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Abstract

By introducing video-quality adaptation mechanisms into intermediate network equipment us-

ing active network technologies, we can provide users with video distribution services that take

into account client-to-client heterogeneity in terms of available bandwidth, performance of client

systems, and user preferences for video quality.

In this thesis, we design and implement an active video-quality adjustment node on a network

processor-based equipment. In the design, we consider the architecture of an active video quality

adjustment node within the framework of an active network technology. We first consider the

functional design of the active video-quality adjustment node. Then, four functional layers of the

active node, i.e., an Active Application layer, an Execution Environment layer, a NodeOS layer,

and a Router layer, are assigned to processors on the node, i.e., microengines, a StrongARM

processor core, and a Pentium processor. The active video-quality adjustment node can adapt

the video rate to the requested level on a packet-by-packet basis. The target rate is specified in

an ANEP header of a video packet. We conduct experiments and verified the practicality of the

video-quality adjustment within a network. It is shown that the active video-quality adjustment

node can adapt the video rate to the dynamically changing requested level on a packet-by-packet

basis. Furthermore, the active video-quality adjustment node can simultaneously generate video

streams of different quality levels from the same video stream.
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1 Introduction

With the proliferation of broadband access to the Internet, video distribution services such as

video streaming or live transmissions are now being widely deployed. Video services reach users

who are heterogeneous in terms of the capacity of access links, available network bandwidth,

performance of client machines, and user preferences for perceived video quality. Therefore, it

is essential to introduce mechanisms that ensure the provided video stream can meet each user’s

environment and preferences.

In [1], we proposed mechanisms for video multicast services in which diverse client requests

are simultaneously satisfied while network resources are efficiently used. Our mechanisms were

developed on the basis of active network technologies where intermediated network nodes, called

active nodes, adapt the video rate to the desired level.

By using the active network technology, new network services can be developed and deployed

flexibly and easily according to the demands of network administrators, users, or applications [2,

3]. Each packet passing through network equipment, called an active node, is processed based on

a program that is contained in the packet itself or has been preloaded at the node. By introducing

programs, active nodes can perform highly intelligent packet processing from lower-layer func-

tions such as QoS routing to application-layer functions that manipulate user data in the packet

payload. In our video multicast mechanisms proposed in [1], we coped with client-to-client het-

erogeneity by appropriately configuring chosen active nodes to adapt the rate of an incoming video

stream to the desired level by means of video-quality adjustment as illustrated in Figure 1.

In [4], our research group compared several video-quality adjustment methods for real-time

MPEG-2 video multicast, namely frame discarding, low-pass, and requantization filters. Algo-

rithms were proposed for these video-quality adjustment methods to adapt the video traffic to the

specified target rate. Our research group conducted several experiments and concluded that the

low-pass filter, which provides rate reduction by progressively eliminating high-frequency com-
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Figure 1: Heterogeneous video multicast

ponents of the video signal, is the most effective method for suppressing the quality degradation

and granularity of the rate adaptation.

To verify the practicality of video-quality adjustment within a network, we implemented our

low-pass filter for real-time MPEG-2 video multicast on an IXP1200-based network node in [5].

We discussed the packetization of an MPEG-2 video stream. The IXP1200 is an off-the-shelf

network processor that has an architecture specialized for packet processing, and it has a general-

purpose processor and some specialized processors, which are programmable. From the results of

evaluation experiments using MPEG-2 video, we demonstrated that we can build a video-quality

adjustment node on network-processor-based equipment. The node can adjust an incoming video

stream to the desired rate on a per-packet basis. However, the target rate of video-quality adjust-

ment must be specified in advance, at the time of generating the program code. Thus, the node in

[5] cannot react to the dynamically changing target rate, which reflects changes in the available

network bandwidth, performance of client machines, and user preferences.

8



This thesis describes how we designed and implemented the active video-quality adjustment

node. The active video-quality adjustment node employs active network technologies to enable

flexible setting of target rate, dynamic initiation and termination of video-quality adjustment op-

erations, and appropriate node configuration. The functionalities of the active video-quality ad-

justment node are arranged on the basis of an active network architecture. Four functional layers

of the active node, i.e., an AA (Active Application) layer, an EE (Execution Environment) layer,

a NodeOS layer, and a Router layer, are assigned to processors on the node, i.e., microengines, a

StrongARM processor core, and a Pentium processor. The performance of the node in terms of

the accuracy of rate adaptation and the throughput was evaluated through experiments using an

MPEG-2 video stream. In this thesis, we give details of the design, implementation, and results of

the evaluation experiments.

The organization of this thesis is as follows. In Section 2, we briefly introduce the MPEG-

2 coding algorithm, the IP packetization technique of MPEG-2 video streams, the implemented

low-pass filter, and the rate adaptation mechanism. In Section 3, we describe the active node ar-

chitecture and functional design of the active video-quality adjustment node. In Section 4, we

explain the features of the Intel IXP1200 network processor and describe the functional assign-

ments among processors as well as system implementation. We present experimental results and

discussion in Section 5 and conclude the thesis in Section 6.
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2 MPEG-2 Video-quality Adjustment

2.1 MPEG-2 video coding algorithm

Our active video quality adjustment is intended for the MPEG-2 video Elemental Stream [6] of

the MPEG-2 Program Stream format [7], where a video and an audio stream are multiplexed into

a single media stream. Figure 2 shows the hierarchical structure of MPEG-2 video data.

The highest layer is called the sequence layer. A sequence is composed of several Groups of Pic-

tures (GoPs). A GoP is a sequence of three types of pictures: I (Intra-coded), P (Predictive-coded),

and B (Bidirectionally predictive-coded). A GoP starts with an I picture, followed by several P and

B pictures. A picture is composed of 16-pixel-high stripes, called slices. All sequences, GoPs, pic-

tures, and slice layers begin with a 32-bit start code that is used for error recovery and for rewind

and fast-forward functions.

Each slice consists of one or more macroblocks. Each macroblock corresponds to a 16x16-pixel

I B B P B B BP B P B B

GoP

Slice

MB MB MB MB MB MB MBMB MB MB MB MB

GoP GoP

Y1 Y2

Y4Y3

Cb Cr

Block

Sequence layer

GoP layer

MacroBlock Layer

Slice Layer

Picture layer

Block Layer

GoP : Group of Pictures

MB  : MacroBlock

Y1~Y4 : Luminance Blocks

Cb, Cr : Chrominance Blocks
Horizontal frequency

Vertical frequency

DCT coefficient

Figure 2: MPEG-2 video data
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square and is composed of four 8x8-pixel luminance (Y) blocks and two 8x8 chrominance (Cb,

Cr) blocks. Each block is transformed to the frequency domain using discrete cosine transform

(DCT). The DCT coefficients in a block are arrranged in ascending order of horizontal and vertical

frequency.

2.2 Packetization of MPEG-2 video stream for video-quality adjustment

In order to attain low-latency and on-the-fly video-quality adjustment, a packet-basis mechanism

is indispensable. Thus, an MPEG-2 video stream should be segmented into a sequence of inde-

pendent packets. In a previous work [5], we used a start code to divide a stream into multiple units

of data. From the sequence layer to the slice layer, we decided to packetize one stream per slice.

For example, an MPEG-2 video stream in a profile of MP@ML, i.e., 720x576 pixels and 30 fps,

has 36 slices per picture. If it is coded at the coding rate of 8 Mbps, it follows that each packet

amounts to 7 Kbits on average.

2.3 Low-Pass Filter

In [4], our research group compared several video-quality adjustment methods for real-time MPEG-

2 video multicast, namely frame discarding, low-pass, and requantization filters. Algorithms were

proposed for these video-quality adjustment methods to adapt the video traffic to the specified

target rate. Our research group conducted several experiments and concluded that the low-pass

filter, which provides rate reduction by progressively eliminating high-frequency components of

the video signal, is the most effective method for suppressing the quality degradation and granu-

larity of the rate adaptation. In this implementation, we use the low-pass filter as a video-quality

adjustment method. Details of the low-pass filter is given below.

To achieve rate reduction, the low-pass filter eliminates an appropriately determined number of

DCT coefficients from the high-frequency ones that comprise a luminance or chrominance block.

We call the parameter low-pass parameter to the number of DCT coefficients left in each block
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after quality adjustment. At the beginning of each GoP, initial low-pass parameter values are set

independently for I, P and B pictures, according to the following formulas:

lI =
⌊
−6.17329 + 59.7498rGi − 112.427r2

Gi
+ 111.905r3

Gi

⌋
(1)

lP =
⌊
−11.8626 + 85.5488rGi − 159.667r2

Gi
+ 139.499r3

Gi

⌋
(2)

lB =
⌊
−71.9536 + 360.75rGi − 590.353r2

Gi
+ 353.265r3

Gi

⌋
, (3)

where lI , lP , and lB are low-pass parameter values for I, P and B pictures, respectively. rGi is the

compression ratio for the i-th GoP. These equations were obtained while investigating the relation-

ship between the low-pass parameter and the resultant picture size, and they give an approximation

of the low-pass parameter that can produce the desired compression. For example, with rGi =0.5,

they are lI =17, lP =14, lB =7. We obtain rGi from the formula below:

rGi =
Ti

Gi − Hi
. (4)

Gi is the predicted size for the i-th GoP in bits, which is calculated from the measured size of the

(i−1)-th GoP, gi−1, by the following formula:

Gi =
7
8
Gi−1 +

1
8
gi−1, i ≥ 2, G1 = g0. (5)

Hi is the predictor for the total bits used by header data in the i-th GoP, which is derived from the

measured header size of (i−1)-th Gop hi−1:

Hi = hi−1, i ≥ 1. (6)

Ti is the number of bits allowed for the current GoP, and it is calculated from a specified target rate

R (bps), the number of pictures in a GoP, N (frames), the frame rate F (fps), and an adjustment

value ai:

Ti =
R × N

F
− ai − Hi. (7)
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This formula implies that the rate averaged over a GoP-time is regulated by the target rate. How-

ever, the result of per-packet adjustment does not necessarily match the target rate. To make up

the balance, we introduce the adjustment value ai.

The adjustment value ai is calculated by using:

ai =
i−1∑

k=max(0,i−5)

Tk − fk

5
, (8)

where fk is the size of the filtered k-th GoP.

The initial low-pass parameter value is changed dynamically for each of the following intra-

macroblocks in the GoP by the following:

lj =




lj + 1, rGi × oMBj−1 − fMBj−1 > 0

lj − 1, rGi × oMBj−1 − fMBj−1 < 0

lj , rGi × oMBj−1 − fMBj−1 = 0

, (9)

where lj is the low-pass parameter to apply to the j-th macroblock, oMBj−1 is the macroblock size

before filtering, and fMBj−1 is the size of the filtered macroblock.

Using the above algorithm, the low-pass parameter value for each macroblock is appropriately

determined. By eliminating the specified number of DCT coefficients, it is possible to produce a

video stream that has the desired rate R.
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3 Functional Design of Active Video-quality Adjustment Node

Our active video-quality adjustment node has the hierarchical structure illustrated in Fig. 3. A

router layer is responsible for classification of packets and packet forwarding [8]. An active node

layer is for functionalities that make a node “active”. Each functional layer in the active node

corresponds to a NodeOS layer, an EE (Execution Environment) layer, and an AA (Active Appli-

cation) layer [3].

3.1 ANEP

ANEP (Active Network Encapsulation Protocol) [9] is a communication protocol for active net-

works. User data with an ANEP header is encapsulated in an IP packet using the protocol number

107, which is assigned by IANA (Internet Assigned Number Authority) [10]. The ANEP header

format is shown in Figure 4. Type ID is defined by ANANA (Active Networks Assigned Num-

ber Authority) as Type ID Registry [11]. For example, ANTS [12] of MIT has Type ID 19, and

NetScript [13] of Columbia University has Type ID 31-35.

An ANEP header can have one or more option fields. The first bit of an ANEP Option indicates

whether the ANEP Option follows the common global format specified by ANANA or a private

AA (Active Application)
Video-quality adjustment program

Router

Node OS

EEEE
(Execution Environment) ･･･

AA･･･ AA

Background flow

Configuration data 
(Video-quality, etc.)

Packet processed 
on active node
(Video stream, etc)

Router
layer

Active 
node 
layer

Figure 3: Active video-quality adjustment node
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Version Flags Type ID

ANEP Packet Length ANEP Header Length

:
Options

:

0 31

ANEP header

FLG Option Type Option Length

:
Option Payload (Option Value)

:

0 31

ANEP Option

Figure 4: ANEP header format

format specified by the Execution Environment indicated by Type ID. The ANEP Global Option

is analyzed by a NodeOS and the ANEP Private Option is analyzed by an EE. The Option Type

specifies the type and format of the ANEP Option payload.

3.2 Active application layer

An AA is a program given by users, network service developers, or network administrators. It is

contained in a packet itself or dynamically obtained from other active nodes or servers.

We implemented the video-quality adjustment program described in Subsection 2.3 as an AA.

The video-quality adjustment AA is initiated and terminated by an underlying EE and is notified

of a target rate by the EE. It has an input channel and an output channel from and to the EE for

exchanging MPEG-2 video packets. An AA receives an MPEG-2 video packet through the input

channel from the EE, adjusts the quality of the packet in accordance with the specified target rate,

and then sends the packet to the EE through the output channel. An AA also has a control channel

15
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Figure 5: Different videos are quality-adjusted simultaneously.

Active NodeMulticast Group 1

Multicast Group 1b
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Medium-quality

Low-quality

AA2

AA1

Figure 6: Videos of different quality levels are generated from the same video.

from the EE through which the EE dynamically changes the target rate. As illustrated in Figs. 5

and 6, an AA is bounded to one multicast group. Two or more AAs are initiated when a node

adjusts the rate of two or more independent video streams and/or adjustment is made for two or

more multicast groups.

3.3 Execution environment layer

An EE is an execution environment or a virtual machine for executing programs on an active node.

Furthermore, it provides a programming interface. An EE manages the initiation, execution, and

termination of AAs and allocation of resources among AAs. The NodeOS is hidden from AAs by

an EE.

In our active video-quality adjustment node, an EE manages the initiation, execution, and ter-

mination of video-quality adjustment AAs. An EE receives a video packet from a NodeOS, sends

it to an appropriate AA, receives the video packet from the AA after application of video-quality

16



adjustment, and finally sends it to the NodeOS. The AA used by the EE to exchange a packet is

specified in the packet header by a set consisting of a source IP address, a source port number, a

multicast group address for sending a video packet, and a destination port number.

3.4 NodeOS layer

A NodeOS manages node resources such as processors, channels, and memory. The NodeOS

forwards packets received from the router layer to an appropriate EE on the basis of protocol

number, IP addresses, port numbers in an IP header, and/or Type ID in an ANEP header. It also

receives packets from EEs and sends them to the router layer.

3.5 Router layer

A router layer classifies packets that require processing by the active node layer from conventional

IP packets. It forwards packets received from input ports and the active node layer to the next

nodes through appropriate output ports.

If an ANEP header is added to a video packet, a router layer can easily distinguish one video

packet from the others by the protocol number in the IP header. However, classification based

on protocol number requires a server to generate an ANEP header, attach it to video data, and

encapsulate them in an IP packet. Clients need to recognize the existence of an ANEP header

from the protocol number, decapsulate video data with the ANEP header from the received IP

packet, and detach the ANEP header from video data. If a server or clients cannot handle ANEP,

the active node closest to a conventional end-system is responsible for addition or removal of

ANEP headers so that active networks and clients can process video streams in an appropriate

way.

On the other hand, if ANEP is not used, a router layer should classify the packet on the basis

of a set consisting of a sender IP address and port number and a multicast group address and port

number. For this purpose, a router layer must maintain and investigate a table of sets of identifiers

17



every time it receives a packet.

In our implementation, we use ANEP for packet classification to avoid the excessive load intro-

duced by table management and lookup. We should note that our router layer is only responsible

for simple packet forwarding. The routing table is statically given by hand.

3.6 Design of signaling protocol

The initiation, termination, and changing target rate of our active video-quality adjustment AA is

performed using the ANEP Private Option. Option Types 0, 1 and 2 are assigned to the termina-

tion, initiation, and changing target rate, respectively.

To initiate an AA, an ANEP header is attached to the packet. This header uses a private format

for the ANEP Option, has an Option Type 1, and contains IP addresses and port numbers of sender

and destination multicast groups in the Option Payload. On receiving the packet, an EE initiates

an AA for the multicast group if there is no corresponding AA under execution. For this purpose,

an EE maintains and investigates a table of sets of identifiers of AAs. The EE informs the AA of

changes in the target rate when it receives a packet with an ANEP Option Type 2. If the ANEP

header is attached to video data, the new target rate specified in the packet itself is applied to the

data. The AA is terminated by the EE after it receives a packet whose ANEP Option Type is 0.

If there is no AA targeted by an ANEP Option Type 0 or 2, the EE will ignore the ANEP

Option. After processing all ANEP Options in a video packet, the EE sends the video packet to

the appropriate AAs. If there is no appropriate AA, the EE drops the video packet.

18



4 Implementation of Active Video-quality Adjustment Node

4.1 Intel IXP1200 network processor overview

We implemented our active video-quality adjustment node on programmable network equipment

built on an Intel IXP1200 network processor [14-16].

The structure of the IXP1200 network processor chip and the other devices connected to it

is illustrated in Fig. 7. The IXP1200 network processor chip, which is surrounded by a thick

rectangle in Fig. 7, has a StrongARM core processor and six microengines running at 232 Mhz.

An embedded version of Linux with restricted functions runs on the StrongARM. The microengine

used is a simple RISC processor optimized for packet forwarding, and there are limitations on its

number of registers and executable program size. Each of the six microengines can execute four

program threads concurrently, so up to 24 threads can be executed in parallel.

The outer rectangle in Fig. 7 corresponds to the ENP-2505 board [17] of RadiSys Corporation

that we used in our implementation. Of the onboard SDRAM, 70 MB is devoted to the Linux

system on the StrongARM. Linux uses 62 MB as main memory and the remaining 8 MB as a

Intel IXP1200 Chip @ 232MHz

Micro-
Engine

Micro-
Engine

Micro-
Engine

Micro-
Engine

Micro-
Engine

Micro-
Engine

Intel
StrongARM

SA1100
Core

(Linux)

Instruction
Cache
16KB

Data
Cache
8KB
Mini

Cache
512B

SRAM
Unit

PCI Unit

SDRAM
Unit

IXBI Unit

Scratchpad
Memory

IX Bus
Interface

Hash Unit

SRAM
2MB

Ethernet
Port x4 64bit 

~85MHz

32bit 
116MHz

SDRAM
For Linux

70MB
Shared

Memory
32MB

64bit
116MHz

32bit 
33MHz

PCI Bus Pentium 4
1.7GHz

Figure 7: IXP1200 block diagram
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ramdisk. Together, the StrongARM and the microengines use 32 MB of the onboard SDRAM, 2

MB of the onboard SRAM, and 4 KB of the internal scratchpad memory. The StrongARM and

the microengines can exchange data and information through those shared memories. In order

to perform more advanced packet processing, we can insert a board in the computer through a

PCI bus and thus attach a Pentium processor to the computer. In our implementation, Redhat

Linux 7.2 runs on the Pentium processor. The ENP-2505 board is equipped with four full-duplex

10/100Base-TX Ethernet ports.

4.2 Functional assignment on active video-quality adjustment node

Four functions of our active video-quality adjustment node, i.e., router, NodeOS, EE, and AA, are

assigned to microengines, StrongARM processor core, and Pentium processor.

As mentioned in Subsection 3.5, a router layer is responsible for receiving packets from the

NodeOS and input ports, classifying ANEP packets from conventional IP packets, and forward-

ing packets to the NodeOS and output ports. Microengines are simple but optimized for packet

processing. The number of threads, four, is the same as the number of the Ethernet ports that the

ENP-2505 is equpped with. Therefore, a router layer is implemented on two microengines. One

microengine is responsible for processing packets received from the Ethernet ports and classify-

ing video packets from the other conventional IP packets. The other microengine is responsible

for forwarding packets received from the microengine for input process and the NodeOS to the

appropriate Ethernet port. Each thread on a microengine is bound to an Ethernet port. In Section

5, we evaluates the validity of this implimentation.

Those packets with the protocol number 107 are passed to the NodeOS, and the other packets

are sent to the microengine for output processing. Packet exchange among those two microengines

and the StrongARM is achieved using the SRAM and the shared SDRAM. There are slots of 2

KB for packets on the SDRAM. Each slot has a dedicated area on the SRAM, called a packet de-

scriptor, which is used to maintain a slot. We make a list of packet descriptors to contruct a packet
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queue. Queues are built for each of the four Ethernet ports and the StrongARM. When the input

microengine receives a packet with an ANEP header, it adds a packet to the tail of the queue of the

StrongARM. Then the StrongARM dequeues the packet from the queue, processes its payload,

and puts the packet into the queue of one of Ethernet ports. Finally, the output microengine reads

the packet from the queue and sends it out to the next queue.

Packet exchange temporarily uses an SDRAM area of 2 KB per packet. Packet descriptors on

the SRAM are used to manage the free memory area of the SDRAM. Each descriptor corresponds

to an SDRAM area of 2 KB. In addition, the packet descriptors can make a transmission queue

by using a link list of the packet descriptors. The transmition queues are addressed to ports or the

StrongARM. A packet descriptor’s addresses of heads and tails of transmition queues are managed

on the SRAM. In packet exchange, the sender enqueues the packet to the tail of the queue and the

receiver dequeues the packet from the head of the queue.

We consider three assignments of NodeOS, EE, and AA layers to processors.

4.2.1 Active video-quality adjustment with StrongARM

In the implementation using only StrongARM, all of the NodeOS, EE, and AA functionalities

are running as user programs of the Linux system on the StrongARM. Packets are exchanged

among the NodeOS and the router layer on microengines over the SRAM and the shared SDRAM.

The NodeOS uses Linux kernel functions and drivers to access those shared memories. Packet

exchange among layers on the StrongARM, that is, between the NodeOS and the EE and between

the EE and the AA, are performed over socket communications based on the localhost IP address.

An active video-quality adjustment AA is initiated and terminated by the EE using the Linux

system’s call functions.
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4.2.2 Active video-quality adjustment with StrongARM and microengines

Processing DCT coefficients in video-quality adaptation is a simple but high-volume operation.

As an example, 75% of video data coded at 8 Mbps are from the block layer, and 56% of the

time is spent in processing DCT coefficients when a low-pass filter is implemented on a PC. Com-

munications among the StrongARM and the microengines are performed through the scratchpad

memory and the shared SDRAM.

First, the StrongARM moves the data needed for processing the block layer on the microengine

to the shared SDRAM area. The data include, for example, macroblock type, low-pass parameter,

macroblock pattern, and DCT coefficients. Then, it writes the SDRAM address in the scratchpad

memory. Each microengine thread periodically checks the scratchpad memory, with an address

assigned to the thread. If the SDRAM address is written in the scratchpad memory by the Stron-

gARM, the microengine thread reads the shared memory address and writes “0” on the same

address in the scratchpad memory to notify the StrongARM that it is processing the given layer

data. The microengine thread obtains data from the SDRAM and additional information such as

the quantization table from the scratchpad memory. The microengine processes the DCT coef-

ficients and writes the results on the given SDRAM address. Then the microengine notifies the

StrongARM of the completion of processing by using the scratchpad memory with another ad-

dress assigned for this. The StrongARM takes note of this completion by periodically checking

the scratchpad memory, reads the shared memory address, and writes “0” to the same address in

the scratchpad memory. Finally, the StrongARM reads the results of processing DCT coefficients

from the shared SDRAM area.

For the video-quality adjustment, we assign 16 MB of the shared SDRAM area and four mi-

croengines. The number of microengines used for each active video-quality adjustment AA is

specified beforehand.
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4.2.3 Active video-quality adjustment with Pentium processor

In this architecture, an ENP-2505 board is attached to PC, and all layers except the router layer

are running in Redhat Linux 7.2 on a Pentium processor. The relaying program on the Stron-

gARM is resonsible for exchanging packets between the router layer on the microengines and the

NodeOS on the Pentium processor by using the SRAM, the shared SDRAM, and the socket with

the localhost IP address.
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5 Evaluation

In this section, to verify the practicality and applicability of the active video-quality adjustment

within a network, we evaluate the accuracy of the rate adaptation and the throughput of video-

quality adjustment.

Figure 8 illustrates our experimental System 1. It consists of a video server, two clients, and

our active video-quality adjustment node. The video server reads video data, divides them into

slices, attaches a UDP header to a slice, attaches an ANEP header to the UDP datagram, encap-

sulates them in an IP packet, and sends the packet to a multicast group. The active video-quality

adjustment node receives a packet from the port that the server is connected to, applies active-

node processing to the packet, and sends it to one or two clients connected through the other ports.

The target rate can be changed on a GoP-by-GoP basis. The active video-quality adjustment node

detaches an ANEP header from an IP packet. For a wider deployment of services and systems,

users must be able to easily receive the service without being troubled with the extra configuration

of client systems. Therefore, in our experimental systems, clients only receive video packets in

UDP/IP format and process them in a conventional manner. Using System 1, we first evaluate the

accuracy of rate adaptation. Then we consider the throughput of the video-quality adjustment.

The other experimental system, System 2 illustrated in Fig 9, is used to verify the performance

of the active video-quality adjustment node when there exists background traffic that requires

conventional packet forwarding of the node. In this system, two switching hubs and a packet

generator are introduced. Two of the four Ethernet ports of the active video-quality adjustment

node are connected to the packet generator. The third port and its input link are shared among video

traffic originating from the video server and background traffic injected by the packet generator.

The fourth port is used by both the client and the packet generator.

We used an MPEG-2 PS stream whose average rate is 8 Mbps. A GoP has 15 frames and thus

lasts 0.5 seconds.
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5.1 Accuracy of rate adaptation

We first applied the active video-quality adjustment to an original video stream of 8 Mbps sent

from a server to a client. An active video-quality adjustment AA was implemented on the Stron-

gARM and four microengines. We should note here that our active video-quality adjustment node

cannot perform the video-quality adjustment at the rate of 8 Mbps, as will be shown later. There-

fore, in evaluating the accuracy of the rate adaptation, an original video stream of 8 Mbps injected

into the active video-quality adjustment node was sent out from the video server at the rate of 1

Mbps by a smoothing buffer so that all video packets could be received, adjusted, and sent by

the active video-quality adjustment node. Figure 10 shows the rate variations of video streams

adjusted to 2, 4, and 6 Mbps. The horizontal axis shows time in a video stream. This figure in-

dicates that our system can successfully adapt the video traffic to the desired rate. The variations

observed, which sometimes exceed the target rate, are due to the slice-based packetization and the

variable length coding of MPEG-2.

In the next experiment, a video stream was sent from the server to two clients that belong

to different multicast groups. Accordingly, two AAs were running on the node, each of which

was assigned two microengines for processing DCT coefficients. The results are summarized in

Fig. 11. For video packets from 0 to 14.5 seconds in video time, one AA with the specified target

rate of 6 Mbps is initiated and executed on the active video-quality adjustment node. Then, an

ANEP header attached to the video packet leading the 30th GoP, i.e., 15 seconds in video time,

changes the target rate to 2 Mbps. At the same time, by having another ANEP Option for a new

destination multicast group, the ANEP header initiates another AA with the target rate of 5 Mbps.

The new AA is terminated by the server at 35 seconds in video time. From 25.5 to 35 seconds in

video time, the target rate of the former AA is gradually increased by 0.1 Mbps per GoP (0.5 sec).

As shown in Fig. 11, our active video-quality adjustment node can appropriately adapt the video

rate to the desired rate on a packet-by-packet basis, even when two AAs simultaneously generate
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video streams of different quality levels from one video stream and the target rate is drastically or

gradually changed.

5.2 Throughput of video-quality adjustment

We first evaluated the throughput of the active video-quality adjustment node by using experimen-

tal System 1 and comparing combinations of processors. We set the target video rate to 4 Mbps,

and only one client was used. We started with an injection rate of 50 Kbps and gradually increased

it by 50 Kbps until the client observed packet loss during a 100-second video stream. Taking into

account packet loss due to unexpected and accidental problems in the server, network, and client,

we conducted four additional experiments when any packet loss had been observed. When no

packet was lost in more than three out of the four experiments, the active video-quality adjustment

node was regarded as capable of processing a video stream at that injection rate. The results are

summarized in Table 1 and Fig. 12.

The throughput of video-quality adjustment using only StrongARM was 0.8 Mbps.

For the combination of StrongARM and one microengine, we conducted four experiments by

changing the number of threads running on the microengine. Although the microengine takes

part in video-quality adjustment, employing only one thread leads to lower throughput then that

of the StrongARM-based implementation due to the overhead of exchanging data between the

StrongARM and the microengine. To take advantage of the multi-processor architecture of a

network processor and to improve performance, three or four threads should be used.

Consequently, we can expect further performance improvement by distributing takes among

more microengines. However, as shown in the table and figure, employing more than three micro-

engines, each of which uses four threads, adds little to performance. This is due to the shortage

of memory bandwidth of the SDRAM on the scratchpad memory, the computational power of the

StrongARM, or some other cause.

For communications to the StrongARM, an idle thread periodically investigates the scratchpad
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Processors used Throughput (Kbps)

StrongARM 800

StrongARM and 1 microengine thread 450

StrongARM and 2 microengine threads 800

StrongARM and 3 microengine threads 1050

StrongARM and 1 microengine (4 threads) 1150

StrongARM and 2 microengines 1950

StrongARM and 3 microengines 2000

StrongARM and 4 microengines 2000

StrongARM and 2x2 microengines (2 streams) 1000x2

Pentium 2750

Table 1: Throughput of video-quality adjustment
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memory as described in 4.2.2. A working thread also refers to the scratchpad memory to process

DCT coefficients. Therefore, if the bandwidth of the scratchpad memory were insufficient and

thus formed a bottleneck, throughput would be expected to decrease due to the competition among

idle and working threads for memory. However, we observe no such performance degradation in

Fig. 12. Therefore, we conclude that the scratchpad memory is not a bottleneck.

In the router layer, the shared SDRAM is used for exchanging packets between two micro-

engines for input and output processing as described in 4.2. If the bandwidth of the SDRAM were

a bottleneck, the throughput of the video-quality adjustment would deteriorate as the number of

packets increased. However, as will be shown later, the throughput of the active video-quality

adaptation does not decrease when much background traffic, which needs conventional packet

forwarding, is injected into the node.

Consequently, we can assume that the computational power of the StrongARM impedes the

performance improvement with multiple microengines. However, we cannot verify this conclusion

because the embedded Linux system on the StrongARM has a limited set of instructions and

cannot provide a way of measuring the computational load.

As the next experiment, we initiated two AAs, each of which is assigned two microengines and

adjusts a video stream for different multicast groups. The throughput attained for each AA was

the same at 1.00 Mbps. The total throughput of the node is equal to that of the case when a single

AA with four microengines processes a video stream.

The throughput attained with a Pentium processor was 2.75 Mbps. Since the utilization of

the Pentium processor was 20% or less, we assume that either the computational power of the

StrongARM or the bandwidth of the PCI bus is a bottleneck.

Finally, we introduced background traffic using the experimental System 2 illustrated in Fig

9. The packet generator, SmartBits 200 of Spirent Communications [18], generates conventional

IP packets that do not need to be processed by the active node layer. We first examined the

maximum throughput of the active video-quality adjustment node that only relays packets. The

30



packet generator injected conventional IP packets into the node through four full-duplex Ethernet

ports. The attained throughput on each port was 95 Mbps (Fig. 13). Thus, the router layer on

two microengine has the capacity of 760 Mbps, which is close to the full wire rate. Here, the

throughput takes into account Ethernet preambles, frames, and CRCs.

On the basis of this result, video traffic smoothed down to 2 Mbps, and background traffic

of 93 Mbps is injected into the node thought the Ethernet port connected to a hub. The AA

was configured to process the video data of 8 Mbps at target rate of 4 Mbps. In addition, the

node handles three other flows of 95 Mbps (Fig. 14). During 50-second experiments, we did not

observe any packet loss in any of the five flows. Therefore, we conclude that two microengines

are sufficient for the router layer and are capable of handling video and a conventional packet at

near-wire speed.
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6 Conclusions

In this thesis, we designed and implemented an active video-quality adjustment node on a network

processor-based equipment by using active network technologies. We conducted experiments

and verified the practicality of the video-quality adjustment within a network. The active video-

quality adjustment node can adapt the video rate to the dynamically changing requested level on a

packet-by-packet basis. Furthermore, the active video-quality adjustment node can simultaneously

generate video streams of different quality levels from the same video stream.

At this time, our implemented system cannot perform video-quality adjustment at a practical

rate. It is necessary to improve the throughput by, for example, reducing the load on the Stron-

gARM Dynamic injection of an AA used for video-quality adjustment. In addition, extending the

node functions is also a subject for future research.

The architecture of the IXP-1200 is sutable for implementing an active node. The StrongARM

general purpose processor can be used for the NodeOS, the Execusion Environment, and the Active

Applications, that process packets in a highly intelligent way. The microengines can take the

responsibility for simple packet processing such as classification and forwarding, and some parts

of the AA. However, limitations on the procesing power of the StrongARM and the microengines

restrain the throughput of the active video-quality adjustment node. Introducing more powerful

processors that run at higher rate and execute more complicated program enables truely practical

and useful active video-quality adjustment node.
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