
Master’s Thesis

Title

On Congestion Control Mechanism of High–Speed TCP

Supervisor

Prof. Masayuki Murata

Author

Koichi Tokuda

February 12th, 2003

Department of Informatics and Mathematical Science

Graduate School of Engineering Science

Osaka University

Master’s Thesis

On Congestion Control Mechanism of High–Speed TCP

Koichi Tokuda

Abstract

Among Internet services that have recently been initiated, including data GRID network and

storage area network (SAN), the server machines have gigabit-level network interfaces such as

Gigabit Ethernet, and directly connect to high-speed network to deliver gigabyte/terabyte data

to other hosts. Although these services require a large amount of network bandwidth and disk

storage, such services will emerge increasingly in the future Internet since their costs are rapidly

decreasing.

When the TCP Reno version, which is the most popular version of TCP included in the current

OSs, is used for such high-speed data transmissions, it cannot achieve enough throughput because

of the essential nature of TCP’s congestion control mechanism. HighSpeed TCP has recently been

proposed as one of the possible ways to improve the throughput by modifying the congestion

control mechanism. However, the performance of HighSpeed TCP has not been fully investigated.

Especially, fairness issues between HighSpeed TCP and TCP Reno have not been considered.

In this thesis, we first investigate the throughput and fairness properties of HighSpeed TCP

through mathematical analysis and simulation studies. We show that HighSpeed TCP can provide

larger throughput than TCP Reno, but it cannot fully utilize the link bandwidth because of bursty

packet losses at the router buffer. We also demonstrate that HighSpeed TCP degrades the through-

put of TCP Reno when they share the bottleneck link. We then propose Gentle HighSpeed TCP,

which has new congestion control mechanisms of TCP that improve the throughput of HighSpeed

1

TCP. One of the major features in Gentle HighSpeed TCP is that it has two modes in the conges-

tion avoidance phase, each of which uses different algorithms in changing window size. It also

has a new mechanism to avoid throughput degradation in the initial slow start phase.

We confirm the effectiveness of Gentle HighSpeed TCP by simulation experiments. We ob-

serve from the simulation results that the throughput of Gentle HighSpeed TCP becomes larger

than that of the original HighSpeed TCP by up to 30%. Furthermore, Gentle HighSpeed TCP can

greatly improve the data transmission performance without degrading the throughput of compet-

ing TCP Reno connections. That is, Gentle HighSpeed TCP outperform the original HighSpeed

TCP in both terms of the throughput and the fairness with TCP Reno.

Keywords

TCP (Transmission Control Protocol)

TCP Reno

HighSpeed TCP

Fairness

Analysis

2

Contents

1 Introduction 5

2 Congestion Control Mechanisms of TCP 9

2.1 TCP Reno .. 9

2.2 HighSpeed TCP. 10

3 Problems of HighSpeed TCP 13

4 Fairness Analysis 18

4.1 Analysis Model . 18

4.2 Analysis . 18

4.3 Numerical Results and Discussions. 23

5 Gentle HighSpeed TCP 26

5.1 Algorithm . 26

5.1.1 Slow Start Phase. 26

5.1.2 Congestion Avoidance Phase. 29

5.2 Performance Evaluation. 31

6 Conclusion 34

Acknowledgements 35

References 36

3

List of Figures

1 Simulation Model. 14

2 Fairness between HighSpeed TCP and TCP Reno connections. 15

3 Change of Congestion Window Size. 17

4 Analysis Model . 19

5 A Typical Evolution of Window Sizes of TCP Reno and HighSpeed TCP Connec-

tions . 20

6 Analysis Results. 25

7 State Transition Diagram of TCP Reno. 27

8 State Transition Diagram of Gentle HighSpeed TCP 28

9 Effect of Number of Gentle HighSpeed TCP Connections. 32

10 Comparison of Packet Loss Probability. 32

11 Effect of Propagation Delay . .. 33

4

1 Introduction

Although the amount of Internet traffic is explosively increasing with the rapid growth of Inter-

net users, the Internet works well without serious network collapses. This is of course due to

the increase of network bandwidth brought by technology improvement such as WDM (Wave-

length Division Multiplexing) [1, 2]. However, the key reason is that TCP (Transmission Control

Protocol) [3, 4], used by most of the current Internet applications, detects network congestion,

avoids/resolves it, and regulates its packet transmission rate adaptively and consistently. However,

as recently-emerging Internet applications have more service diversity, various kinds of demands

arise, which TCP cannot satisfy successfully.

For example, in the services including data GRID network [5] and storage area network

(SAN) [6], the hosts (server machines) have gigabit-level network interfaces such as Gigabit Eth-

ernet, and directly connect to high-speed network to deliver gigabyte/terabyte size of data to other

hosts for moving program data, backup, database synchronization, and so on. Although these ser-

vices require a large amount of network bandwidth and disk storage, such services will emerge

increasingly in the future Internet since their costs are rapidly decreasing [7]. When TCP Reno

version, which is the most popular version of TCP in the current OSs, is used for such data trans-

mission, it cannot achieve enough throughput because of the essential nature of TCP’s congestion

control mechanism. According to [8] on HighSpeed TCP, for a TCP Reno connection with 1500

Byte packet size and 100 msec RTT (Round Trip Time) to fill 10 Gbps link, a congestion window

of 83,333 packets is required, which means that packet loss rate becomes less than2 ∗ 10 −10.

Furthermore, when packets are lost in the network, it takes over 40,000 RTT (about 4,000 sec.) to

recover the throughput. It means that it is impossible to obtain such a large throughput with TCP

Reno. The main reason is that TCP Reno decreases its congestion window size dramatically when

packet losses take place but increases it very slightly when it experiences no packet loss.

HighSpeed TCP was recently proposed in [8] as one possible way to overcome the above prob-

5

lem and provide considerably larger throughput than TCP Reno in such a situation. It modifies the

increasing/decreasing algorithm of a congestion window size in the congestion avoidance phase.

That is, HighSpeed TCP quickly increases and slowly decreases its congestion window than TCP

Reno, to keep the congestion window size enough large to fill a high-speed link. Although it

intuitively becomes possible to obtain larger throughput than TCP Reno, the performance and

characteristics of HighSpeed TCP have not been fully investigated except [9]. One example is a

fairness issue of HighSpeed TCP. The fairness issues of TCP are important and have been actively

investigated in the past literature [10-18]. Almost all of them focus on the fairness among connec-

tions of a certain TCP version having differences in environment such as RTT, packet dropping

probability, the number of active connections, the size of transmitted documents. The fairness

between the traditional TCP and new TCP mechanisms like HighSpeed TCP, is also quite impor-

tant problem when we consider a migration path of the new TCPs. However, the HighSpeed TCP

mechanism does not consider the situation where HighSpeed TCP and TCP Reno connections

share the network bandwidth. It is very likely that HighSpeed TCP connections between server

hosts and traditional TCP Reno connections for Web access and e-mail transmission share a high-

speed backbone link, which means that it is important to investigate the fairness characteristics

between HighSpeed TCP and TCP Reno.

In this paper, we first investigate the throughput and fairness properties of HighSpeed TCP

through mathematical analysis study. In the analysis, we model a cyclic change in the occupation

level of the router buffer and the congestion window size of HighSpeed TCP and TCP Reno con-

nections triggered by packet loss events, and calculate their average throughput values. From the

analysis and simulation results, we demonstrate that HighSpeed TCP can provide larger through-

put than TCP Reno, but it cannot fully utilize the link bandwidth because of bursty packet losses

at the bottleneck router buffer. It is also shown that HighSpeed TCP degrades the throughput of

TCP Reno when they share the bottleneck link since it opens the congestion window quickly even

when the transmitted packets are queued at the router buffer.

6

We then propose a new congestion control mechanism, called Gentle HighSpeed TCP, to solve

the above problems of HighSpeed TCP. Gentle HighSpeed TCP can improve the throughput of

both HighSpeed TCP and TCP Reno connections sharing the network bandwidth. One of the ma-

jor features of Gentle HighSpeed TCP is that it has two modes in its congestion avoidance phase,

each of which uses different algorithms in changing window size. That is, when the utilization of

the bottleneck link is under 100, Gentle HighSpeed TCP uses the same algorithm as the original

HighSpeed TCP (HighSpeed mode). When the bottleneck link is fully utilized, on the other hand,

Gentle HighSpeed TCP behaves equally to TCP Reno (Reno mode). To estimate the bottleneck

link utilization, Gentle HighSpeed TCP uses RTT values of transmitted packets. When the mea-

sured RTTs indicate an increasing trend, it determines that the link bandwidth is fully utilized, and

vice versa. Furthermore, it also has a new mechanism in the slow start phase to avoid throughput

degradation in the initial slow start phase.

We confirm the effectiveness of Gentle HighSpeed TCP by extensive simulation experiments.

The simulation results show that Gentle High Speed TCP can avoid the bursty packet losses oc-

curred in the original HighSpeed TCP, which results in that it can successfully alleviate retrans-

mission timeout. Consequently, we can observe that the throughput of Gentle HighSpeed TCP

becomes larger than that of the original HighSpeed TCP by up to 30%. Furthermore, Gentle High-

Speed TCP can greatly improve the fairness with competing TCP Reno connections, which means

that it can enhance the data transmission performance without degrading the throughput of TCP

Reno connections. That is, Gentle HighSpeed TCP outperform the original HighSpeed TCP in

both terms of the throughput and the fairness with TCP Reno.

The rest of this thesis is organized as follows. In Section 2 we summarize the congestion

control mechanisms of TCP Reno and HighSpeed TCP. In Section 3 we explain our motivation

in this work by showing the problems of HighSpeed TCP through some simulation results. In

Section 4 we propose a mathematical analysis to derive the average throughput of HighSpeed TCP

and TCP Reno connections when they share a bottleneck link, and discuss the fairness property of

7

HighSpeed TCP by using the analysis results. In Section 5 we propose a new congestion control

mechanism of TCP, called Gentle HighSpeed TCP, and show its effectiveness through various

simulation experiments. We finally present concluding remarks in Section 6.

8

2 Congestion Control Mechanisms of TCP

TCP changes its congestion window size dynamically to regulate its packet transmission rate

according to the network congestion level. In this section, we describe the congestion control

mechanisms of TCP Reno and HighSpeed TCP. In particular, we concentrate on explaining their

algorithms of changing their congestion window sizes. For more detailed algorithms, refer to [3]

and [8].

2.1 TCP Reno

TCP Reno changes its congestion window periodically triggered by a packet loss event. Here, we

define the interval from the(i − 1)-th packet loss event to thei-th packet loss event as thei-th

cycle. We further divide thei-th cycle into RTTs and consider a congestion window size in each

RTT. The congestion window size of TCP Reno at thej-th RTT of thei-th cycle is defined as

WReno(i, j).

The congestion control mechanism of TCP Reno consists of two phases: the slow start phase

and the congestion avoidance phase. in each of which TCP Reno uses a different algorithm in

increasing/decreasing congestion window size. In the slow start phase, TCP Reno increases its

window size by one packet on receiving an ACK packet. On the other hand, in the congestion

avoidance phase, TCP Reno increases its window sizeWReno(i, j)by1/WReno(i, j) packets when

it receives an ACK packet. Focusing on the changes in congestion window in a RTT,W Reno(i, j)

is derived as follows:

WReno(i, j) =

(Slow Start Phase:)

2 · WReno(i, j − 1) if WReno(i, j − 1) < SReno(i)

(Congestion Avoidance Phase:)

WReno(i, j − 1) + 1 if WReno(i, j − 1) ≥ SReno(i)

(1)

whereSReno(i) is assthresh value in thei-th cycle at which TCP Reno changes its phase from

9

the slow start phase to the congestion avoidance phase. According to Eq. (1), TCP Reno continues

to increase its congestion window until it detects packet losses. When packet losses occur in the

network, TCP detects them either by waiting a retransmission timeout or by receiving duplicate

ACK packets (three or more ACK packets with the same sequence number), and retransmits them.

If the packet losses are detected by the retransmission timeout, TCP Reno decreases the congestion

window size to one packet. On the other hand, when the packet losses are detected by duplicate

ACK packets, TCP Reno sets its congestion window to a half of that just before the packet loss.

In both cases, TCP Reno halvesSReno(i).

2.2 HighSpeed TCP

According to [8], when we use TCP Reno for data transmission via a high-speed link of larger

than 1 Gbps bandwidth, TCP Reno requires quite a low packet loss rate to fully utilize the link

and it takes considerable time to achieve sufficient throughput. Therefore, it is almost impossible

for TCP Reno to provide such a large throughput in the actual network. It is mainly because TCP

Reno decreases its congestion window size dramatically when packet losses occur but increases it

slightly when it experiences no packet loss, which results in its requiring many RTTs to get a large

enough congestion window.

To overcome this problem, a new congestion control mechanism, calledHighSpeed TCP, was

proposed in [8]. Its algorithm in increasing/decreasing the congestion window is essentially based

on the AIMD (Additive Increase Multiplicative Decrease) discipline [19], which is equal to that

of TCP Reno. The difference between them is that the degree of increasing/decreasing congestion

window size in one RTT. In what follows, we explain the algorithm of HighSpeed TCP. Similarly

to TCP Reno, we define the congestion window size of HighSpeed TCP at thej-th RTT of thei-th

cycle asWHS(i, j).

When the current congestion window size is smaller thanW low, HighSpeed TCP changes its

congestion window size according to the same algorithm as that of TCP Reno. On the other hand,

10

when the current congestion window is larger thanW low, it increases its congestion window more

quickly, and decreases it more slowly than TCP Reno. Therefore, it is expected to obtain larger

throughput than TCP Reno by keeping the congestion window size to a larger value. The degree

of increasing/decreasing congestion window size depends on its current value. That is, when

the congestion window size is larger, HighSpeed TCP increases it more quickly, and decreases it

more slowly. We define the increasing degree of congestion window in each RTT asa(w), and the

decreasing degree of congestion window asb(w), when its current congestion window isw. That

is, HighSpeed TCP increases its window sizew by a(w) packets in one RTT without packet losses

and decreases it tow · (1− b(w)) when it detects packet loss by duplicate ACK packets. Focusing

on the change in congestion window in a RTT,WHS(i, j) is derived as follows:

WHS(i, j) =

(Slow Start Phase:)

2 · WHS(i, j − 1) if WHS(i, j − 1) < SHS(i)

(Congestion Avoidance Phase:)

WHS(i, j − 1) + 1 if WHS(i, j − 1) ≥ SHS(i)

and WHS(i, j − 1) ≤ Wlow

WHS(i, j − 1) + a(WHS(i, j − 1)) if WHS(i, j − 1) ≥ SHS(i)

and WHS(i, j − 1) > Wlow

(2)

whereSHS(i) is assthresh value in thei-th cycle. According to [8],a(w) andb(w) are given

by:

a(w) =
2w2 · b(w) · p(w)

2 − b(w)

b(w) =
log(w)− log(Wlow)

log(Whigh) − log(Wlow)
(bhigh − 0.5) + 0.5

p(w) = exp

[
log(w)− log(Wlow)

log(Whigh) − log(Wlow)
{log(Phigh) − log(Plow)}+ log(Plow)

]
(3)

In Eq. (3),Plow is defined by Eq. (4). It represents the packet loss ratio when the average size of

11

the congestion window in TCP Reno equals toW low [20]:

Plow =
1.5

W 2
low

(4)

Phigh, Whigh, bhigh, andWlow in Eq. (2) are the parameters of HighSpeed TCP and have the

following meanings: HighSpeed TCP determinesa(w) andb(w) so that it achieves the congestion

window size ofWhigh packets with the packet loss probability ofP high. Furthermore, when the

congestion window isWhigh, it decreases its congestion window size to(1 − b high) · Whigh in

receiving three duplicate ACK packets. We can easily determine these parameters when a RTT

value between sender and receiver hosts, a packet loss probability, a packet size, and a target

throughput are given. For example, [8] shows the parameter settingW low = 31, Phigh = 10−7,

andbhigh = 0.1 to achieve 10 Gbps throughput when the propagation delay for the round-trip path

between sender and receiver hosts is 100 msec, and the packet size is 1500 Byte.

12

3 Problems of HighSpeed TCP

Although HighSpeed TCP is expected to obtain a larger throughput than TCP Reno in a high-speed

network, the detailed performance has not been fully investigated. Especially, since HighSpeed

TCP does not consider the fairness against TCP Reno connections in the region where it opens the

congestion window very large, the fairness evaluation has not been done at all. In this section, we

show the results of simple simulation experiments to exhibit the problems of HighSpeed TCP in

both terms of throughput and fairness. We use ns [21] for the simulation experiment.

The network model used in the simulation is depicted in Fig. 1. In this model, we assume

the network where two local networks are interconnected via a high-speed link.N HS endhosts

(hstcp1, . . . , hstcpNHS
) are connected directly to the link and use HighSpeed TCP for data trans-

mission. At the same time,NReno endhosts (reno1, . . . , renoNReno
) using the traditional TCP Reno

share the same link through 100 Mbps link. That is, there areNHS HighSpeed TCP connections

andNReno TCP Reno connections on the bottleneck link. The bandwidth and the propagation

delay of the bottleneck link between router RA and router RB are set to 1 Gbps and 25 msec,

and those between RB and RC are set to 1 Gbps and 5 msec. The propagation delays of the links

between routers and endhosts are all set to 5 msec. We use a Taildrop discipline at the buffer of

RA. The buffer size of RA is set to 4167 packets, which is equal to the bandwidth-delay product

of the bottleneck link between RA and RB.

Figure 2 shows the total throughput values of HighSpeed TCP and TCP Reno connections

whenNReno = 10 andNHS is changed from 0 to 3. For comparison purpose, we also plot the

results whenNHS endhosts use TCP Reno for data transmission (labelled “broad tcp reno” in

Fig. 2). From this figure, it is observed that the bottleneck link is not fully utilized when HighSpeed

TCP connection does not exist. In Fig. 2, about 200 Mbps bandwidth remains unused. This is

because packet losses take place at the buffer of the router RA, which degrades the throughput

of TCP Reno connections. The throughput of TCP Reno connections is degraded by introducing

13

RBRA

1 [Gbps]

TCP Reno flow

HighSpeed TCP flow

B [pkt]

hstcpNHS sender host

25 [ms]

100 [Mbps]
5 [ms]

1 [Gbps]
5 [ms]

 1 [Gbps]
5 [ms]

 1 [Gbps]

100 [Mbps]
5 [ms]

5 [ms]

RC

hstcp1 sender host

renoNreno sender host

reno1 sender host

renoNreno receiver host

reno1 receiver host

hstcp1 receiver host

hstcpNHS receiver host

Figure 1: Simulation Model

HighSpeed TCP instead of TCP Reno for the data transmission between hstcp hosts. Especially,

the degradation degree becomes large as the number of HighSpeed TCP connection increases. It

is because HighSpeed TCP does not consider the fairness with existing TCP Reno connections,

and the throughput of TCP Reno connection degrades unexpectedly. This unfairness is caused by

the difference of increasing/decreasing speed of the congestion window size, as explained above.

It can be also observed from Fig. 2 that the bottleneck link utilization does not reach 100%

even when we use HighSpeed TCP for data transmission. The reason is that bursty packet losses

occur at the router buffer. Since HighSpeed TCP greatly increases its congestion window size,

more than one packet is lost at the router buffer. Such lost packets cause a retransmission timeout,

since more than three packet losses can not be recovered by a fast retransmit algorithm, which is

the essential nature of TCP [22, 23]. Since the timeout sets the congestion window size to one

packet, it causes the serious throughput degradation. This phenomena can be seen in Fig. 3(a),

which shows the change in the congestion window size as a function of time. It can be observed

14

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3

T
hr

ou
gh

pu
t [

M
bp

s]

The number of HighSpeed TCP flows

broad tcp reno

tcp reno
hstcp

Figure 2: Fairness between HighSpeed TCP and TCP Reno connections

that the HighSpeed TCP connection waits a retransmission timeout and the congestion window

size is set to one packet every time packet losses occur at the router buffer.

We also note that in the initial slow start phase from 0 sec to 5 sec in Fig. 3(a), the window

size increases exponentially and suddenly drops to one packet. This means that many packet

losses occur at the router buffer and the connection experiences a retransmission timeout. This is

because of the slow start algorithm of the traditional TCP which doubles the congestion window

size in each RTT as described in Eq. (1). The problem becomes worse in HighSpeed TCP since

HighSpeed TCP is likely to be used in the high-speed network. To overcome this problem, the

authors in [8] recommended usingLimited Slow Startalgorithm in [24]. It limits the speed of

increasing congestion window size in the slow start phase. However, it is not an essential solution

since it requires manually setting the threshold value at which it starts limiting.

This problem also occurs even if we use RED (Random Early Detection) [25], which avoids

bursty packet losses at the router buffer. Figure 3(b) shows the simulation results when we use

RED at the buffer of the router RA. In this figure, we show the change in the congestion window

15

size as a function of time, in the cases whereminth to 1042 packets (one fourth of the router

buffer sizeB) and 5 packets. We setwq = 0.002, maxp = 0.1, andmaxth = 3125 packets in

both cases. From this figure, we can see that when we setminth to a larger value, many packets

are dropped at the initial slow start phase as in the case of the Taildrop router. This is because the

RED determines its packet discarding probability based on an average queue length at the router

buffer, which results in inability to follow up the drastic increase of the congestion window size.

When we setminth to small value, on the other hand, we can avoid burst packet losses at the

initial slow start phase. However, it takes much time for the congestion window size to become

sufficiently large, as shown in Fig. 3(b).

From the above results, we conclude that HighSpeed TCP can provide larger throughput than

TCP Reno, but it cannot fully utilize the link bandwidth because of bursty packet losses at the

router buffer. It is also shown that HighSpeed TCP degrades the throughput of TCP Reno when

they share the bottleneck link. Furthermore, the problem in the initial slow start phase is more

serious than TCP Reno since HighSpeed TCP is assumed to be used in the high-speed network.

16

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
[p

ac
ke

ts
]

Time [sec]

High Speed TCP

(a) Taildrop

0

5000

10000

15000

20000

0 10 20 30 40 50 60 70 80 90 100

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
[p

ac
ke

ts
]

Time [sec]

minth = 1042
minth = 5

(b) RED

Figure 3: Change of Congestion Window Size

17

4 Fairness Analysis

Through the simulation experiments in the previous section, we have shown that HighSpeed TCP

degrades the throughput of the traditional TCP Reno connection. In this section, we develop a

mathematical analysis to derive the average throughputs of TCP Reno and HighSpeed TCP when

they share the bottleneck link. By using it, we confirm the unfairness of HighSpeed TCP against

TCP Reno analytically.

4.1 Analysis Model

Figure 4 depicts the network model for our analysis. The network model consists of sender and

receiver hosts of TCP Reno connection, sender and receiver hosts of HighSpeed TCP connection,

two routers, and links interconnecting hosts and routers. The bandwidth of the link between

the router RA and router RB is µ packet/sec, the buffer size at the router RA is B packets, the

propagation delay between the sender and receiver hosts isτ sec, the bandwidths of the links

between the HighSpeed TCP hosts and the routers areµHS packet/sec, and those between the TCP

Reno hosts and the routers areµReno packet/sec. For simplification, there is only one TCP Reno

connection and one HighSpeed TCP connection in the network. In our analysis, the HighSpeed

TCP host assumed to be connected to the high-speed link directly. That is, we setµ = µ HS. On

the other hand, we assumeµReno < µ, which means that the access link bandwidth for the TCP

Reno host is smaller than the bottleneck link bandwidth. We assume the sender hosts always have

data to send and continue transmitting as much data as allowed by their congestion window sizes.

4.2 Analysis

In our analysis, we model cyclic changes in the occupation level of the router buffer and the

congestion window size of HighSpeed TCP and TCP Reno connections triggered by packet loss

events, and calculate their average throughput values. As in Section 2, we define the interval from

18

reno sender host

RA

[pkt/sec]

hstcp sender host

TCP Reno flow

HighSpeed TCP flow

τ[sec]

reno receiver host

B [pkt]

[pkt/sec]

µ
Reno[pkt/sec]

µ
Reno[pkt/sec]

µ

µ
HS

[pkt/sec]µ
HS

hstcp receiver host

RB

Figure 4: Analysis Model

the(i − 1)-th packet loss event to thei-th packet loss event as thei-th cycle. We depict a typical

evolution of congestion window sizes of HighSpeed TCP and TCP Reno at thei-th cycle in Fig. 5.

We denote the congestion window sizes of the TCP Reno and HighSpeed TCP connections at the

j-th RTT of thei-th cycle byWReno(i, j) andWHS(i, j), respectively. We also defineSReno(i)

andSHS(i) as thessthresh values of TCP Reno and HighSpeed TCP connections in thei-th

cycle. Furthermore, the window size of both connections in the end of thei-th cycle is defined as

W ′
Reno(i) andW ′

HS(i).

Since the congestion window size at the beginning of thei-th cycle is equal to that at the end

of the(i − 1)-th cycle, the following equations are satisfied:

WReno(i, 1) = W ′
Reno(i − 1)

WHS(i, 1) = W ′
HS(i − 1)

From Eq. (2) in Subsection 2.2, the congestion window size of HighSpeed TCP in the slow start

19

i-th cycle(i-1)-th cycle (i+1)-th cycle

HighSpeed TCP

TCP Reno

WHS(i, L(i)+1)

WHS(i, L(i))

WHS(i, L(i)+2)

SHS(i)

WReno(i, L(i))

SReno(i)

WReno(i, L(i)+1)

WReno(i, L(i)+2)
W’HS(i), W’Reno(i)

Time

C
w

nd

Figure 5: A Typical Evolution of Window Sizes of TCP Reno and HighSpeed TCP Connections

phase and congestion avoidance phase is given by:

WHS(i, j) =

2 · WHS(i, j − 1) if WHS(i, j − 1) < SHS(i)

WHS(i, j − 1) + a(WHS(i, j − 1)) if WHS(i, j − 1) ≥ SHS(i)

We next deriveWReno(i, j), the change in the congestion window size of the TCP Reno connec-

tion. Since we assumeµReno < µ, WReno(i, j) cannot be determined only by Eq. (1). To derive

WReno(i, j), we introduceWlim, the maximum number of packets that can be transmitted in one

RTT by the TCP Reno connections. Since the TCP Reno connection traverses the link ofµReno

bandwidth,Wlim can be described as follows:

Wlim = 2τµReno

Therefore, TCP Reno transmits min(Wlim, WReno(i, j)) packets to the network in each RTT. It

20

means that it receives min(Wlim, WReno(i, j)) ACK packets. Therefore,WReno(i, j) is given by:

WReno(i, j) =

WReno(i, j − 1) + min(Wlim, WReno(i, j − 1))

(if WReno(i, j − 1) < SReno(i))

WReno(i, j − 1) + min(Wlim,WReno(i,j−1))
WReno(i,j−1)

(if WReno(i, j − 1) ≥ SReno(i))

When the buffer of the router RA overflows and a packet loss event occurs, the bottleneck link and

the router buffer are filled by packets from both TCP connections. Considering that the packet loss

event occurs atL(i)-th RTT in i-th cycle, the following equation is satisfied:

min(WReno(i, L(i)),Wlim) + WHS(i, L(i)) > 2τµ + B

We defineD(i) as the number of dropped packets at the buffer overflow. ThenD(i) is given by:

D(i) = WReno(i, L(i)) + WHS(i, L(i))− (2µτ + B)

We further define the number of dropped packets of the TCP Reno connection asDReno(i) and

that of the HighSpeed TCP connection asDHS(i). By assuming that the ratio ofDReno(i) and

DHS(i) is equal to the ratio of their congestion window sizes, the following equations are satisfied:

DReno(i) =
WReno(i, L(i))

WReno(i, L(i)) + WHS(i, L(i))
· D(i)

DHS(i) =
WHS(i, L(i))

WHS(i, L(i))+ WHS(i, L(i))
· D(i)

We next consider the congestion window size of each connection just after the packet losses. Since

we assume Taildrop discipline at the router buffer in our analysis, the packets are dropped in bursty

fashion. That is, we assumeD(i) > 1. When three or more packets are dropped in a window, TCP

Reno retransmits the first two packets by the fast retransmit algorithm, and then the timeout occurs

for the remaining lost packets [22, 23]. HighSpeed TCP has the same algorithm in recovering lost

packets. Since the fast retransmit algorithm halves the congestion window when invoked, the

congestion window sizes of TCP Reno and HighSpeed connections after the first retransmission

21

are derived by:

WReno(i, L(i)+ 1) =
WReno(i, L(i))

2

WHS(i, L(i)+ 1) = WHS(i, L(i)) · (1 − b(WHS(i, L(i))))

Similarly, the congestion window sizes after the second retransmission are given by:

WReno(i, L(i) + 2) =
WReno(i, L(i)+ 1)

2

WHS(i, L(i) + 2) = WHS(i, L(i) + 1) · (1 − b(WHS(i, L(i) + 1)))

The retransmission timeout occurs after the second retransmission, then the congestion window

sizes are set to one packet, and the values ofssthresh are updated as follows:

SReno(i + 1) =
WReno(i, L(i)+ 2)

2

SHS(i + 1) =
WHS(i, L(i)+ 2)

2

Consequently, we can derive the congestion window size after the packet losses:

W ′
Reno(i) =

WReno(i, L(i)+ 1) if DReno(i) = 1

WReno(i, L(i)+ 2) if DReno(i) = 2

1 if DReno(i) ≥ 3

W ′
HS(i) =

WHS(i, L(i) + 1) if DHS(i) = 1

WHS(i, L(i) + 2) if DHS(i) = 2

1 if DHS(i) ≥ 3

We finally derive the average throughputs of the HighSpeed TCP and the TCP Reno connec-

tions by using their congestion window sizes derived by the above analysis. The buffer occupancy

of the bottleneck router RA at thej-th RTT of thei-th cycle is derived by max(WReno(i, j) +

WHS(i, j)− 2µτ, 0). Therefore, we can derive the queuing delay at the router buffer,Q(i, j), at

thej-th RTT of thei-th cycle as follows:

Q(i, j) =
max(WReno(i, j) + WHS(i, j)− 2µτ, 0)

µ

22

Therefore, the average throughputs of TCP RenoρReno and HighSpeed TCPρHS are given by:

ρReno =
∑∞

i=1

∑L(i)
j=1 WReno(i, j)∑∞

i=1

∑L(i)
j=1(Q(i, j)+ 2τ)

(5)

ρHS =
∑∞

i=1

∑L(i)
j=1 WHS(i, j)∑∞

i=1

∑L(i)
j=1(Q(i, j)+ 2τ)

(6)

The average throughput can be obtained by calculating Eqs. (5) and (6) untilρ Reno andρHS

converge to a certain value.

4.3 Numerical Results and Discussions

In this subsection, we verify the accuracy of the analysis by comparing the analysis results with

simulation results. In the simulation, we use the network model depicted in Fig. 4 whereµ =

µHS = 1 Gbps, the propagation delays of the links between sender/receiver hosts and the routers

are all set to 5 msec, the propagation delay of the link between the routers is 25 msec, the packet

size is 1500 Byte, and the buffer size of the bottleneck link is 4167 packets, corresponding to

the bandwidth-delay product of the bottleneck link. We use the parameter set for the HighSpeed

TCP connection as described in Subsection 2.2. Figure 6 shows the analysis results of the average

throughput of each connection as a function of the propagation delay of the bottleneck link. We

change the bottleneck link bandwidth to 100 Mbps (Fig. 6(a)), 12 Mbps (Fig. 6(b)), and 1.5 Mbps

(Fig. 6(c)). For comparison purposes, we also plot the simulation results in each figure. It can be

observed that our analysis gives highly accurate estimate of the throughputs of HighSpeed TCP

and TCP Reno connections regardless of the network environment.

It is also observed that when the propagation delay of the bottleneck link becomes larger,

the HighSpeed TCP connection obtains larger throughput. On the other hand, the throughput of

the TCP Reno connection degrades seriously. This is caused by the difference of the increas-

ing/decreasing algorithm of the congestion window size: TCP Reno changes its congestion win-

dow size independent of its current window size, while HighSpeed TCP increases it faster when

the congestion window size is larger. Consequently, when the propagation delay of the bottleneck

23

becomes large, that is, when the bandwidth-delay product of the bottleneck link becomes large,

HighSpeed TCP occupies the increased bandwidth-delay product quickly, whereas the increas-

ing speed of TCP Reno’s congestion window size remains constant. This brings the unfairness

between HighSpeed TCP and TCP Reno connections.

Especially whenµReno is larger, the throughput degradation of TCP Reno connection is larger.

This is because the rapid increase of the congestion window size of the HighSpeed TCP connection

steals the bottleneck link bandwidth unfairly. HighSpeed TCP takes care of the traditional TCP

connections, by setting the threshold value of the congestion widow size,W low, at which it behaves

identically to TCP Reno. This mechanism mainly aims to keep HighSpeed TCP’s fairness with

TCP Reno in the low-speed network. However, the fairness is not considered at all in the high-

speed network, where HighSpeed TCP can inflate its congestion window size larger than TCP

Reno. This makes the unfairness between HighSpeed TCP and TCP Reno connections in Fig. 6.

As described in Section 1, however, it is the reasonable assumption that there exists both of

the high-speed data transmission between servers and the traditional traffic on a high-speed link.

That is, it is important to improve the fairness characteristics between HighSpeed TCP and TCP

Reno. In the next section, we propose a new congestion control mechanism of TCP that alleviates

the problems of HighSpeed TCP.

24

0

 50

100

150

200

600

700

800

900

1000

1 10 100 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

hstcp (simulation)

reno (simulation)

total (analysis)

reno (analysis)

(a) µReno=100 [Mbps]

0

 5

 10

 15

 20

600

700

800

900

1000

1 10 100 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

hstcp (simulation)

reno (simulation)

total (analysis)

reno (analysis)

(b) µReno=12 [Mbps]

0

 1

 2

600

700

800

900

1000

1 10 100 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

hstcp (simulation)

reno (simulation)

total (analysis)

reno (analysis)

(c) µReno=1.5 [Mbps]

Figure 6: Analysis Results

25

5 Gentle HighSpeed TCP

In this section, we propose a new congestion control mechanism, calledGentle HighSpeed TCP, to

overcome the problems of HighSpeed TCP described in the previous sections. Gentle HighSpeed

TCP can improve throughput of both TCP Reno connections and HighSpeed TCP connections

sharing the network bandwidth. The effectiveness of Gentle HighSpeed TCP is then confirmed by

simulation experiments.

5.1 Algorithm

Figure 7 shows the state transition diagram of TCP Reno. As explained in Subsection 2.1, TCP

Reno has two phases of slow start phase and congestion avoidance phase, and shifts its phase based

on packet loss events and the change of the congestion window. Similarly, Gentle HighSpeed

TCP has two phases. The major differences are the initial slow start phase and the congestion

avoidance phase. In the initial slow start phase, to avoid the degradation of throughput after

bursty packet losses, Gentle HighSpeed TCP moves its state to congestion avoidance phase just

after receiving duplicate ACK packets without waiting a retransmission timeout expiration. In the

congestion avoidance phase, it consists of twomodes. Each phases/modes has a different algorithm

of increasing/decreasing congestion window size. Figure 8 shows the state transition diagram of

Gentle HighSpeed TCP. Gentle HighSpeed TCP estimates the network congestion level based on

packet loss and changes in RTTs of transmitted packets, and shifts its state based on the estimation.

In what follows, we explain detailed algorithm of Gentle HighSpeed TCP in all phases and modes.

5.1.1 Slow Start Phase

Many studies have been done on avoiding the burst packet losses in the initial slow start phase

shown in Section 3 and various methods have been proposed [24, 26]. But, most of those methods

have essential problems in setting parameters to work effectively. The difficulty is that the appro-

26

Slow Start

Connection
establishment

Congestion Avoidance

Fast retransmit

Fast retransmit
 or
cwnd > ssthresh

Timeout

Timeout

Figure 7: State Transition Diagram of TCP Reno

priate parameter set significantly depends on network environment such as RTT, link bandwidth,

buffer size at the router buffer, number of competing connections, and so on. Needless to say, the

objective of increasing the congestion window size exponentially at the initial slow start phase is

to find the available bandwidth of the traversing path quickly. In general, however, it is difficult to

achieve the two opposite goals at the initial slow start phase, namely, to find the available band-

width quickly and to avoid burst packet losses at the bottleneck router, since the sender host has

little information about the network at the beginning of the data transmission.

Instead of trying to avoid burst packet losses at the initial slow start phase, therefore, we fo-

cus on avoiding waiting retransmission timeout after burst packet losses and resuming the data

transmission quickly. When a sender host receives duplicate ACK packets at the initial slow start

phase, it changes itsssthresh value and congestion window size to one half and one fourth of

the current congestion window size, respectively, and it restarts its packet transmission without

waiting the retransmission timer expiration, from the packet requested to be retransmitted by the

duplicate ACK packets. The reasons of one half forssthresh value and one forth for the conges-

tion window size, instead of one half forssthresh and one packet for the congestion window size

in the traditional TCPs, are based on the following discussion.

We assume that a TCP receiver host sends an ACK packet in receiving a data packet from a

27

Slow Start

Connection
establishment

Congestion Avoidance
 HighSpeed Mode

Fast retransmit

Timeout

Fast retransmit
 or
cwnd > ssthresh

Congestion Avoidance
 Reno Mode

Timeout

Decreasing delay
 or
Fast retransmit

Increasing delay

Timeout

Figure 8: State Transition Diagram of Gentle HighSpeed TCP

TCP sender host, and that the available bandwidth of the network remains stable. Then, the arrival

rate of ACK packets at the TCP sender host becomes almost equal to the packet processing speed

of the bottleneck router of the forward path of the TCP connection. Let us consider the case where

the TCP sender host receives duplicate ACK packets when the congestion window size isW in

the slow start phase. Since the sender TCP sends two packets on receiving an ACK packet in the

slow start phase as explained in Section 2, it is considered thatW/2 out ofW packets are queued

at bottleneck router buffer. Consequently, the size of the router buffer is smaller thanW/2 since

the sender host experiences packet losses in this cycle. Furthermore, looking at the previous cycle,

we can guess thatW/2 packets are successfully transmitted since the window size has increased

to W . Then, by applying the same discussion as above, we can estimate that the router buffer

size is larger thanW/4. Consequently, by setting thessthresh value toW/2 and the congestion

window size toW/4, we can obtain larger throughput without packet losses.

28

Gentle HighSpeed TCP shifts its phase from slow start phase to congestion avoidance phase

when the congestion window size becomes larger than thessthresh value as TCP Reno does. In

addition to this, it quits the slow start phase when it receives an ACK packet for a packet at the

beginning of a window before completing transmission of the packets in the window.

5.1.2 Congestion Avoidance Phase

The original HighSpeed TCP increases its congestion window size dependently only on the cur-

rent size of the congestion window. It causes bursty packet losses because it continues increasing

the congestion window size even when the packets in the window begin to be queued at the router

buffer. Furthermore, the difference of the increasing speed of the congestion window makes un-

fairness between HighSpeed TCP and TCP Reno. Therefore, we consider that the ideal mechanism

is to change the behavior of TCP according to whether the bottleneck link is fully utilized of not.

Our proposed mechanisms, calledGentle HighSpeed TCPrealizes such behavior. That is, when

the utilization of the bottleneck link is under 100%, Gentle HighSpeed TCP uses the same algo-

rithm as the original HighSpeed TCP. When the bottleneck link is fully utilized, on the other hand,

Gentle HighSpeed TCP behaves equally to TCP Reno. In what follows, we explain the detailed

algorithm of the two modes of Gentle HighSpeed TCP, which is HighSpeed mode and Reno mode,

and the algorithm how to change its mode.

HighSpeed mode

When the bottleneck link utilization is under 100%, the sender host uses the HighSpeed mode,

where the algorithm of changing the congestion window size is the same as that of the original

HighSpeed TCP. Therefore, the window size increases rapidly, which results in that it can uti-

lize the network bandwidth quickly and effectively. Furthermore, it judges whether the network

bandwidth is fully utilized, and determines that it shifts its mode to Reno mode or it remains in

HighSpeed mode. To estimate the bottleneck link utilization, Gentle HighSpeed TCP uses RTT

values of transmitted packets. When the measured RTTs indicate an increasing trend, it determines

29

whether the link bandwidth is fully utilized, and vice versa. The algorithm is quite simple: Define

RTT values and departure times ofn transmitted packets asd1, · · · , dn andt1, · · · , tn, respectively,

and check a correlation betweend1, · · · , dn andt1, · · · , tn by statistical test. If a positive correla-

tion is recognized, we determine that there is an increasing trend in the observed RTT values and

move to the Reno mode.

When a packet dropping event is detected and retransmitted by fast retransmit algorithm, the

sender host remains in HighSpeed mode. When a retransmission timeout occurs, it halves the

ssthresh value, reset the congestion window size to one packet, and change its phase to slow start

phase described in Subsection 5.1.1.

Reno mode

When Gentle HighSpeed TCP operates in the Reno mode, it is considered that the network band-

width is fully utilized and packets are going to be queued at the bottleneck router. One possible

way to keep the link utilization is to stop increasing or to decrease the congestion window size like

TCP Vegas [27]. However, it was reported that TCP Vegas can not keep fairness with competing

TCP Reno connections since it is too conservative compared with TCP Reno, which continues

increasing the congestion window size [17, 28, 29]. Consequently, our solution is to make Gen-

tle HighSpeed TCP behave identically with TCP Reno. It is a very straightforward idea to keep

fairness with TCP Reno, but gives quite good results as shown in the next subsection.

The behavior in facing packet losses is identical to that in the HighSpeed mode. In Reno mode

the sender host also measures RTT values of transmitted packets, and checks their changing trend

by the same method as in HighSpeed mode. When a decreasing trend is recognized by statistical

test, the sender host changes its mode to HighSpeed mode since it is considered that the link

utilization becomes lower than 100%.

30

5.2 Performance Evaluation

In this subsection, we evaluate the performance of Gentle HighSpeed TCP through simulation ex-

periments. The simulation environments here are the same as in Section 3 except that hstcp1, . . . ,

and hstcpNHS
hosts in Fig. 1 use Gentle HighSpeed TCP. Figure 9 shows the total throughput of

Gentle HighSpeed TCP and TCP Reno connections whenNReno = 10 and the number of Gentle

HighSpeed TCPNHS is changed from 0 to 3. From this figure, Gentle HighSpeed TCP can utilize

almost 100% bandwidth of the link. It is because Gentle HighSpeed TCP behaves identically to

TCP Reno when the queue length at the bottleneck router buffer begins to increase. As a result

of that, the number of lost packets in a buffer overflow is significantly decreased since TCP Reno

increases its congestion window size by 1 packet every RTT, which successfully avoids retrans-

mission timeouts. It can be confirmed from Fig. 10, which shows the change in packet loss rate

of the TCP connections. We can clearly see that the packet loss rate dramatically decreases by

introducing our Gentle HighSpeed TCP.

Moreover, as compared with the simulation results of HighSpeed TCP shown in Fig. 2, Gentle

HighSpeed TCP does not degrade the throughput of existing TCP Reno connections. This is

because Gentle HighSpeed TCP connections compete equally with the TCP Reno connections

when the bottleneck link is fully utilized. This characteristics of Gentle HighSpeed TCP can be

also confirmed from Fig. 11, where we show the simulation results under the same network model

as that in Fig. 6 for Gentle HighSpeed TCP. It can be clearly observed that our Gentle HighSpeed

TCP does not steal the throughput of a TCP Reno connection while keeping 100% utilization of

the bottleneck link, regardless of the propagation delay of the bottleneck link and the access link

bandwidth of the TCP Reno connection.

From the above simulation results, we conclude that Gentle HighSpeed TCP proposed in this

thesis can fully utilize the bottleneck link and keep good fairness with TCP Reno connections.

31

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3

T
hr

ou
gh

pu
t [

M
bp

s]

The number of HighSpeed TCP flows

broad tcp reno
hstcp

tcp reno
Gentle hstcp

Figure 9: Effect of Number of Gentle HighSpeed TCP Connections

0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

4e-05

4.5e-05

1 10 100

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

Gentle hstcp
hstcp

Figure 10: Comparison of Packet Loss Probability

32

0

100

200

600

800

1000

1 10 100

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

Gentle hstcp
tcp reno

(a) µReno=100 [Mbps]

0

 5

 10

 15

 20

600

700

800

900

1000

1 10 100

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

Gentle hstcp
tcp reno

(b) µReno=12 [Mbps]

0

 1

 2

600

700

800

900

1000

1 10 100

T
hr

ou
gh

pu
t [

M
bp

s]

Delay [ms]

Gentle hstcp
tcp reno

(c) µReno=1.5 [Mbps]

Figure 11: Effect of Propagation Delay

33

6 Conclusion

In this thesis, we have first evaluated the characteristics of HighSpeed TCP in terms of both

throughput and fairness with TCP Reno, through simulation and mathematical analysis studies.

The results are that HighSpeed TCP can provide larger throughput than TCP Reno, but it cannot

fully utilize the link bandwidth because of bursty packet losses at the router buffer. It has been

also shown that HighSpeed TCP degrades the throughput of TCP Reno when they share the bot-

tleneck link. Moreover, the problem of bursty packet losses at the initial slow start phase has been

pointed out. To overcome these problems, we have proposed a new congestion control mecha-

nism, called Gentle HighSpeed TCP, which has the enhanced mechanisms in both of slow start

and congestion avoidance phase. We have evaluated the performance of Gentle HighSpeed TCP

through simulation experiments, and confirmed that Gentle HighSpeed TCP can fully utilize the

network bandwidth and keep better fairness against existing TCP Reno connections.

34

Acknowledgements

I would like to express my sincere appreciation and deep gratitude to my advisor, Professor

Masayuki Murata of Osaka University, who introduced me to the area of computer networks in-

cluding the subjects in the thesis and advice throughout my studies and during preparation of this

manuscript.

This thesis would not been possible without the support of Associate Professor Go Hasegawa

of Osaka University. He has been constant sources of encouragement and advice throughout my

studies and in the preparation of this thesis. It gives me great pleasure to acknowledge his support.

Thanks are also due to Professor Hideo Miyahara and Professor Shinji Shimojo of Osaka

University who gave me a great deal of valuable advice.

I am also indebted to Associate Professor Masashi Sugano of Osaka Prefecture College of

Health Sciences, Associate Professor Ken-ichi Baba of Osaka University, Associate Professor

Naoki Wakamiya of Osaka University, Associate Professor Hiroyuki Ohsaki of Osaka University

and Research Assistant Shinichi Arakawa of Osaka University for their many helpful comments

and feedbacks.

I also wish to express my heartfelt thanks to many friends and colleagues in the Department

of Informatics and Mathematical Science, Graduate School of Engineering Science, Osaka Uni-

versity for their generous, enlightening and valuable suggestions and advice.

Finally, I am deeply grateful to my parents. They have always stood behind me and supported

me.

35

References

[1] M. Murata, “Challenges for the next-generation Internet and the role of IP over photonic

networks,”IEEE Transactions on Communications, vol. E83-B, pp. 2153–2165, Oct. 2000.

[2] J. L. Wei, C.-D. LIU, S.-Y. PARK, K. H. LIU, R. S. Ramamurthy, H. KIM, and M. W.

MAEDA, “Network control and management for the next generation Internet,”IEEE Trans-

actions on Communications, vol. E83-B, pp. 2191–2209, Oct. 2000.

[3] W. R. Stevens,TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts:

Addison-Wesley, 1994.

[4] V. Jacobson and M. J. Karel, “Congestion avoidance and control,” inProceedings of ACM

SIGCOMM ’88, pp. 314–329, Nov. 1988.

[5] “Global Grid forum.” available athttp://www.gridforum.org/.

[6] B. phillips, “Have storage area networks come of age?,”IEEE Computer, vol. 31, pp. 10–12,

July 1998.

[7] J. J. Bunn, J. C. Doyle, S. H. Low, H. B. Newman, and S. M. Yip, “Ultrascale network

protocols for computing and science in the 21st century,”White Paper of United States of

America, Sept. 2002.

[8] S. Floyd, “HighSpeed TCP for large congestion windows,”Internet Draft draft-floyd-tcp-

highspeed-01.txt, Aug. 2002.

[9] E. de Souza, “Simulation study of proposed HighSpeed TCP for large congestion windows.”

available athttp://www-itg.lbl.gov/˜evandro/hstcp/.

[10] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and stability of congestion control

mechanisms of TCP,”Telecommunication Systems Journal, vol. 15, pp. 167–184, Nov. 2000.

36

[11] L. Guo and I. Matta, “The war between mice and elephants,”Technical Report BU-CS-2001-

005, May 2001.

[12] K. Tokuda, G. Hasegawa, and M. Murata, “Analysis and improvement of fairness between

long-lived and short-lived TCP connections,” inProceedings of IEEE PfHSN 2002, pp. 151–

158, Apr. 2002.

[13] K. Tokuda, G. Hasegawa, and M. Murata, “TCP throughput analysis with variable packet loss

probability for improving fairness among long/short-lived TCP connections,” inProceedings

of IEEE CQR 2002, pp. 52–56, May 2002.

[14] P. Hurley, J.-Y. L. Boudec, and P. Thiran, “A note on the fairness of additive increase and

multiplicative decrease,” inProceedings of 16th International Teletraffic Congress, pp. 336–

350, June 1999.

[15] J. Martin, A. Nilsson, and I. Rhee, “The incremental deployability of RTT-based congestion

avoidance for high speed TCP Internet connections,” inProceedings of ACM SIGMETRICS

’2000, pp. 134–144, June 2000.

[16] A. Veres and M. Boda, “The chaotic nature of TCP congestion control,” inProceedings of

IEEE INFOCOM ’2000, Mar. 2000.

[17] O. Ait-Hellal and E. Altman, “Analysis of TCP Vegas and Reno,”Journal of Telecommuni-

cation Systems, vol. 15, no. 3,4, pp. 381–404, 2000.

[18] Robert Morris, “TCP behavior with many flows,” inProceedings of IEEE International Con-

ference on Network Protocols, October 1997.

[19] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks,”Journal of Computer Networks and ISDN Systems, pp. 1–

14, June 1989.

37

[20] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP con-

gestion avoidance algorithm,”ACM SIGCOMM Computer Communication Review, vol. 27,

pp. 67–82, July 1997.

[21] The VINT Project, “UCB/LBNL/VINT Network Simulator - ns (Version 2).” available

athttp://www.isi.edu/nsnam/ns/.

[22] J. C. Hoe, “Start-up dynamics of TCP’s congestion control and avoidance schemes,”Master

Thesis, Massachusetts Institute of Technology, June 1995.

[23] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK TCP,”

Computer Communication Review, vol. 26, pp. 5–21, July 1996.

[24] S. Floyd, “Limited slow-start for TCP with large congestion windows,”Internet Draft draft-

floyd-tcp-slowstart-01.txt, Aug. 2002.

[25] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”

IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, Aug. 1993.

[26] J. C. Hoe, “Improving the start-up behavior of a congestion control scheme of TCP,”ACM

SIGCOMM Computer Communication Review, vol. 26, pp. 270–280, Oct. 1996.

[27] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New techniques for conges-

tion detection and avoidance,” inProceedings of IEEE SIGCOMM ’94, pp. 24–35, 1994.

[28] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement of fairness between

TCP Reno and Vegas for deployment of TCP Vegas to the Internet,” inProceedings of IEEE

ICNP 2000, pp. 177–186, Nov. 2000.

[29] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and comparison of TCP Reno and

Vegas,” inProceedings of IEEE INFOCOM ’99, pp. 1556–1563, Mar. 1999.

38

