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Abstract

With the growth of computing power and the proliferation of broadband access to the Internet,

streaming distribution services have widely diffused. Content providers apply the proxy caching

technique to accomplish effective streaming distribution services. However, the current proxy

mechanism has several problems in achieving scalability to the number of users and flexibility in

handling the diversity of users demands. In a peer-to-peer (P2P) network, a host called a “peer”

directly communicates and exchanges information and data with other hosts. By using the P2P

communication architecture, streaming distribution services can be expected to smoothly react to

network conditions and changes in user demands for media-streams. In this thesis, we propose

efficient methods to achieve continuous and scalable media streaming service. First, segmentation

of media streams is done for efficient use of network bandwidth and storage space. Next, we

propose two scalable methods to search a desired media block. Finally, we propose two algorithms

to determine an optimum provider peer from the results obtained by the search methods. Through

several simulation experiments, we show that the FLS method can perform continuous media

play-out while reducing the amount of search traffic to 1/10 compared with full flooding.

Keywords

1



P2P (Peer-to-Peer)

media streaming

continuous media play-out

scalability

streaming media caching

2



Contents

1 Introduction 5

2 Media Streaming on P2P Networks 8

2.1 Segmentation of Media Stream .. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Basic Behavior of Proposed System. . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Block Search Mechanism and Algorithm. . . . . . . . . . . . . . . . . . . . . . 14

2.4 Block Retrieval Mechanism and Algorithm. . . . . . . . . . . . . . . . . . . . 19

3 Simulation Experiments 24

3.1 Simulation Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Evaluation of Scalability of Search Mechanism . . .. . . . . . . . . . . . . . . 26

3.3 Evaluation of Continuity of Media Play-out. . . . . . . . . . . . . . . . . . . . 30

4 Conclusions 34

Acknowledgements 35

References 37

3



List of Figures

1 P2P media streaming service . .. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Basic behavior of our mechanism (N = 4) . . . . . . . . . . . . . . . . . . . . . 11

3 Search start time (N = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Random network with fifty peers . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Number of queries (full flooding, SF method). . . . . . . . . . . . . . . . . . . 27

6 Number of queries (full flooding, SR method). . . . . . . . . . . . . . . . . . . 27

7 Number of queries (FL method, SF method). . . . . . . . . . . . . . . . . . . . 28

8 Number of queries (FL method, SR method). . . . . . . . . . . . . . . . . . . . 28

9 Number of queries (FLS method, SF method). . . . . . . . . . . . . . . . . . . 29

10 Number of queries (FLS method, SR method). . . . . . . . . . . . . . . . . . . 29

11 Waiting time (SF method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12 Waiting time (SR method) . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 31

13 Number of requests (SF method). . . . . . . . . . . . . . . . . . . . . . . . . . 32

14 Number of requests (SR method). . . . . . . . . . . . . . . . . . . . . . . . . . 32

15 Completeness (SF method) . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 33

16 Completeness (SR method) . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4



1 Introduction

With the growth of computing power and the proliferation of broadband access to the Internet,

such as ADSL and FTTH, streaming distribution services have widely diffused. A user receives

a media stream over the Internet and plays it out on his/her client system as it gradually arrives.

However, in the current Internet, only the best effort service, in which there is no guarantee on

bandwidth, delay and packet loss probability, is still a major transport mechanism. Henceforth,

streaming distribution services cannot provide users with media streams in a continuous way. As

a result, the perceived quality of the media stream played out at the client system cannot satisfy

the user’s demand, and the user experiences freezes, flickers, and long pauses.

The proxy mechanism widely used in WWW systems offers low-delay and reliable delivery

of data by means of a “proxy server.” The proxy server deposits multimedia data that have passed

through it in its local buffer, called the “cached buffer,” and then it provides cached data to users

on demand in place of the original content server. By applying the proxy mechanism to streaming

distribution services, we expect that high-quality and low-delay streaming distribution can be ac-

complished without introducing extra load on the system. However, the current proxy mechanism

has several problems. For example, the current proxy mechanism cannot adapt to the variations of

user locations and diverse user demands. Since original media servers and proxy servers are stat-

ically established at specific locations, users distant from those servers are still forced to retrieve

a media stream over a long-haul and unreliable connection to a server. Even if servers are placed

at some appropriate locations considering the distribution of users, the problem cannot be solved

due to unpredictability of users behaviors, movements, and demands.

Peer-to-peer (P2P) is a new network paradigm to solve these problems. In a P2P network,

peers, entities that constitute the P2P network, communicate with each other and exchange in-
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formation without the mediation of servers. One typical example of P2P applications is a file-

sharing system, such as Napster [1] and Gnutella [2]. In a conventional file-sharing system just

like WWW/proxy server system, there is a widely known server that stores and maintains files.

When two or more hosts want to share a file, one host that possesses the original file first deposits

it in a designated server. Then, another host retrieves this file from the server. However, it has

been pointed out that the server-client model lacks scalability and stability. All information is con-

centrated in a few designated servers that are statically located at various points in the network,

and they have to process all requests coming in. On the other hand, in P2P file-sharing, a con-

sumer peer directly communicates with a provider peer to obtain a file. Since there is no server,

over-concentration of traffic can be avoided.

By using the P2P communication technique, streaming distribution services can be expected

to flexibly react to network conditions and changes in user demands for media streams. The P2P

network is dynamically constructed by instances of joining and leaving the network by peers.

A consumer peer searches a desired media stream by itself and retrieves it from an appropriate

provider peer. At this time, the consumer peer can become a provider peer of the media stream

for other peers. As a result, a desired media stream automatically gathers at a required point in the

network. For a short media stream, we can apply an existing P2P file-sharing system by regarding

the entire media stream as a small file. A peer finds and retrieves a corresponding file and plays

it out as fast as it begins to receive it. The network congestion does not affect the video play-out

much since retrieving a small file lasts only a short period time. On the other hand, when a media

stream is long, we should take into account the influence of changes in network conditions. Since

current P2P file-sharing systems do not allow users to take an arbitrary part of a file, a peer has

to persist with one provider peer whose transmission capability considerably deteriorates once file
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retrieval has begun.

There have been several research works on P2P media streaming [3, 4, 5, 6, 7]. Most of

these have constructed an application-level multicast tree whose root is an original media server

while the peers function as intermediate nodes and leaves. This architecture is effective when

user demands are simultaneous and concentrated on a specific media stream, as in live-media

streaming services. However, when demands arise intermittently and peers request a variety of

media streams, as in current P2P services, an efficient distribution tree cannot be composed.

In this thesis, we discuss a continuous and scalable method for media streaming services on

pure P2P networks. In our mechanism, by taking into account the network conditions and the time-

liness of data arrival, a peer finds a set of peers having a desired media stream and then retrieves

the media stream from the most appropriate peer. We propose efficient methods to achieve con-

tinuous and scalable media streaming service. First, we propose segmentation of media streams

for efficient use of storage space and bandwidth. Next, we propose two scalable methods to find a

desired media block. Finally, we propose two algorithms to determine an optimum provider peer

from the search results. Through several simulation experiments, we compare several combina-

tions of those methods and algorithms, in terms of the amount of search traffic and the continuity

of media play-out.

The rest of the paper is organized as follows. In Section 2, we give an overview of our stream-

ing system on P2P networks and propose several methods to accomplish continuous and scalable

media streaming services. Next, in Section 3, we evaluate our proposed methods through several

simulation experiments. Finally, we conclude the paper and describe future works in Section 4.
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2 Media Streaming on P2P Networks

Figure 1 illustrates a P2P media streaming service that we assume. The P2P media streaming

service does not depend on any server, that is, it’s a pure P2P service. There might be a media

server that has a large number of media streams, but it is still regarded as a peer. A peer finds and

obtains a desired media stream by itself and plays it out as it arrives.

A peer participating in our service first joins in a logical P2P network for the streaming service.

Members of the P2P logical network are peers that are being served. Some of them may be

watching media streams while the others are not. Each peer maintains a part or the whole of one or

more media streams that it has watched or is watching. Since there is no server that manages meta

Peer A

Peer C

Peer B

Peer D

Peer F

Peer E

New peer

1. Join

2. Query

3. Forward

3. Forward

3. Forward

3. Forward

4. Response

4. Response

5. Request

6. Transmit

Search link

Data link
Desired media stream

Figure 1: P2P media streaming service
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information such as locations of peers and media data, the new peer itself searches the P2P network

for a desired media stream by flooding query messages. Query messages are relayed among peers

in the logical network. A peer that has the corresponding media stream sends a response message

about cached data. The new peer determines an appropriate peer for retrieving the media stream

on the basis of responses, retrieves it from the peer, and plays it out. The new peer repeats the

same procedure until it successfully receives and perceives the entire media stream. Thus, each

peer plays the roles of both consumer and provider. Messages and media streams are transferred

over TCP and UDP sessions, respectively.

In our system, a media stream is divided into blocks for efficient use of network bandwidth and

storage space. A peer retrieves and stores a media stream in a block-by-block basis. The details

of the segmentation will be given in Subsection 2.1. A consumer peer finds blocks by sending a

query message. Since the query messages propagates in the P2P network in an exhaustive way,

we propose two scalable methods for searching a desired block in Subsection 2.3. In accordance

with obtained search results, the peer determines an appropriate peer to retrieve a block. We will

propose two algorithms for this purpose in Subsection 2.4.

2.1 Segmentation of Media Stream

In recent years, high-capacity hard disks have become available at low prices. However, even such

disks be easily filled to capacity by media files when the entirety of a long media stream is stored

as a file. For example, one file amounts to 7.2 GBytes for a two-hour-long media stream coded at

8 Mbps. In addition, media-by-media storage makes it difficult for a peer to obtain or refer to an

arbitrary position in a media stream since a P2P file-sharing system forces a peer to retrieve the

whole file before it uses only part of a media stream. For the efficient use of storage space and the
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retrieval of necessary parts of a media stream, it is effective to divide a media stream into blocks

and handle each block as one file [8, 9, 10, 11]. The unit of a “block” is determined so that it can

be encoded and decoded by itself. An example of a block unit is a multiple of the GoP (Group

of Pictures) of MPEG-2. A GoP can be coded and decode independent of the other GoP, when

the closed-GoP algorithm is employed. In addition, the CBR coding algorithm now widely used

adjusts the size of the coded media data to the desired level on a GoP-by-GoP basis. A typical GoP

corresponds to duration of 0.5 or 1.0 second. Dividing a two-hour media stream into one-second

blocks results in 7200 files per stream. It apparently makes it difficult to maintain cache buffer.

Therefore, to have a multiple of GoP is reasonable for a MPEG-2 media stream. However, a longer

block introduces the possibility that the network condition drastically changes while retrieving a

block and, as a result, the continuous media play-out cannot be attained. In our experiments in

Section 3, we use a block of 10 seconds.

2.2 Basic Behavior of Proposed System

A peer finds and obtains a desired block by itself without the mediation of servers. In an ideal

network where bandwidth is unlimited and propagation delay is negligible, the easiest mechanism

for searching and retrieving a media block is to send query messages to all other peers by “flood-

ing” the query, collecting as much response messages as possible, choosing one peer that has the

block, and retrieving the block on a block-by-block basis. In such flooding, a peer that receives

a query message relays it to neighboring peers that it knows. However, in an actual situations,

the bandwidth available for message exchanges and block retrieval is limited, and delay is intro-

duced. A block-by-block exhaustive search by flooding apparently consumes much bandwidth

as the number of peers increases and lacks scalability, although flooding is a powerful means of
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finding media data. Therefore, our mechanism employs two methods to efficiently and effectively

search and retrieve blocks without deteriorating the scalability of media streaming services.

The first method is based on a per-group search. A consumer peer periodically sends out a

query message forN consecutive blocks. Figure 2 illustrates an example ofN = 4. The symbols

on the horizontal axis in the figure are for further use in the next subsection.P A, PB, PC , and

PD indicate candidates of provider peers that are within the range of the propagation of query

messages. Numbers in parentheses besides peers stand for identifiers of the blocks that a peer has.

At time Ts(1), a query message for blocks from 1 to 4 is sent out from a consumer peer to the

closest peerPA. SincePA has the second block out of four requested blocks, it returns a response

AP

B
P

CP

DP
(1, 4, 5)

(none)

(1,3)

(2)

)1(pT )2(pT )3(pT )4(pT

Block 1 Block 2 Block 3 Block 4

)1(rT )2(rT )3(rT )4(rT

)1(fT )2(fT )3(fT )4(fT

CConsumer

AP

B
P

C
P

DP

Query (upward) and 

Response (donward)

Request (upward) and 

Transmit (downward)

Logical topology
Round 1

)1(sT

Figure 2: Basic behavior of our mechanism (N = 4)

11



message. The response message contains a list of identifiers of the blocks it has. It also relays the

query to the next neighboring peerPB. PB also responses and relays the query. SincePC does not

have any of the four blocks, it only relays the query. Finally,PD sends back a response message.

The consumer peer first waits for a response for block 1. However, if no response for block

1 arrives untilTs(1) + 4, the consumer peer gives up watching the media stream. Since it takes

twice the response time to start the media play-out as shown in Fig. 2 and we have the so-called

eight-second rule [12], we consider a time-out value of four seconds as appropriate. On receiving

the response, the consumer peer immediately sends out a request message to retrieve the first block

from the provider peerPB for faster media play-out. By observing the way that the response mes-

sage is received in regard to the query message, the consumer estimates the available bandwidth

and the transfer delay from the provider peer. The estimates are updated through reception of me-

dia data. For more precise estimation, we can use any other measurement tools as long as they do

not disturb media streaming. From estimations, the consumer peer predicts the completion time of

retrieval of the first block. Since the received block is immediately decoded and displayed, dead-

lines of retrieval of all succeeding blocks are determined at this time. For each of blocks 2 through

4, the consumer chooses an appropriate peer to retrieve the block in time on the basis of received

response messages and deadline. To efficiently utilize the bandwidth and avoid congestion, the

retrieval of a block is scheduled to start immediately after the preceding block is completely re-

trieved as illustrated in Fig. 2. We define the period of the retrieval of blocks from1 toN as round

1. A query message for the nextN blocks in round 2 is also scheduled appropriately so that the

peer can receive enough responses and the retrieval of blockN + 1 starts at the desired instant.

For the detailed scheduling algorithm, refer to the following subsections.

Our per-group search spoils the freshness of responses. Since a provider peer is also a customer

12



of the media streaming service, it may watch a media stream at the same time, and the contents

of its cache buffer may change. The limited capacity of a cache buffer raises the possibility that

the required block, which is listed in the response, disappears when the consumer peer decides to

retrieve the block from the peer and a request message arrives at the peer. To solve this problem, the

consumer peer takes into account the probability of such disappearance in selecting the provider

peer from which to retrieve the block. For this purpose, we employ LRU (Least Recently Used)

as a caching algorithm, and the response message takes the form of a list of all cached blocks in

ascending order of referenced time.

The second method contributing to scalability is the suppression of message exchanges. In

a P2P framework, a peer relays a query message to all of the logically neighboring peers that it

knows. A response message is reversely relayed backward on the same path that the corresponding

query message traversed. This kind of search is called “flooding.” The number of relays is limited

by the same mechanism as in the IP protocol. When a query is sent out, it is given a TTL (Time

To Live) designation, which specifies the maximum number of relays. When an intermediate peer

relays a query to neighboring peers, it decreases the TTL by one. If a peer receives a query with

TTL equal to zero, it ceases to relay the query.

This flooding with a large TTL costs much in the number of message exchanges and the

bandwidth consumed, although a peer can find many peers that have some of the required blocks.

When a query is given a TTL whose value isH and a peer knowsD other peers, the number of

query messages relayed becomes
H∑

i=1

(D−1)i = O((D−1)H+1). Each participant regularly sends

queries to find and retrieve media data. Even if we employ group-based searching, the bandwidth

consumed by searches becomes huge as the number of peers increases.

Our second method decreases bandwidth consumption and improves scalability. In the first
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search, where a newly participating peer tries to find as many candidate providers as possible, full

flooding is conducted where a query message is given a TTL whose value isH . For example,

the default value of Gnutella, i.e., 7, is used as TTL. For the succeeding searches, the relay limit

is decreased toH ′ < H so that the peer can receive a sufficient number of response messages

without wasting bandwidth. This is called limited flooding. Furthermore, we consider a selective

search where query messages are directly sent from the peer to a selected set of candidate peers

in unicast sessions. Detailed discussions on how we combine these three types of searches will be

given in the next subsection.

2.3 Block Search Mechanism and Algorithm

A new peer first tries full flooding by sending query messages to neighboring peers. A query

message consists of a query identifier, a media identifier, a pair of block identifiers to specify the

range of blocks needed, e.g.,(1, N), a time stamp, and TTL. The query identifier and the media

identifier are each uniquely numbered.

When an intermediate peer receives the query, it first refers to a forwarding table to avoid

making a loop of query relays. The forwading table is composed of pairs of a query identifier and

a peer identifier from which the peer received the query. If the query identifier of the received

query message is already recorded in the forwarding table, the query is discarded. A peer that has

any of blocks in the specified range sends back a response message by relaying backward on the

same path that the corresponding query message traversed. The response message contains a list

of all cached blocks in ascending order of referenced time, the TTL in the query, and sum of the

timestamp in the query and processing time of the query. Each entry of the block list consists of

a media identifier, a block number, and block size. Therefore, the block located at the head of the
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list can be regarded as the first candidate of replacement by the LRU algorithm. Then, the query

message is relayed to neighboring peers after decreasing the TTL by one if TTL is not zero. When

there are two or more neighboring peers, the peer makes copies of the query message and sends

them to neighboring peers.

While retrieving the firstN blocks, the new peer searches the nextN blocks. As mentioned in

the previous subsection, full flooding costs much in terms of the number of messages exchanged

and the bandwidth consumed. In order to efficiently gather sufficient information about desired

blocks without introducing extra load on the network, it is effective to restrict the number of peers

to be searched by carefully choosing TTL on the basis of the previous search results. In limited

flooding, TTL is determined so that all peers that are expected to have any of blocks to retrieve in

the next round are within the range of search. As mentioned in Subsection 2.2, the contents of a

cache change as time passes. Since a peer does not have any way to know the contents of another

peer’s cache at the time it determines TTL, it conjectures the transition of the contents from an

obtained response. Asssuming that a peer is watching a media stream without interactions such as

rewinding, pausing, and fast-forwarding, and that the cache buffer is filled with blocks, the number

of blocks removed can be estimated by dividing the elapsed time from the arrival of the response

message by one block timeBt. For example,Bt is equal to 0.5 sec when a block corresponds to

a GoP of 15 frames and the media is played out at 30 frames per second. The peer conjectures

the contents of all peers that returned response messages and obtains a setR of peers, which are

expected to have at least one of blocks fromN + 1 to 2N . We should note here that we do not

take into account blocks cached after a response message is generated, since we cannot predict

which block of what media stream will be retrieved and cached without up-to-date knowledge of

a distant peer’s behavior. It is also risky to rely on a block that has not existed but is expected to
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exist.

To further reduce the amount of search traffic, we propose a selective search method. The

purpose of the flooding scheme is to find potential peers that did not respond to the previous query

but newly obtains blocks of interest. Flooding also finds peers that have newly joined the service.

However, the sufficient number of peers is already known, and they are expected to have blocks

in the next round. Accordingly, it is less efficient to use flooding to find only a few new candidate

peers while introducing a high load on the network. In such a case, it is useful to directly send

queries to known peers to confirm the existence of desired blocks.

We propose two scalable search methods by combining full flooding, limited flooding, and

selective search.

FL method

The FL method is a combination of full flooding and limited flooding. For blocks of the next

round, a peer conducts (1) limited flooding if the conjectured contents of cache buffers of

peers inR satisfies all of the next round’s blocks, or (2) full flooding, if one or more blocks

cannot be found in the conjectured cache contents of peers inR.

FLS method

The FLS method is a combination of full flooding, limited flooding, and selective search.

For the next round’s blocks, a peer conducts (1) selective search if the conjectured contents

of cache buffers of peers inR contain all of the next round’s blocks, (2) limited flooding

if any one of the next round’s blocks cannot be found in the conjectured cache contents of

peers inR, or finally, (3) full flooding if none of the provider peers it knows is expected to

have any block of the next round, i.e.,R = φ.

Here, we examine the scalability of each method in terms of the amount of search trafficV
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that a peer induces per media stream.V is defined as the total number of query messages that are

relayed and generated. First, in the case of the full flooding scheme, the amount of search traffic

V becomes

VF =
M

N
(D− 1)H+1, (1)

whereD is the average number of neighboring peers,H is a default value of TTL, andM is the

number of blocks in a media stream. Next, in the case of the FL method, the amount of search

traffic V becomes

VFL =
(

M

N
− L

)
(D− 1)H+1 + L(D− 1)H ′+1. (2)

H ′ is the average value of TTL in the case of the limited flooding andL <
M

N
is the number of

times that limited flooding is chosen. Finally, in the case of the FLS method, the amount of search

traffic V becomes

VFLS =
(

M

N
− L−Q

)
(D − 1)H+1 + L(D − 1)H ′+1 + Q|R|. (3)

|R| is the average number of peers inR andQ <
M

N
is the number of times that the selective

query is chosen. Since the first search is the full flooding,L + Q <
M

N
.

In the case of the full flooding scheme, the amount of search traffic does not changes regardless

of the popularity of a media stream. On the other hand, the performance of each proposed method

is influenced by the media popularity. For a popular media stream, the amount of search traffic of

each proposed method becomes the following:

VFL = (D − 1)H+1 +
(

M

N
− 1

)
(D− 1)H ′+1, (4)

VFLS = (D − 1)H+1 +
(

M

N
− 1

)
|R|. (5)
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Figure 3: Search start time (N = 4)

For an unpopular media stream, the amount of search traffic of the FL method is equal to that of

the FLS method as follows:

VFL = VFLS =
(

M

N

)
(D− 1)H+1 = VF . (6)

Independent of methods, the amount of search traffic is proportional to the number of blocks

in a media stream,M , and is inversely proportional to the number blocks in a round,N . Thus,

to haveN = M is the most effective to reduce the amount of search traffic since a peer conducts

search only once. When the block size is small,M becomes large for a long media stream. IfN is

set atM , information available in retrievingM th block becomes out-of-date and of no use because

cached blocks listed in response messages have been replaced with other blocks. Determination

of appropriate block size and group size in accordance with, for example, the number of peers, the

media size, and the network conditions, remains as a future research work.

To accomplish continuous media play-out, it is indispensable for the peer to emit a query

while considering response time. It takes one round trip time to receive a response message from

18



a peer. It also takes one round trip time before the beginning of reception of a block after a peer

sends a request message. Thus, to efficiently utilize the bandwidth without causing congestion by

starting the reception of the first block of the next round, a query message for the nextN blocks

should be issued two round trip times earlier than the estimated completion time of receiving

the last block of the current round (Fig. 3). Taking into account the worst case that the first

block of the next round is found only in a cache buffer of the most distant peer, it is necessary to

consider RTT required by the most distant peer among those peers at which a query message is

expected to arrive. Thus, the time to issue a query message for the next roundk + 1 is given as

Ts(k+1) = Tp(kN)− 2RTTworst, whereRTTworst is the RTT, which is estimated by observing

the way that response messages are received or by measurement tools, to the most distant peer

among peers which returned response messages withinkth round. The peer gives up trying to

retrieve blocks whose corresponding request messages have not been emitted in the current round

k atTs(k + 1).

2.4 Block Retrieval Mechanism and Algorithm

The new peer sends a request message for the first block of a media stream as soon as it receives

a response message from a peer that has the block without waiting for other responses. In some

cases, for example, when the available bandwidth to the closest peer is far smaller than that to the

next closest peer, it is worth waiting for other response messages to find a better peer. However, the

new peer cannot predict whether any better peers exist or not when it receives the first response

message for the first block. In addition, it is indispensable for a low-delay and suitable media

streaming service to begin the media presentation as fast as possible. Thus, in our mechanism,

the new peer retrieves the first block from the peer that first answers and plays it out immediately
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when the its reception starts.

Then, the deadlines for the retrieval of succeeding blocksj ≥ 2, T p(j), are determined as

follows:

Tp(j) = Tp(1) + (j − 1)Bt, (7)

whereTp(1) corresponds to the time that the peer finishes retrieving the first block andB t stands

for the duration of playing out one block.

Although block retrieval should follow a play-out order, the order of request messages does

not. We do not wait for completion of reception of the preceding block before issuing a request for

the next block because this introduces an extra delay of at least one round-trip, and the cumulative

delay affects the timeliness and continuity of media play-out. In our block retrieval mechanism,

a request message for a block is sent out early enough for the block retrieval to finish in time

without causing congestion and to efficiently utilize bandwidth as shown in Fig. 2. Every time a

peer receives a response message, the instant that it emits a request message and the peer from

which it receives a block are determined and used for each block whose corresponding request

message is not issued. The detailed algorithm is given below.

Provider peer determination algorithm

Notations

r: Maximum block number among blocks that have already been

requested.

S: Set of peers having blockj.

Tf (j): Estimated completion time of retrieval of blockj.
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Tp(j): Deadline for retrieval of blockj.

S ′: Set of peers from which a peer can retrieve blockj by the dead-

line Tp(j).

R(i): Round-trip times to peeri.

B(j): Size of blockj.

A(i): Available bandwidth from peeri.

Tnow: Time when this algorithm is performed.

P (j): Provider peer for blockj.

Tr(j): Time to request blockj.

k: Round number.

Step 1 Setj to r.

Step 2 Calculate setS, a set of peers having blockj. If S = φ, that is, there is no

candidate provider, setTf(j)← Tp(j), j ← j + 1 and repeat Step 2 for the next

block. Otherwise, proceed to Step 3.

Step 3 Derive setS ′, a set of peers from which a peer can retrieve blockj by deadline

Tp(j), from S. Time required to retrieve blockj from provider peeri becomes the

sum of the round trip timesR(i) to peeri and the transfer time of blockj obtained

by dividing the block sizeB(j) by the available bandwidthA(i) from peeri. For

each peeri in S, the estimated completion time of the retrieval of blockj from

peeri is derived asmax(Tf(j − 1), Tnow + R(i)) + B(j)
A(i) , considering the case

that the retrieval of blockj − 1 lasts more thanR(i) and the request for blockj is
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deferred. If the estimated completion time is smaller thanTp(j), the peer is put in

S ′. If S′ �= φ, go to Step 4.

Step 4 Determine provider peerP (j) of block j from S ′. We propose the following two

alternative methods for determining the provider peer.

• SF (Select Fastest) Method

Select a peer whose estimated completion time is smallest among peers in

S ′.

By retrieving blockj as fast as possible, the reminderT p(j) − Tf(j) can

be used to retrieve the succeeding blocks from distant peers or peers with

insufficient bandwidth.

• SR (Select Reliable) Method

Select a peer with the lowest possibility of block disappearance among those

in S ′.

Since the capacity of a cache buffer is limited, blockj may be replaced by

another block before a request for blockj arrives at the provider peer. The

list of block identifiers in a response message is in ascending order of ref-

erenced time. Thus, a block located closer to the head of the list is likely

to be removed in the near future. In method 2, in order to perform reliable

retrieval, we consider the peer with a buffer in which blockj has the largest

number among those of peers inS ′.

Step 5 Derive the estimated completion time of retrievalTf(j) and the timeTr(j) to send
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a request message for blockj as follows.

Tf (j) = max(Tf(j − 1), Tnow + R(P (j))) +
B(j)

A(P (j))
(8)

Tr(j) = Tf(j)−R(P (j))− B(j)
A(P (j))

(9)

Step 6 Ifj = kN , finish the algorithm and wait for reception of the next response mes-

sage. Otherwise, setj ← j + 1 and go back to Step 2.

A peer emits a request message for blockj to peerP (j) atTr(j) and setsr to j. On receiving

the request, peerP (j) initiates block transmission. If it replaces blockj with another block since

it returned a response message, it informs the peer of a cache miss. When a cache miss occurs, the

peer determines another provider peer based on the above algorithm. However, if it has already

requested any block afterj, it gives up retrieving blockj in order to keep the media play-out in

order.

After receiving blockj, the peer replacesTf(j) with the actual completion time. In the algo-

rithm, the estimated completion time of retrieval of blockj depends on that of blockj − 1, as in

Eq. (8). Therefore, if the actual completion timeTf (j) of the retrieval of blockj changes, the peer

applies the algorithm and determines provider peers.
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3 Simulation Experiments

In this section, we conduct simulation experiments to evaluate the performance of our proposed

methods in terms of the amount of search traffic and the continuity of media play-out.

3.1 Simulation Model

We use a P2P logical network with 50 peers, which is randomly generated by the waxman al-

gorithm [13] whose parametersα, β are 0.15, 0.3, respectively. An example network is shown

in Fig. 4. The round trip time between two contiguous peers is also determined by the waxman

algorithm and ranges from 10 ms to 660 ms. To investigate the ideal characteristics of our pro-

posed mechanisms, the available bandwidth between two arbitrary peers does not change during a

simulation experiment and is given at random between 500 kbps and 600 kbps, which exceeds the

media coding rate of CBR 500 kbps.

At first, all fifty peers participated in the service, but nobody watched media. One peer begins

to request a media stream at a randomly determined time. The inter-arrival time between two

successive requests for the first media stream follows the exponential distribution whose average

is 20 minutes. Ten media streams of 60 minute length are available. Media streams are num-

bered from 0 (the most popular) to 10 (the least popular). The popularity of the media streams

follows a Zipf-like distribution whose parameterα is 1.0. Each peer watches a media stream with-

out such interactions as rewinding, pausing, or fast-forwarding. When a peer finishes watching a

media stream, it becomes idle for the waiting time, which also follows the exponential distribu-

tion whose average is 20 minutes. A media stream is divided into blocks of 10-sec duration and

amounts to 625 KBytes. Each peer sends a query message for a succession of six blocks, i.e.,

N = 6, and retrieves blocks. Blocks obtained are deposited into a cache buffer of 337.5 MB,
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Figure 4: Random network with fifty peers
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which corresponds to one and a half media streams. In the first time of the simulation, each peer

stores one and a half whole media streams in its cache buffer. The population of each media stream

also follows a Zipf-like distribution whose parameterα is 1.0. To prevent the initial condition of

the cache buffer from influencing system performance, we only use the results after the initially

cached blocks are completely replaced with newly retrieved blocks for all peers. We propose six

possible combinations of search methods, i.e., full flooding only, FL, and FLS, and two block

retrieve methods, i.e., SF and SR. For comparison, the same topology of a logical P2P network

and the same size of each buffer, including the number and locations of peers, links, and delay and

bandwidth of links, is used for all simulation experiments. We conducted 100 set of simulations

and show averaged values in the following figures.

3.2 Evaluation of Scalability of Search Mechanism

First, we evaluate the scalability of our P2P streaming system in terms of the number of queries.

Figures from 5 to 10 illustrate of transitions of the cumulative number of queries that a peer

receives during the simulation, for five peers out of fifty. Comparing Fig. 7 with Fig. 5 and Fig. 8

with Fig. 6, the FL method can slightly reduce the number of queries compared with full flooding.

This is because the average number of relays in limited flooding, TTLH ′, is relatively large in

our simulation experiments, independent of block retrieval method. Limited flooding restricts the

number of relays to reduce the overhead of searches. Since TTL is determined in accordance with

the previous search results, the number of relays chosen for limited flooding immediately after

full flooding tends to remain large. The FL method tries full flooding in the first round. Thus, the

number of queries cannot be effectively reduced with the FL method. On the other hand, selective

search can considerably reduce the number of queries as shown in Figs. 9 and 10.
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Figure 5: Number of queries (full flooding, SF method)
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Figure 6: Number of queries (full flooding, SR method)
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Figure 7: Number of queries (FL method, SF method)
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Figure 8: Number of queries (FL method, SR method)
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Figure 9: Number of queries (FLS method, SF method)
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Figure 10: Number of queries (FLS method, SR method)
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3.3 Evaluation of Continuity of Media Play-out

Figures 11 and 12 depict the waiting time of each media stream. The waiting time is defined as the

time between the emission of the first query message for the media stream and the beginning of

reception of the first block. Figures 13 and 14 show the number of requests on each media stream.

From Figs. 11 and 14, we observe that, independent of method, the waiting time decreases as the

popularity increases, and, independent of popularity, all media streams successfully found can be

played out in a reasonable waiting time.

Figures 15 and 16 illustrate the completeness with 95 % confidence interval of each media

stream. We define the completeness as the ratio of the number of retrieved blocks in time to

the number of blocks in a media stream. As shown in Figs. 15 and 16, independent of method,

media streams from 0 to 4 are played out continuously from the beginning to the end. On the

other hand, as the media popularity decreases, the completeness also deteriorates. Especially in

the FLS methods, where query messages are directly sent to a set of peers that are expected to

have desired blocks, the completeness is lower than that of the other methods by 0.2 at most. In

our experiments, most of the blocks that cannot be retrieved in time are blocks that have already

been replaced by blocks of other more popular streams. Since the selective search inquires of the

less number of peers cached blocks than that of the other two methods, it is difficult to follow the

changes in cached blocks in the network. As a result, independent of the retrieval algorithm, the

completeness of the FLS method becomes worse than those of other methods.
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Figure 12: Waiting time (SR method)
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Figure 15: Completeness (SF method)
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4 Conclusions

In this thesis, we proposed two scalable search methods and two algorithms for block retrieval

in scalable and continuous media streaming on P2P networks. Through several simulation exper-

iments, we have shown that the FLS method can provide users with continuous media play-out

without introducing extra load on the system.

Several issues still remain to be solved. In this thesis, we evaluated the characteristics of

our proposed mechanisms in an ideal environment where the available bandwidth is sufficient to

retrieve a block in time. For the next step, we should conduct several simulation experiments

using more realistic network models where the network conditions dynamically change and peers

appear, move, and disappear. Furthermore, we should consider an effective cache replacement

algorithm that can improve the continuity of media play-out.
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