

φ−4

2 ×
(

φ (x− 1)2 − (x− 2) x− 2
)

≤ 0

must be satisfied. Similar to the previous case, by solving the above inequalities for φ, we

have

φ ≤ lim
x→0

2− 2x + x2

1− 2x + x2
= 2.

Note that Fφ(x) with φ = 1.0 is identical to Eq. (16) of the original RED.

We investigate which packet marking function is the most desirable among Fφ (linear), Gφ

(concave), andHφ (convex) by showing several numerical examples. First, the queue occupancy in

the x–x∗ plane is shown when control parameters and system parameters are configured according

to Tab. 2. Figures 20, 21, and 22 respectively show results when Fφ (linear), Gφ (concave), and
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Table 2: Parameters used in numerical examples.

minth RED maximum threshold 50 [packet]

maxth RED minimum threshold 100 [packet]

maxp RED maximum packet marking probability 0.1

B transmission capability of RED gateway 1.25 [packet/ms]

τ two-way TCP propagation delay 10 [ms]

N the number of active TCP connections 10

b TCP destination host parameter 1

Hφ (convex) are used as the packet marking function. In these figures, φ is changed to 0.5, 1.0,

and 1.5. The straight line x = x∗ is also plotted in all figures.

Figure 20 shows that the average queue length of RED (i.e., the intersection with the straight

line x = x∗) increases as the value of φ becomes large when Fφ (linear) is used as the packet

marking function f . Moreover, it is also found that when the queue occupancy x is small, the

gradient (dx∗/dx) of Eq. (23) is steep. On the other hand, when the queue occupancy is large,

the value of Eq. (23) is almost zero. Namely, in the state where the queue occupancy is small,

since RED discards arriving packets, the queue length is changed rapidly. In the state where the

queue occupancy is large, the queue length rapidly decreases to minth (i.e., the queue occupancy

is empty) irrespective of the packet marking probability of RED.

When Gφ (concave) is used as the packet marking function, the gradient (dx∗/dx) of Eq. (23)

is small (see Fig. 21). This figure indicates that as the value of φ becomes larger (i.e., with

increasingly stronger concavity), the average queue length of RED becomes larger. Moreover, this

figure shows that Eq. (23) is closer to the straight line as compared with Fig. 20. Namely, the effect

that packet losses have on the queue length of RED is almost independent of the queue occupancy.
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Figure 20: RED queue occupancy in the x–x∗ plane with Fφ (linear) for φ = 0.5, 1.0, and 1.5.

The result when using Hφ (convex) as the packet marking function f is shown in Fig. 22.

This figure shows the relation of the queue occupancy in the x–x∗ plane. It is evident that the

gradient (dx∗/dx) of Eq. (23) is quite steep when the queue occupancy is small. Moreover, it is

also evident that, as the value of φ becomes large (i.e., with increasingly strong convexity), the

gradient of Eq. (23) becomes even steeper. Namely, when Hφ (convex) is used as the function f ,

the queue length of RED is changed rapidly when the queue occupancy is small.

Next, when Fφ (linear), Gφ (concave), and Hφ (convex) are used as the packet marking func-

tion f , we show the effect of variation in the number of active TCP connections on the steady

state performance and transient state performance of RED. The relation between the number of

TCP connections N and the queue occupancy when using Fφ (linear) is shown in Fig. 23. In

this figure, the number of TCP connections N is varied from 1 to 20, and the parameter values

shown in Tab. 2 are used. As discussed in subection 4.1, the intersection of the curved surface and

the x–x∗ plane means the average queue length of RED in steady state. This indicates that the

average queue length of RED in steady state becomes larger as the number of TCP connections N
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Figure 21: RED queue occupancy in the x–x∗ plane with Gφ (concave) for φ =0.5, 1.0, and 1.5.

becomes large. In particular, it is evident that when the number of TCP connections N is small,

the variation in the number of TCP connections significantly affects the average queue length.

Furthermore, it is also evident that the gradient (dx∗/dx) of Eq. (23) becomes small as the number

of TCP connections N becomes large. This means that the transient state performance of RED is

affected by changing the number of TCP connections.

Figure 24 shows the result when using Gφ (concave) as the packet marking function f . Except

for using Gφ (concave) as the packet marking function f , the same parameter values as those for

Fig. 23 are used. This figure shows that the gradient (dx∗/dx) of Eq. (23) is negligibly dependent

on the number of active TCP connections when Gφ (concave) is used. Furthermore, similar to

Fig. 23, the average queue length of RED in steady state becomes larger as the number of active

TCP connections N becomes large. However, the average queue length of RED is observed to

increase almost linearly with the number of TCP connections N . Generally, the number of TCP

connections changes according to time. For this reason, Fig. 24 would be more desirable than

Fig. 23 in the sense that the average queue length does not change excessively with the number of
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Figure 22: RED queue occupancy in the x–x∗ plane withHφ (convex) for φ = 0.5, 1, and 1.5.

TCP connections.

Finally, the result when using Hφ (convex) as the packet marking function f is shown in

Fig. 25. This figure shows that the average queue length in steady state becomes large as the

number of TCP connections N becomes large. Moreover, it indicates that the gradient (dx∗/dx) of

Eq. (23) is significantly influenced by the number of TCP connections. For this reason, considering

the steady state behavior and the transient state behavior of RED, we consider thatHφ (convex) is

unsuitable for application as the function f .

From the above observations, we conclude that Gφ (concave) is the most suitable for applica-

tion as the packet marking function f . Although the average queue length in steady state can be

small when either Fφ (linear) or Hφ (convex) is used, there is a drawback that the transient state

performance is quite sensitive to the queue occupancy. On the other hand, when Gφ (concave) is

used, variation in the queue occupancy and the number of TCP connections negligibly affects the

transient state behavior of RED. In summary, when Gφ (concave) is used as the packet marking

function, the transient state performance of RED and robustness to variations in the number of
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Figure 23: Relation between the number of active TCP connections N and RED queue occupancy

with Fφ (linear) for φ =1.0.

active TCP connections are improved.

4.2.2 Case of Adaptive RED

As we have explained in Section 1, Adaptive RED solves the problem associated with RED that

its average queue length is dependent on the number of active TCP connections [19]. Adaptive

RED adaptively changes its maximum packet marking probability maxp according to its average

queue length. More specifically, when the average queue length is smaller than minth, maxp is

decreased by (1/α − 1)maxp. Conversely, when the average queue length is larger than maxth,

maxp is increased by (1−β)maxp. The main purpose of the Adaptive RED control is to improve

the steady state performance of RED. However, it has not been fully investigated how the transient

state performance and robustness of Adaptive RED are influenced by its adaptive control mecha-

nism. In what follows, we therefore apply our analytic results to Adaptive RED, and discuss the
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Figure 24: Relation between the number of active TCP connections N and RED queue occupancy

with Gφ (concave) for φ = 1.0.

steady state and transient state performances of Adaptive RED. Although our analysis is not for

Adaptive RED but for RED, much insight on Adaptive RED can be gained from our analytic re-

sults because of the following reason. The algorithm of Adaptive RED is the same as that of RED

except that Adaptive RED dynamically adjusts the maximum packet marking probability maxp

according to its average queue length. Hence, at a relatively small time-scale, Adaptive RED can

be considered as RED with the roughly optimized maximum packet marking probability maxp. In

other words, by analyzing the steady state and transient state performances of RED with different

maximum packet marking probabilities, we can investigate the performance of Adaptive RED. As

we have explained in Subsection 4.1, the average queue length of RED is dependent on the number

of active TCP connections. We can therefore investigate how the performance of Adaptive RED

is affected by changing the maximum packet marking probability maxp according to the number

of active TCP connections.
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Figure 25: Relation between the number of TCP connections N and RED queue occupancy with

Hφ (convex) for φ = 1.0.

We consider three cases: i.e., the number of active TCP connections N is fixed at 5, 10, or

20. In these cases, by the adaptive control of the maximum packet marking probability maxp, the

average queue length of Adaptive RED will be independent of the number of active TCP connec-

tions, and will converge to a constant value in steady state. Hence, we assume that the maximum

packet marking probability maxp is fixed at 0.02, 0.1, or 0.4 by the control of Adaptive RED

when the number of TCP connections N is 5, 10, or 20, respectively. For each case, the relation of

the queue occupancy in the x–x∗ plane is shown in Figs. 26, 27, or 28, respectively. By compar-

ing these figures, it is evident that the average queue length of Adaptive RED in the steady state

(i.e., the intersection with the straight line x∗ = x) is almost identical. It is also evident that the

gradient (dx∗/dx) of Eq. (23) is negligibly affected by the maximum packet marking probability

maxp. On the basis of these observation, we find that the adaptive control mechanism of Adaptive

RED, which dynamically changes the maximum packet marking probability, improves its steady
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Figure 26: Adaptive RED queue occupancy in the x–x∗ plane for N = 5 and maxp = 0.02.

state behavior, but it does not improve the transient state behavior. However, the performance of

Adaptive RED can be improved by using a concave function as the packet marking function.
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Figure 27: Adaptive RED queue occupancy in the x–x∗ plane for N = 10 and maxp = 0.1.
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Figure 28: Adaptive RED queue occupancy in the x–x∗ plane for N = 20 and maxp = 0.4.
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5 Conclusion

In the first part of this paper, we have analyzed the impact of TCP connections variation on the

transient behavior of the RED gateway by utilizing the average state transition equations obtained

in [8]. We have modeled the entire network including both TCP connections and the RED gateway

as a feedback system. We have investigated the transient behavior (in particular, the dynamics of

the current queue length) of the RED gateway when the number of TCP connections is changed.

We have used a control theoretic approach, which is based on the transfer function describing the

relation between input and output not in time domain but in frequency domain. Using the transfer

function, various characteristics of a feedback system can be investigated. We have quantitatively

shown that the transient behavior of the RED gateway is sensitive to system parameters such as

the number of TCP connections in the steady state, the capacity of the RED gateway, and the

propagation delay of the TCP connection. We have also shown that the control parameters of the

RED gateway have little influence on the transient behavior of the RED gateway.

In the second part of this thesis, we have discussed how the packet loss probability of RED

should be determined from its average queue length by utilizing the results of steady state analyses

of TCP [8] and RED [16]. By examining several numerical examples, we have investigated the

performance of the RED router in three cases — when the function that determines the packet loss

probability is either linear, concave, or convex. Consequently, we have found that the transient

behavior and the robustness to variation in the number of TCP connections can be improved by

using a concave function for determining the packet loss probability of RED. Moreover, we have

discussed the characteristics of Adaptive RED with respect to our analysis result. Consequently,

we have found that an adaptive control mechanism of Adaptive RED, which dynamically changes

the maximum packet loss probability, improves the steady state behavior, but it does not improve

the transient state behavior.

Our analytic results have clearly shown that the control of RED, which discards arriving pack-
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ets with a probability proportional to its average queue length, has several problems associated

with steady state behavior and robustness. In recent years, various AQM mechanisms which solve

these drawbacks of RED have been proposed. However, most of these AQM mechanisms use a

function which is linear to the average queue length for determining the packet marking probabil-

ity. Namely, the problems found in this thesis have not been taken into account. As future works,

by applying our analytic result obtained in this thesis we therefore intend to design an AQM

mechanism by taking account of not only steady state behavior but also transient state behavior

and robustness.
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