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Abstract

A great deal of research has been devoted to solving the

problem of network congestion posed against the context

of increasing Internet traffic. However, there has been lit-

tle concern regarding improvements to the performance of

Internet servers such as Web/Web proxy servers in spite of

the projections that the performance bottleneck will shift

from networks to endhosts. For example, Web servers

or Web proxy servers must accommodate many TCP con-

nections simultaneously and their server throughputs de-

grade when resource management schemes are not consid-

ered. In this paper, we propose a new resource manage-

ment scheme for those servers, which manages their re-

sources for TCP connections, effectively and fairly. The

proposed scheme has the following two mechanisms: con-

trol of send/receive socket buffers, and control of persistent

TCP connections. We validate the effectiveness of our pro-

posed scheme through simulation and implementation ex-

periments, and confirm conclusively that Web/Web proxy

server throughput can be improved by up to 50 % at maxi-

mum, and document transfer delay perceived by client hosts

can be decreased by up to 30 %.

1 Introduction

The rapid increase of the Internet users has been the impetus

for much research into solving network congestion posed

against the context of increasing network traffic. How-

ever, little work has been done in the area of improving

the performance of Internet servers despite the projected

shift in the performance bottleneck from networks to end-

hosts. There are already hints of this scenario emerging

as evidenced by the proliferation of busy Web servers on

the present-day Internet that receive hundreds of document

transfer requests every second during peak volume periods.

Web document transfer requests on the current Internet

are done directly from Web servers to client hosts, or via

Web proxy servers [1]. Needless to say, busy Web servers

must have many simultaneous HTTP sessions, and server

throughput degrades when effective resource management

is not considered, even with large network capacity. How-

ever, Web proxy servers must also accommodate a large

number of TCP connections, since they are usually prepared

by ISPs (Internet Service Providers) for their customers.

Furthermore, proxy servers must handle both upward TCP

connections (from proxy server to Web servers) and down-

ward TCP connections (from client hosts to proxy server).

Hence, the proxy server becomes a likely spot for bottle-

necks to occur during Web document transfers, even when

the bandwidth of the network and Web server performance

are adequate. It is the contention that any effort expended to

study ways to reduce document transfer time of Web doc-

uments must consider improvements in the performance of

Internet servers.

In this paper, we first discuss several problems that arise

from the handling of TCP connections at Web or Web proxy

servers. One of these problems involves the send/receive

socket buffers allocation for TCP connections. When a

TCP connection is not assigned proper send/receive socket

buffers size based on its bandwidth-delay product, the as-

signed socket buffer may be left unused or have insuffi-

cient capacity, which results in waste of the assigned re-

source and throughput degradation, especially on a Web or

Web proxy server with many TCP connections. Another

problem considered in this paper is the management of per-

sistent TCP connections provided by HTTP/1.1 [2], which

waste resources at busy Web/Web proxy servers. When

Web/Web proxy servers accommodate many persistent TCP

connections without effective management schemes, their

resources continue to be assigned to those connections even

when they are inactive. This means that new TCP con-

nections cannot be established since there is a shortage of

server resources.

In [3], the authors also pointed out other shortcomings

of HTTP/1.1. They evaluated the performance of a Web

server with HTTP/1.0 and HTTP/1.1 through three kinds of

implementation experiments where the network created the
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bottleneck, where CPU processing speed created the bottle-

neck, and where the disk system created the bottleneck in

the system. Through experimental results, they presented

that HTTP/1.1 may degrade Web server performance. This

is because when memory is fully utilized by being assigned

to mostly idle connections and a new HTTP session requires

memory, the Web documents cached in memory are paged

out, which means that subsequent requests for these docu-

ments will require disk I/O. They also proposed a new con-

nection management method, called early close, which es-

tablishes a TCP connection at every Web objects, including

embedded files. However, this does not provide quintessen-

tial solution to resource management by Web servers, since

it does not consider the remaining the server resources.

However, the bulk of the past reported research on improv-

ing the performance of Web proxy servers has focused on

cache replacement algorithms [4, 5]. In [6], for example,

the authors have evaluated the performance of Web proxy

servers, focusing on the difference between HTTP/1.0 and

HTTP/1.1 through simulation experiments, including the

effect of using cookies and aborting document transfer by

client hosts. However, little work has been done on resource

management at the proxy server, and no effective mecha-

nism has been proposed.

In order to overcome those problems, we have already

proposed socket buffer management scheme in [7], which

assigns the send socket buffer according to the required size

of each TCP connection. We have confirmed the effective-

ness of the proposed scheme through some simulation and

implementation experiments. In this paper we propose a

control scheme of receive socket buffer of each TCP con-

nection, and integrate two schemes for the send and re-

ceive socket buffer into a complete mechanism with con-

sidering their relationship. We further propose a connec-

tion management scheme that prevents newly arriving Web

document transfer requests from being rejected at the proxy

server due to the lack of resources. The scheme involves

the management of persistent TCP connections, which in-

tentionally tries to dynamically close them when the server

resources are shorthanded.

We verify the effectiveness of our proposed scheme

through simulation and implementation experiments. In the

simulations, we evaluate its basic performance and charac-

teristics by comparing these with those of the original proxy

server. Further, we discuss the results of implementation

experiments, and confirm that Web proxy server throughput

can be improved by up to 50 %, and document transfer time

perceived by client hosts can be decreased significantly. We

last note that the application of our proposed scheme is not

limited to the servers, but to the Internet host handling many

TCP connections simultaneously; a popular peer in P2P net-

works would be one example that can enjoy our proposed

scheme.

The rest of this paper is organized as follows. In Sec-

tion 2, we provide an outline of Internet servers, such as

Web servers and Web proxy servers, and discuss the ad-

vantages and disadvantages of persistent TCP connections

through HTTP/1.1. In Section 3, we propose a new resource

management scheme for Web/Web proxy servers, and con-

firm its effectiveness by detailing the results we obtained

in our simulation experiments and implementation experi-

ments in Sections 4 and 5. Finally, we present our conclud-

ing remarks in Section 6.

2 Background

In this section, we first describe the background to our

research on Web servers and Web proxy servers in Sub-

section 2.1. We then discuss the potential that persistent

connections have to improve Web document transfer times.

However, as will be clarified in Subsection 2.2, it requires a

careful treatment at the proxy servers.

2.1 Web/Web proxy servers

The network bandwidth of the current Internet has increased

due to by the previous researches, and the number of Inter-

net users has also risen rapidly. Therefore, a Web server has

to accommodate many TCP connections from Web client

hosts, and especially as it receives hundreds of document

transfer requests every second during peak periods. A Web

proxy server has to accommodate a large number of connec-

tions from Web client hosts as well as to Web servers. Thus,

even when the bandwidth of the network is efficiently large,

data transfer throughput is degraded since the Web/Web

proxy servers have non-optimal performance.

In the past literature, a number of studies have charac-

terized Web server performance ([8, 9, 10]). Also, some

researchers have compared and evaluated the performance

of Web/Web proxy servers for HTTP/1.0 and HTTP/1.1

in [3, 6]. Various studies have focused on cache replace-

ment algorithms [4, 5]. However, little work has been done

on the management of server resources. Server resources

are finite and cannot be increased when the server is run-
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ning. If the remaining resources are limit, the server can-

not function fully and this results in degraded server perfor-

mance.

The resources at the Web/Web proxy servers that we fo-

cus on in this paper are mbuf, file descriptor, control blocks,

and socket buffer. These are closely related to the perfor-

mance of TCP connections when transferring Web docu-

ments. Mbuf, file descriptor, and control blocks are re-

sources for TCP connections. The socket buffer is used for

storing transferred documents through TCP connections.

When there are few resources, the Web/Web proxy servers

are unable to establish a new TCP connection. Thus, the

client host has to wait for existing TCP connections to close

and for their assigned resources to be released. If this can-

not be accomplished, these servers reject the request.

In what follows, we describe the resources of Web proxy

servers and how they deal with TCP connections. Although

we have considered FreeBSD 4.6 [11] in our discussion, we

believe that the results, in essence, can be extended to other

OSs, such as Linux.

Mbuf

Each TCP connection is assigned an mbuf, which is located

in the kernel memory space and used to move the transmis-

sion data between the socket buffer and the network inter-

face. When the data size exceeds the size of mbuf, the data

is stored in another memory space, called the mbuf cluster,

which is listed to the mbuf. Several mbuf clusters are used

for storing data based on its size. The number of mbufs

prepared by the OS is configured in building the kernel; the

number of defaults is 4096 in FreeBSD [12]. Since each

TCP connection is assigned at least one mbuf when estab-

lished, the default number of connections the server can si-

multaneously establish is 4096. This would be too small for

busy servers.

File descriptor

A file descriptor is assigned to each file in a file system so

that the kernel and user applications can identify it. This

is also associated with a TCP connection when it is es-

tablished, and is called a socket file descriptor. The num-

ber of connections that can be established simultaneously

is limited to the number of file descriptors prepared by

the OS. The number of default file descriptors is 1064 in

FreeBSD [12]. In contrast to mbuf, the number of file de-

scriptors can be changed after the kernel is booted. How-

ever, since user applications, such as Squid [13], occupy

memory space based on the number of available file de-

scriptors when they are booted, it is very difficult to inform

the applications of the change in the number at run time.

That is, we cannot dynamically change the number of file

descriptors used by the applications dynamically.

Control blocks

When establishing a new TCP connection, it is necessary

to use more memory space for data structures that are used

in storing connection information, such as inpcb, tcpcb,

and socket. The inpcb structure is used to store source

and destination IP addresses, port numbers, and other de-

tails. The tcpcb structure is for storing network informa-

tion, such as the RTT (Round Trip Time), RTO (Retrans-

mission Time Out), and congestion window size, which are

used by TCP’s congestion control mechanism [14]. The

socket structure is used for storing information about the

socket. The maximum structures that can be built in the

memory space is initially 1064. Since the memory space

for these data structures has been set in building the ker-

nel and remains unchangeable while the OS is running, a

new TCP connection cannot be established as the amount

of memory spaces is limited.

Socket buffer

The socket buffer is used for data transfer operations be-

tween user applications and the sender/receiver TCP. When

the user application transmits data using TCP, the data is

copied to the send socket buffer and is subsequently copied

in the mbufs (or mbuf clusters). The size of the assigned

socket buffer is a key issue in the effective transfer of data

by the TCP. Suppose that a server host is sending TCP data

to two client hosts; one a 64 Kbps dial-up (say, client A)

and the other a 100 Mbps LAN (client B). If the server host

assigns equal size send socket buffers to both client hosts,

it is likely that the amount of assigned buffer will be too

large for client A and too small for client B, because of the

differences in the capacity (more strictly, bandwidth-delay

products) of their connections. A compromise in buffer us-

age should be considered so that buffers can be effectively

allocated to both client hosts.

2.2 Persistent TCP Connection by HTTP/1.1

In recent years, many Web/Web proxy servers and client

hosts have supported a persistent connection option, which
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is one of the most important functions of HTTP/1.1 [2]. In

the older version of HTTP (HTTP/1.0), the TCP connection

between the server and client hosts is immediately closed

when a document transfer is completed. However, since

Web documents have many in-line images, it is necessary to

establish TCP connections many times to download them in

HTTP/1.0. This results in a significant increase in document

transfer time since the average Web documents at a typical

Web servers is about 10 KBytes [8, 15]. The use of the

three-way handshake at each TCP connection establishment

makes the situation worse.

In HTTP/1.1 the server preserves the status of the TCP

connection, including the congestion window size, RTT,

RTO, and ssthresh, when it finishes document transfer. It

then re-uses the connection and its status when other doc-

uments are transferred using the same HTTP session (and

corresponding TCP connection). The three-way handshake

can thus be avoided and latency reduced. However, the

server maintains the established TCP connection, irrespec-

tive of whether the connection is active (being used for

packet transfer) or not. That is, the resources at the server

are wasted when the TCP connection is inactive. This re-

sults in a significant portion of resources being wasted to

maintain these numerous persistent TCP connections.

In what follows, we introduce a rough analytical estimate

that can be used to determine how many TCP connections

are active or idle, and explain why excessive resources are

wasted in the server when native persistent TCP connec-

tions are utilized. To achieve this, we use the network topol-

ogy in Figure 1, where a Web client host and a Web server

are connected via a proxy server, and derive the probabil-

ity that a persistent TCP connection will be active, i.e., in

sending TCP packets. The notations in the figure, pc, rttc,

and rtoc are the respective packet loss ratio, RTT, and RTO

between the client host and the proxy server. Similarly, p s,

rtts, and rtos are those between the proxy and Web server.

The mean throughput of the TCP connection between the

proxy server and the client host, and that between the Web

server and the proxy server, denoted as ρc and ρs respec-

tively, can be obtained by using the analysis results pre-

sented in our previous work [16]. Note that we obtained a

more accurate estimate of TCP throughput estimation than

in [17] and [18] , especially for small file transfers. Using

the results obtained in [16], we can derive the time for Web

document transfer via a proxy server. We also introduce the

parameters h and f , which respectively represent the cache

hit ratio of the document at the Web proxy server and the

size of the document being transferred. Note that the proxy

server is likely to cache the ‘Web page’, which includes the

main document and some in-line images. That is, when the

main document is found in the proxy server’s cache, the in-

line images that follow it are likely to be cached, and vice

versa. Thus, h is not an adequate metric when we exam-

ine the effects of persistent connections, but the following

observation is also applicable to the above-mentioned case.

When the requested document is cached by the proxy

server, a request to the original Web server is not required,

and the document is directly delivered from the proxy server

to the client host. However, when the proxy server does not

have the requested document, it must be transferred from

the appropriate Web server to the client host via the proxy

server. Thus, document transfer time, T (f), can be deter-

mined as follows;

T (f) = h

(
Sc +

f

ρc

)
+ (1 − h)

(
Sc + Ss +

f

ρc
+

f

ρs

)

where Sc and Ss represent the connection setup times of a

TCP connection between the client host and proxy server

and that between the proxy server and Web server, respec-

tively. To derive Sc and Ss, we must consider the effect

of the persistent connections provided by HTTP/1.1, which

deletes the three-way handshake. Here, we define Xc as the

probability that the TCP connection between the client host

and the proxy server can be maintained by the persistent

connection, and Xs as the corresponding probability that

the TCP connection between the proxy server and the Web

server can be maintained. Then, Sc and Ss can be described

as follows;

Sc = Xc · 1
2
rttc + (1 − Xc) · 3

2
rttc (1)

Ss = Xs · 1
2
rtts + (1 − Xs) · 3

2
rtts (2)

Xc and Xs are dependent on the length of the persistent

timer, Tp. That is, if the idle time between two successive

document transfers is smaller than Tp, the TCP connection

can be used for second document transfer. However, if the

idle time is larger than Tp, the TCP connection has been

closed and a new TCP connection must be established.

According to results in [8], where the authors modeled

the access pattern of a Web client host and found that the

idle time between Web document transfers follows a Pareto

distribution whose probability density function is given by;

p(x) = αkαxα+1 (3)
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Figure 1: Analysis Model

where α = 1.5 and k = 1. We can then calculate Xc and Xs

as follows;

Xc = d(Tp) (4)

Xs = (1 − h) · d(Tp) (5)

where d(x) is the cumulative distribution function of p(x).
The average document transfer time, T (f), can be deter-

mined from Eqs.(1)–(5). We can finally derive U , which is

the utilization of the persistent TCP connection as follows;

U =
∫ Tp

0

p(x) · T (f)
T (f) + x

dx + (1 − d(Tp)) · T (f)
T (f) + Tp

Figure 2 plots the probability that a TCP connection is

active, as a function of the length of persistent timer Tp,

in cases where there are various parameter sets of rttc,

pc, rtts, and ps. Here we set h to 0.5, the packet size to

1460 KBytes, and f to 12 KBytes based on the average size

of Web documents reported in [8]. These figures reveal that

the utilization of the TCP connections is very low, regard-

less of the network conditions (RTTs and packet loss ratios

on links between the proxy server and the client host/the

Web server). Thus, if idle TCP connections are maintained

at the proxy server, a large part of the resources at the proxy

server are wasted. Furthermore, we can see that utilization

increases when the persistent timer is short (< 5 sec). This

is because the smaller Tp value can prevent situations from

emerging where the proxy server’s resources will be wasted.

One solution to this problem is to simply discard

HTTP/1.1 and to use HTTP/1.0, as the latter closes the TCP

connection immediately after document transfer is com-

plete. However, as HTTP/1.1 has other elegant mecha-

nisms, such as pipelining and content negotiation [2], we

should develop an effective resource management scheme

for it. Our solution is that as resources become limited, the

server intentionally closes persistent TCP connections that

are unnecessarily wasting them at the server. We will de-

scribe our scheme in detail in the next section.
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Figure 2: Analysis Results: Probability that a TCP connec-

tion is active

3 Algorithm

In this section, we propose a new resource management

scheme that is suitable for Web/Web proxy servers, which

solves the problems identified in the previous section.

3.1 Socket Buffer Management Scheme

As explained previously, Web/Web proxy servers have to

accommodate a numerous TCP connections. Consequently,

the performance of the servers is degraded when the proper

size of send/receive socket buffers are not assigned. Fur-

thermore, when we consider Web proxy servers, resources

of both of the sender and receiver sides should be taken into

account. We proposed a scalable socket buffer management

scheme, called Scalable Socket Buffer Tuning (SSBT) in

this paper, which dynamically assigns send/receive socket

buffers to each TCP connection.
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3.1.1 Control of Send Socket Buffer

Previous research has assumed that the bottleneck in data

transfer is not in the endhost but in the network. Conse-

quently, the allocation size of send socket buffer is fixed, for

example in the previous version of FreeBSD [11] this was

16 KBytes and it is 32 KBytes in the current version. The

assigned capacity is not large enough for the high-speed In-

ternet or it is too large for narrow links. Therefore, it is nec-

essary to assign a send socket buffer to each TCP connec-

tion with considering its bandwidth-delay product. In [7],

we proposed a control scheme of the send socket buffer as-

signed to TCP connections and confirmed its effectiveness

by simulation and implementation experiments. In what

follows, we summarize the scheme briefly.

The equation-based automatic TCP buffer tuning (E-

ATBT) we proposed in [7] solves the above problem. In

E-ATBT, the sender host estimates the ‘expected’ through-

put for each TCP connection by monitoring three parame-

ters (packet loss probability, RTT, and RTO values). It then

determines the required buffer size of the connection from

the estimated throughput, not from the current window size

of the TCP as the ATBT scheme proposed in [19] does.

The estimation method used to estimate TCP throughput

is based on the analysis results obtained in [16]. The pa-

rameter set (p, rtt and rto) is obtained at the sender host as

follows. Rtt and rto can be directly obtained from the sender

TCP. Also, the packet loss rate p can be estimated from the

number of successfully transmitted packets and the number

of lost packets detected at the sender host via acknowledge-

ment packets.

We denote the estimated throughput of connection i by

ρi. From ρi, we simply determine Bi, the required buffer

size of connection i, as;

Bi = ρi × rtti

where rtti is the RTT value of connection i. By this mecha-

nism, a stable assignment of the send socket buffers to TCP

connections is expected to be provided if the parameter set

(p, rtt, and rto) used in the estimate is stable. However, in

ATBT, the assignment is inherently unstable even when the

three parameters are stable, since the window size oscillates

more significantly regardless of the stability of the parame-

ters.

As in ATBT, our E-ATBT also adopts a max-min fair-

ness policy for re-assigning excess buffers. Different to

the ATBT algorithm, however, E-ATBT employs a propor-

tional re-assignment policy. That is, when an excess buffer

is re-assigned to connections needing more buffer, the

buffer is re-assigned proportionally to the required buffer

size calculated from the analysis. Whereas ATBT re-assigns

excess buffers equally, since it has no means of knowing the

expected throughput for the connections.

3.1.2 Control of Receive Socket Buffer

As was case for the send socket buffer, most past research

has assumed that the receive socket buffer at the TCP re-

ceiver host is sufficiently large. Many current OSs assign

a small, fixed-sized receive socket buffer to each TCP con-

nection. For example, the default size of the receive socket

buffer is fixed at 16 or 56 KBytes in FreeBSD systems. As

reported in [20], however, this size is now regarded as small

because network capacity has dramatically increased on the

current Internet, and the performance of servers has also

increased. Furthermore, similar to the send socket buffer

for the sender TCP, the appropriate size for a receive socket

buffer should be changed based on network conditions in-

volving available bandwidth and the number of competing

connections. Therefore, the receive socket buffer assigned

to the TCP connection may be insufficient or remain unused

when it is not appropriately assigned.

Ideally, the receive socket buffer should be set to the same

size as the congestion window size of the corresponding

sender TCP, to avoid performance limitations. The prob-

lem is that the receiver cannot be informed of the conges-

tion window size of the sender host. Furthermore, the re-

ceiver TCP does not maintain RTT and RTO values as in

the sender TCP, and the packet loss probability is very dif-

ficult. However, the sender TCP’s congestion window size

can be estimated by monitoring the utilization rate of the

receive socket buffer and the occurrence of packet losses in

the network as follows.

Suppose that the data processing speed of the upper-layer

application at the receiver is sufficiently high. In such a

case, when the TCP packets stored in the receive socket

buffer become ready to be passed to the application, the

packets are immediately removed from the receive socket

buffer. Let us now consider changes of the usage of the

receive socket buffer, with or without packet loss in the net-

work.

Case 1: Packet loss occurs

Here, utilization of the receive socket buffer increases since

the data packets successively arriving at the receiver host re-

main stored in the receive socket buffer and wait for the lost

packet to be retransmitted from the sender. Assuming that
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the lost packets are retransmitted by the Fast Retransmit al-

gorithm [21], it takes about one RTT for the lost packet to

be retransmitted. Therefore, the number of packets stored

in the receive socket buffer almost equals to the current con-

gestion window size at the sender host, since the TCP sends

data packets within the congestion window size in one RTT.

Consequently, the appropriate size for the receive socket

buffer should be a little larger than the maximum number

of stored packets at that time. As a result, we controlled the

receive socket buffer as follows:

• If the utilization of the receive socket buffer becomes

close to 100 %, the assigned buffer size is increased

since the congestion window size of the sender host is

considered to be limited by the receive socket buffer,

not by network congestion.

• When the maximum utilization of the receive socket

buffer is substantially lower than 100 %, the buffer size

is decreased since excess buffer remains unused.

Case 2: No packet loss occurs

Different to the Case 1, the utilization of the receive socket

buffer remains small. Two situations can be considered: (a)

the assigned size of the receive socket buffer is sufficiently

large so that the congestion window size of the sender host

is not limited, and (b) the assigned size of the receive socket

buffer is so small that it limits the sender’s congestion win-

dow size. This depends on whether the bandwidth delay

product of TCP connection is larger than the assigned re-

ceive socket buffer size or not. Since the receiver host can-

not know the bandwidth-delay product of the TCP connec-

tion, we distinguish between the two cases by increasing the

assigned receive socket buffer and monitoring the change

in throughput for receiving data packets from the sender as

follows:

• When throughput does not increase, it corresponds to

case (a). Therefore, we do not increase the assigned

size of the receive socket buffer since it is already as-

signed enough.

• When the throughput does not increase, correspond-

ing to case (b), the proxy server continues increasing

the receive socket buffer, since it is considered that in-

creasing the socket buffer size would allow the con-

gestion window size at the sender to be increased.

To precisely control the receive socket buffer, we should

also consider the situation where the data processing speed

of the receiver application is slower than the network speed.

Here, the utilization of the receive socket buffer remains

high even when no packet loss occurs in the network, be-

cause the data transmission rate of the sender is limited by

the data processing speed of the receiver application regard-

less of the receive socket buffer size. That is, increasing the

receive socket buffer size has little effect on the through-

put of TCP connection. Therefore, the assigned size of the

receive socket buffer should remain unchanged.

Based on the above considerations, we can determine the

appropriate size of the receive socket buffer using the fol-

lowing algorithms. The receive socket buffer is resized at

regular intervals. During the i th interval, the receiver mon-

itors the maximum utilization for the receive socket buffer

(Ui) and the rate at which packets are received from the

sender (ρi). When packet loss occurs during the i th in-

terval, the assigned receive socket buffer (B i) is updated

through the following equations:

• Bi = α · Ui · Bi−1 when Ui < Tu

• Bi = β · Bi−1 when Ui < Tl

where α = 2.0, β = 0.9, Tl = 0.4 and Tu = 0.8. These

values are used in the simulation and implementation stud-

ies in the following sections. However, when no packet loss

occurs during the i th interval, we use the following equa-

tions are used to update Bi:

• Bi = α · Bi−1 when Ui < Tl and ρi ≥ ρi−1

• Bi = β · Bi−1 when Ui < Tl and ρi < ρi−1

• Bi = Bi−1 when Ui > Tl

3.1.3 Handling the Relation between Upward and

Downward TCP Connections

A Web proxy server relays a document transfer request to a

Web server for a Web client host. Thus, there is a close re-

lation between an upward TCP connection (from the proxy

server to the Web server) and a downward TCP connection

(from the client host to the proxy server). That is, the differ-

ence in expected throughput for both connections should be

taken into account when socket buffers are assigned to both

connections. For example, when the throughput of a cer-

tain downward TCP connection is larger than that of other

concurrent downward TCP connections, the larger socket

buffer size should be assigned to the TCP connection using

E-ATBT. However, if the throughput for the upward TCP

7



connection corresponding to the downward TCP connec-

tion is low, the send socket buffer assigned to the down-

ward TCP connection is not likely to be utilized fully .

When this happens, the unused send socket buffer should

be assigned to the other concurrent TCP connections with

smaller socket buffers, improving their throughputs.

There is one problem that must be overcome in imple-

menting the above method. Although TCP connections can

be identified with the control block, called tcpcb, by the

kernel, the relation between the upward and downward con-

nections cannot be determined explicitly. Therefore, we

need to estimate the relation by using the following algo-

rithm. The proxy server monitors the utilization of the send

socket buffer for downward TCP connections, which is as-

signed by the E-ATBT algorithm. When the send socket

buffer is not fully utilized, it decreases the assigned buffer

size, since the low utilization of the send socket buffer is

considered to be caused by the low throughput of the corre-

sponding upward TCP connection.

3.2 Connection Management Scheme

As explained in Subsection 2.2, a careful treatment of per-

sistent TCP connections on the Web/Web proxy server is

necessary to efficiently use resources at the server that con-

siders the extent of remaining resources. The key idea is as

follows. When the the Web/Web proxy server is not heav-

ily loaded and remaining resources are sufficient, it tries to

keep as many TCP connections open as possible. When re-

sources at the server are going to be shorthanded, the server

tries to close persistent TCP connections to free these re-

sources, so that they can be used for new TCP connections.

To achieve this control the remaining resources at the

Web/Web proxy server should be monitored. The resources

for establishing TCP connections in our case are mbuf, file

descriptor, and control blocks, which are resources for TCP

connections. When they are limited, no additional TCP

connection can be established. The amount of resources

cannot be changed dynamically once the kernel is booted.

However, the total and remaining amounts of resources can

be monitored in the kernel system. Therefore, we intro-

duced threshold values to utilize resources, and if one of

the utilization levels for these resources reaches its thresh-

old, the server starts closing persistent TCP connections and

releases the resources assigned to those connections.

We also have to maintain persistent TCP connections at

the server to maintain or close them according to how re-

sources are being utilized. Figure 3 has our mechanism for

persistent connection list

( sfd, proc )

persistent connection list 

NULL NULL

insert delete

( sfd, proc )

Figure 3: Connection Management Scheme

managing persistent TCP connections at the server. When a

TCP connection finishes transmitting a requested document

and becomes idle, the server records the socket file descrip-

tor and the process number as a new entry in the persistent

connection list, which is used by the kernel to handle the

persistent TCP connections. Note that new entries are added

to the end of the list. When the server decides to close some

persistent TCP connections, it selects connections from the

top of the list. In this way, the server can close the oldest

persistent connections first. When a certain persistent TCP

connection in the list becomes active before being closed,

or when it is closed by the expiration of the persistent timer,

the server removes the corresponding entry from the list.

All operations on the persistent connection list can be done

with simple pointer manipulations.

To manage resources even more effectively, we add a

mechanism where the amount of resources assigned to the

persistent TCP connections gradually decreases after the

connection becomes inactive. No socket buffer is needed

when the TCP connection is idle. Therefore, we can grad-

ually decrease the send/receive socket buffer for persistent

TCP connections by taking account of the fact that as the

connection idle time continues, the possibility that the TCP

connection will be terminated becomes large.

4 Simulation Experiments

In this section, we evaluate the performance of our pro-

posed mechanism through simulation experiments using ns-

2 [22]. We show the implementation overview of our pro-

posed scheme and the results of implementation experi-

ments in Section 5.
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4.1 Simulation Settings

Figure 4 shows the simulation model. It is used to simulate

a situation where many Web client hosts and Web servers

in a heterogeneous environment communicate with a Web

proxy server to send and receive Web documents. To do

that, we intentionally set the bandwidths, propagation de-

lay, and packet loss probability of the links between the

proxy server and the Web clients/servers. The bandwidths

of the links between the client hosts and the proxy server are

changed to 100 Mbps, 1.5 Mbps, and 128 Kbps, and those

between the proxy server and the Web servers are changed

to 100 Mbps, 10 Mbps, and 1.5 Mbps. The packet loss

probability on each link between the Web proxy servers and

client hosts is selected from 0.0001, 0.001, and 0.01, and

that between the proxy server and Web servers is selected

from 0.001, 0.01, and 0.1. The propagation delay for each

link is set to 1, 0.1, and 0.01 secs. Both of the numbers of

Web servers and client hosts are fixed at 432.

In the simulation experiments, each client host randomly

selects one of the Web servers and generates a document

transfer request to the proxy server. The distribution for

the requested document size follows that reported in [8].

That is, it is given by a combination of log-normal distri-

bution for small documents and a Pareto distribution for

large ones. The access model for the client hosts also fol-

lows that in [8], where the client host first requests the main

document, and then requests some in-line images, which

are included in the document after a short interval (follow-

ing [8], we call it active off time), and then requests the

next document after a somewhat longer interval (inactive off

time). Web client hosts transfer Web document requests to

the Web proxy server only when the resources at the proxy

server are sufficient to accommodate that connection. When

the remaining amount of server resources is shorthanded,

the client hosts have to wait for other TCP connections to

be terminated and for the assigned resource to be released.

After the Web proxy server accepts the request, the proxy

server decides whether to transfer the requested document

to the client host directly, or to download it from the orig-

inal Web server and then deliver it to the client host based

on the cache hit ratio h, which is fixed at 0.5 in our simu-

lation experiments. As well as Web client hosts, the proxy

server can download the requested document only when the

proxy server has sufficient resources to establish a new TCP

connection.

The socket buffer that the proxy server can use is divided

equally between the send socket buffer and receive socket

Client Hosts

Web proxy server

Web servers

h = 0.5

propagation delay : 0.01   1 sec
loss probability : 0.0001     0.01# of client hosts : 432 # of Web servers : 432

propagation delay : 0.01   1 sec
loss probability : 0.001     0.1

Figure 4: Network Model for Simulation Experiments

buffer. That is, when the system has 50 MBytes socket

buffer, 25 MBytes are assigned equally to each buffer. We

did not simulate the other limitations of the proxy server re-

sources precisely explained in Subsection 2.1. Instead, we

introduced Nmax, the maximum number of TCP connec-

tions which can be established simultaneously at the proxy

server.

In addition to the proposed mechanism, we conducted

some simulation experiments with the traditional mecha-

nisms, where a fixed-size send/receive socket buffer is as-

signed to each TCP connection for comparison. The simu-

lation time is 1000 sec. We compare the performance of the

proposed mechanism and the traditional mechanism, focus-

ing on the following aspects;

• Server-side proxy throughput: which is defined by

the total transfer data size from Web servers to the

proxy server divided by simulation time.

• Client-side proxy throughput: which is defined by

the total transfer data size from the proxy server to

client hosts divided by simulation time.

• Average document transfer time: which is defined

by the average time from when client host sends Web

document request to when the client host finishes re-

ceiving it.

4.2 Simulation Results

First, we evaluate the performance of the Web proxy server

when the total amount of the socket buffer is changed. In

this simulation, we change the total socket buffer size to

150 MBytes, 50 MBytes, 30 MBytes, and 10 MBytes, each

of which is equally divided for send and receive socket

buffers. Nmax is set to 846, meaning that, all the TCP con-

nections both from Web client hosts and to Web servers are

9



not rejected being established due to lack of other resources.

Figure 5 shows the server-side proxy throughput, client-side

proxy throughput, and document transfer time. Each graph

in this figure shows the results for the traditional mecha-

nisms with various size of the send socket buffers and the

receive socket buffers at the left 16 bar charts. For exam-

ple, (32 KB, 64 KB) means the traditional schemes assigns

a fixed 32 KBytes for the send socket buffer and a fixed

64KBytes for the receive socket buffer. The results for the

proposed mechanism at the right 4 bar charts. Here, we did

not use the connection management scheme explained in

Subsection 3.2 since it shows no effect on the performance

of the proposed scheme. Note that we have confirmed that

the connection management scheme does not have any ad-

verse effects in this case.

Figure 5 reveals that when the total amount of the socket

buffer is small in the traditional schemes, the average proxy

server throughput decreases especially when the assigned

buffer size for each TCP connection is large. This is be-

cause some TCP connections do not use the assigned socket

buffer when the assigned size is large. This also causes

newly arriving TCP connections to wait to become estab-

lished until other TCP connections have closed and released

the assigned socket buffer. However, the throughput of the

scheme we proposed is high even when the total amount of

the socket buffer is quite small. This is because we can as-

sign an appropriate size for the socket buffer for each TCP

connection based on its estimated demand. Consequently,

the excess buffers of narrow-link users are re-assigned to

wide-link users who request a large socket buffer.

One possible way to improve the throughput of the proxy

server in the traditional schemes is to configure the ratio of

the send and receive socket buffers, instead of equally di-

viding for send and receive socket buffer as we did in the

above simulation experiments. That is, if the ratio could

be changed according to the capacity required, the utiliza-

tion of the socket buffer would increase, resulting in im-

proved proxy server throughput. To investigate this further,

let us look at the results when we change the ratio for the

send and receive socket buffers. In this simulation, we set

Nmax to 846 and total amount of the socket buffer is fixed

to 50 MBytes. We then divided the socket buffer for send

and receive socket buffers in the ratios of 1:1, 2:1, 4:1, and

1:2. Figure 6 shows that in the traditional schemes, the most

appropriate value of the division ratio changes when the as-

signed size of the socket buffer changes. It is also be af-

fected by the various factors such as the cache hit ratio, the

total number of TCP connections at the proxy server, and so

on. That is, it is very difficult to find the best setting of the

division ratio of the send/receive socket buffer. However,

proxy server throughput in our scheme still remains high

even if we set the ratio incorrectly or the total socket buffer

is very small. That is, we can say that our proposed scheme

has good robustness against the setting of the division ratio

of the socket buffer.

Let us now discuss the results we obtain from the eval-

uating the connection management scheme. Here, we set

Nmax to 600, which is sufficiently small to accept all TCP

connections arriving at the proxy server. The other param-

eters are the same as in Fig. 5. Figure 7 shows the simu-

lation results for our scheme with and without the connec-

tion management scheme (SSBT and SSBT+Conn, respec-

tively). From this figure, it is obvious that in the traditional

schemes, both proxy server throughput and document trans-

fer time are worse than those in Fig. 5. This small value for

Nmax means some TCP connections must wait to become

established because of the lack of proxy server resources,

even if most TCP connections at the proxy server are not

used for data transmission and only waste proxy server re-

sources. This phenomena can be seen even in our scheme

without the connection management scheme. On the other

hand, when the connection management scheme is used, the

proxy server throughput increases and document transfer

time decreases. The connection management scheme pro-

posed in this paper terminates persistent TCP connections

which do not transfer any data, and the released resources

are used for newly arriving TCP connections, which can

start transmitting Web documents immediately. This im-

proves of the resource utilization of the proxy server, which

also reduces of document transfer time perceived by Web

clients.

5 Implementation and Experiments

In this section, we discuss the results we obtain in imple-

mentation experiments and confirm the effectiveness of our

proposed scheme within an actual system.

5.1 Implementation Overview

Our scheme consists of two algorithms; the socket buffer

management scheme discussed in Subsection 3.1, and

the connection management scheme described in Subsec-

tion 3.2. We implement it on a PC running FreeBSD 4.6,

10
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Figure 5: Simulation Results (1)
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Figure 6: Simulation Results (2)

by modifying the source code of the kernel system and the

Squid proxy server [13]. The total number of lines of added

source code is about 1000.

The socket buffer management scheme is composed of

two mechanisms: control of send socket buffer and receive

socket buffer. To control the send socket buffer, we have to

obtain the ‘estimated’ throughput of each TCP connection

established at the proxy server from the three parameters in

Subsection 3.1.1. These parameters can easily be monitored

at a TCP sender host, such as a Web server or a Web proxy

server. We monitor these parameters in a kernel system at

regular intervals. In the following experiments, we set the

interval at 1 sec. We then calculate the estimated through-

put of a TCP connection and assign a send socket buffer

using the algorithm in Subsection 3.1.1. To control the re-

ceive socket buffer, we monitor the utilization of the receive

socket buffer as described in Subsection 3.1.2. We modify

the kernel system to monitor the utilization of the receive

socket buffer at regular intervals, which is set to 1 sec in

our implementation. Note that it should be careful to treat

the receive socket buffer when the assigned buffer size is

decreased in our scheme. This is because if we decrease

the receive socket buffer size without sending ACK packets

with a new value for the advertised window size to the TCP

sender host, transferred packets may be lost due to a lack

of receive socket buffer. Therefore, we decrease the receive

socket buffer size 0.5 sec after informing the sender host of

the new advertised window size by sending an ACK packet.

To implement the connection management scheme, we

have to monitor the utilization of server resources and

maintain an adequate number of persistent TCP connec-

tions which have been concurrently established at the proxy

server, as described in Subsection 3.2. We therefore have to

monitor the remaining server resources in the kernel system

11
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Figure 7: Simulation Results (3)

every second and compare them with their threshold values

for the resources. Furthermore, to manage persistent TCP

connections at the proxy server, we have to establish the

persistent connection list explained in Subsection 3.2 in the

kernel system.

5.2 Implementation Experiments

We next show the results of implementation experiments.

Figure 8 outlines our experimental system. The Web proxy

server host has dual Intel Xeon Processor 2 GHz CPUs and

2 GBytes of RAM, the Web server host has 2 GHz CPU and

2 GBytes of RAM, and the client host has 2 GHz CPU and

1 GByte of RAM. All of three machines run a FreeBSD 4.6

system. The amount of proxy server resources is set such

that the proxy server can accommodate up to 400 TCP con-

nections simultaneously. The threshold value, at which the

proxy server begins to close persistent TCP connections, is

set to 300 connections. We intentionally set the size of the

proxy server cache to be 1024 KBytes, so that the cache hit

ratio becomes about 0.5. The length of the persistent timer

used by the proxy server is set to 15 seconds. The client host

uses httperf [23] to generate document transfer requests to

the Web proxy server, which can emulate numerous users

making Web accesses to the proxy server. The number of

emulated users in the experiments is set to 200 and 600. In

the traditional system, therefore, all TCP connections at the

Web proxy server can be established when there are 200

TCP connections, but all TCP connections cannot be ac-

cepted when this number is 600 due to the lack of server re-

sources. As in the simulation experiments, the access model

for each user at the client host (the distribution for the re-

Client host Web proxy server Web server

# of users

  200, 600
upper limit        : 400 connections

threshhold         : 300 connections

persistent timer : 15 seconds

cache hit Ratio  : 0.5

Figure 8: Implementation Experiment System

quested document size and think time between successive

requests) follows that reported in [8]. When the request is

rejected by the proxy server due to lack of resources, the

client host resends the request immediately. We compare

the proposed scheme and the original scheme in which no

mechanism proposed in this paper is used.

Figure 9 shows the average throughput of the proxy

server, and the average document transfer time perceived

by the client host. Here, we define the average through-

put of the proxy server as the total size of the transferred

documents from the proxy server to client hosts divided

by the experimentation time (500 sec). From this figure,

when the number of users is 200, the average throughput

of traditional scheme (16 KB, 16 KB) is lower than that

of another traditional scheme (256 KB, 256 KB). This is

because the assigned size of send/receive socket buffer is

too small in spite of that the network capacity and the Web

server performance is sufficiently. When the number of

users increases to 600, however, the performance of the tra-

ditional schemes decreases in both terms of the proxy server

throughput and the document transfer time, Especially, the

traditional scheme (256 KB, 256 KB) degrades its perfor-
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Figure 9: Experimental Results (1)

mance significantly. This is because the proxy server re-

sources are much shorthanded in this case, since too large

size of socket buffer is assigned to TCP connections.

When we look at the results of our proposed scheme, we

can observe that when the number of users is 200, the proxy

server throughput is almost the same as that of the tradi-

tional scheme (256 KB, 256 KB). In 600 users case, how-

ever, our proposed scheme does not degrade its throughput

in spite of that the number of users is much larger than the

capacity of the proxy server. It also provides the smallest

document transfer time for the Web client host. This results

mean that our scheme can effectively control the persistent

connections at the proxy server.

Further more, we exhibit the pretty good performance of

the proposed scheme in terms of the resource utilization at

the proxy server. Figure 10 shows the average size of the

assigned socket buffer to all TCP connections. It clearly

shows that our scheme can save the socket buffer amaz-

ingly at the proxy server. Note that the traditional scheme

(256 KB, 256 KB) uses about 10 times larger socket buffer

but it can provide only 75 % throughput and larger docu-

ment transfer time, compared with the proposed scheme.

From the above results, we can conclude that our proposed

scheme works effectively on the actual system, providing

quite better performance than the traditional scheme.

6 Concluding Remarks

In this paper, we proposed a new resource management

mechanism for TCP connections at Internet servers. Our

proposed scheme has two algorithms. The first is a socket

buffer management scheme which effectively assigns the
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send/receive socket buffers to heterogeneous TCP connec-

tions based on their expected throughput. It takes into ac-

count for the dependency between the upward and down-

ward TCP connections at proxy servers. The second is a

scheme for managing persistent TCP connections. It mon-

itors server resources, and intentionally closes idle TCP

connections when the remaining server resources are short-

handed. We have evaluated the our scheme through various

simulation and implementation experiments, and confirmed

that it can improve the proxy server performance, and re-

duce the document transfer time for Web client hosts.

References

[1] Proxy Survey, available at http://www.delegate.

org/survey/proxy.cgi.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-

Lee, “Hypertext Transfer Protocol – HTTP/1.1,” Request for

Comments (RFC) 2068, Jan. 1997.

13



[3] P. Barford and M. Crovella, “A performance evaluation of

Hyper Text Transfer Protocols,” in Proceedings of ACM SIG-

METRICS ’99, Oct. 1998.

[4] P. Cao and S. Irani, “Cost-aware WWW proxy caching algo-

rithms,” in Proceedings of the 1997 USENIX Symposium on

Internet Technologies and Systems, pp. 193–206, Dec. 1997.

[5] L. Rizzo and L. Vicisano, “Replacement policies for a proxy

cache,” IEEE/ACM Transactions On Networking, vol. 8,

pp. 158–170, Apr. 2000.

[6] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. ael

Rabinovich, “Performance of Web proxy caching in hetero-

geneous bandwidth environments,” in Proceedings of IEEE

INFOCOM ’99, pp. 107–116, June 1999.

[7] This reference is blind because of self-citation.

[8] P. Barford and M. Crovella, “Generating representative Web

workloads for network and server performance evaluation,”

in Proceedings of the 1998 ACM SIGMETRICS International

Conference on Meas urement and Modeling of Computer

Systems, pp. 151–160, July 1998.

[9] V. Almedia, A. Bestavros, M. Crovella, and A. de Oliveria,

“Characterizing reference locality in the WWW,” in Pro-

ceedings of 1996 International Conference on Parallel and

Distr ibuted Information Systems (PDIS ’96), pp. 92–103,

Dec. 1996.

[10] M. Arlitt and C. Williamson, “Web server workload charac-

terization: The search for invariants,” in Proceedings of the

ACM SIGMETRICS ’96 Conference, Apr. 1996.

[11] FreeBSD Home Page, available at http://www.

freebsd.org/.

[12] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quar-

terman, The Design and Implementation of the 4.4 BSD Op-

erating System. Reading, Massachusetts: Addison-Wesley,

1999.

[13] Squid Home Page, available at http://www.

squid-cache.org/.

[14] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols.

Reading, Massachusetts: Addison-Wesley, 1994.

[15] M. Nabe, M. Murata, and H. Miyahara, “Analysis and mod-

eling of World Wide Web traffic for capacity dimensioning

of Internet access lines,” Performance Evaluation, vol. 34,

pp. 249–271, Dec. 1999.

[16] This reference is blind because of self-citation.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling

TCP throughput: A simple model and its empirical valida-

tion,” in Proceedings of ACM SIGCOMM ’98, pp. 303–314,

Aug. 1998.

[18] N. Cardwell, S. Savage, and T. Anderson, “Modeling

TCP latency,” in Proceedings of IEEE INFOCOM 2000,

pp. 1742–1751, Mar. 2000.

[19] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP

buffer tuning,” in Proceedings of ACM SIGCOMM ’98,

pp. 315–323, Aug. 1998.

[20] M. Allman, “A Web server’s view of the transport layer,”

ACM Computer Communication Review, vol. 30, pp. 10–20,

Oct. 2000.

[21] W. Stevens, “TCP slow start, congestion avoidance, fastre-

transmit, and fast recovery algorithms,” Request for Com-

ments (RFC) 2001, Jan. 1997.

[22] The VINT Project, “UCB/LBNL/VINT network simulator

- ns (version 2).” available at http://www.isi.edu/

nsnam/ns/.

[23] D. Mosberger and T. Jin, “httperf: A tool for measuring

Web server performance,” Performance Evaluation Review,

vol. 26, pp. 31–37, Dec. 1998.

14


