Theme 2 Establishment of Networked Symbiosis Environment Architecture

Traditional Network is ...

- Network resource management assumes existence of network resources permanently (or, at least during the connection)
 - IntServ offers a fixed amount of resources (bandwidth) between source/destination pair
 - DiffServ offers the relative resources to active users
 - Route must be fixed during the connection
- The Web server at the far end provides the service to the users (server/client model)

Problems of Web-based Computing Paradigm

- Excessive load at Web servers
 - fixed roles of servers and clients
 - the clients connect to ISP via modems when necessary
 - server bottleneck (CPU, memory and link)
 - proxy cache and server parallelization may alleviate the problem, but the effect is limited
- Possibility of new computing paradigm
 - broadband access via ADSL/FTTH
 - Total resources in the world: 10 billion MHz, 10Pbytes (assuming 1 million computers)
 - explosive growth of bandwidths
 - bottleneck is increasingly moving to end hosts

♦ Osaka Univ. IST&CMC -

M. Murata

- Shares CPU and storage in a distributed environment
 - Grid Computing
- Shares devices and sensors
 - Sensor Network
- Direct communication between users
 - Ad hoc Network
- Information sharing
 - P2P itself
- Realizes information infrastructure and application platform by P2P networking architecture; P2P acts as an overlay network for resource findings

🗘 Osaka Univ. IST&CMC 🗕

- Hybrid P2P
 - Information on peers (meta information) is maintained at the server
 - Advantages
 - fast search
 - stores search/information retrieval for next use
 - Disadvantages
 - load increasing at servers
 - robustness is weak
- Pure (Unstructured) P2P
 - Advantages
 - no servers
 - robust
 - anonymity (?)
 - Disadvantages
 - scalability: 6¹⁰ query messages for nodes with six degrees (in average) if TTL=10

♦ Osaka Univ. IST&CMC -

Three Targets of New Network Architecture

- Scalability
 - to allow an explosive increase of network users, client devices, and network nodes (routers)
- Variety
 - to get along with varying networking technologies from still narrow wireless network to over 10Gbps high-speed backbone network, and changing nature of traffic (in volume and time-dependent behavior) that we cannot anticipate
- Mobility
 - to react to physical movement of users, and to allow frequent changes of available network resources
- A key technology is ADAPTABILITY of end hosts (not network). Network should provide mechanisms to support the adaptability.

------ The 21st Century COE Program

What is Scalability?

- The network control of O(N) is scalable?
 - If N represents the # of nodes, the answer could be yes
 - But, the answer is probably "no" if N does the number of users
 - For the end-to-end communications, $O(\sqrt{N})$ is desirable

- We should go back to the early principle of the Internet: *End-to-end arguments*
 - The network provides the best-effort service for the end-toend connectivity
 - The user (end hosts) should be equipped with a capability of having an adaptability to the current status of the network, including
 - topology, traffic load, etc.
- A new technology is traffic measurement for end hosts to acquire the current status of the network
 - RTT & packet loss probability
 - available bandwidth

🗘 Osaka Univ. IST&CMC 🗕

Traffic Measurement Approaches

♦ Osaka Univ. IST&CMC -

Ongoing Researches (1)

- Inline Network Measurement
 - Passive measurement: point estimation
 - Active measurement: wastes the bandwidth
 - Inline measurement investigates the network status during the data transmission by TCP, which can be used for later transmission or background traffic
- Control Theoretic Analysis of TCP Network
 - Classical approach is queueing theory/queueing network theory, that treat feed-forward systems
 - TCP is essentially closed loop, i.e., feedback system
 - Interaction between network and TCP connection?
 - Routers behavior?
- Incremental Network Dimensioning for Unpredicted
 Traffic Growth
 - Currently, we apply it to IP over WDM (GMPLS)

------ The 21st Century COE Program -

🗘 Osaka Univ. IST&CMC 🗕

Mechanism of Inline Network Measurement

♦ Osaka Univ. IST&CMC -

Simulation Experiments

13

Control Theoretic Approach for the Internet

- Models Interaction between TCP connections and the network as a feedback system
 - Window-based congestion control for TCP is a feedback system

------ The 21st Century COE Program

♦ Osaka Univ. IST&CMC -

Transient Performance of Feedback System

• Relations between window size and packet loss probability

$$W(k+1) = f(p(k)), p(p+1) = g(W(k))$$

• We get eigenvalues of the state transition matrix A, which determines the system stability and transient characteristics:

$$x(k) = \begin{bmatrix} w(k) - W^* \\ p(k) - p^* \end{bmatrix} \text{ and } x(k+1) = A x(k)$$

where w* and k* are equilibrium values

• Let *s* be the maximum modulus of eigenvalues.

$$S = \max_{i} (|S_i|)$$

- Then we have
 - s < 1: stable, s > 1: unstable
 - Transient performance becomes better by smaller s

🗘 Osaka Univ. IST&CMC 🗕

System Stability

What Can We Learn from Ants?

- Three behaviors that we can learn from ants
 - foraging
 - Dorigo & Di Caro (2003)
 - can be applied to optimization problems;
 - division of labor
 - clustering
 - Kunts, Layzell & Snyers (1997)
 - seems to be able to be applied to self-organization
- To apply to the routing algorithm, we have two problems
 - blocking problem; how fast can we act against tear down of links
 - short-cut problem; how do we solve when new link is established?
 - Many solution approaches do exist, but those are ad-hoc. How do the ants solve the problems in actual?
- The other and more difficult problem is how we can determine the parameters
 - velocity of ants, vanishing speed of pheromone, probability that the ants choose the other longer path, etc.
- Adaptability cannot be obtained by ants behavior(?)

What Can We Learn from Biology?

- Several Problems
 - It may not be best for solving optimization problems
 - Just an analogy to explain the procedure for seeking the solution or for control?
 - We need trial and error to find out an appropriate parameter set
 - just same as a genetic algorithm
- Why can ants do the things well?
 - It does not provide the best solution in terms of optimality and computational time
 - It means that it is not best in getting "adaptability"
 - Seems best for establishing robustness/fault tolerance against failure/fluctuation
 - We need to consider evolution when it is applied to a real world

🗘 Osaka Univ. IST&CMC 🗕

Research Items

- Solves scalability problems in P2P and ad-hoc networks
 - Introducing hierarchical structure is one promising approach
 - We may use an analogy of ants for self-organizing hierarchy
 - Use local knowledge
- Power-saving in sensor networks
 - The approaches must be different by objectives of sensors
 - All devices should keep alive
 - Only a part of devices alive is sufficient
 - We may again use an analogy of self-organization mechanism in biology
- The Internet as a complex system
 - Metcalf's law again
 - The value of a network increases exponentially with the number of nodes.": V(N) ~ N^2 , assuming combinatorial graph
 - Web created imbalance between clients/servers
 - End-to-end arguments and P2P again bring a combinatorial problem
 - Self-similarity and power-law have been "found." What is a cause of such a phenomenon?
 - Relation between optimality/convergence speed and robustness/tolerance?

------ The 21st Century COE Program -

P2P as Power Law Network

- Power Law Distribution
 - Probability density of event X: $P[X=x]=x^{-k}$
- Many observed examples
 - Human community (small world)
 - Citations of papers
 - The number of links connected to AS-level routers
 - The number of links included in Web pages

♦ Osaka Univ. IST&CMC -

Visual Representation of Power Law Network

Ongoing Researches (2)

- Search Mechanism in P2P that follows Power-Law Property
 - In P2P environment, peers connects/disconnects very frequently
 - Cache mechanism is important, but its capacity is limited. Search mechanism taking into account the power law property is essential
- Scalable and Continuous Media Streaming on P2P Networks
 - Segmentation of media since the peer may leave the network during the playout
 - Cache mechanism can allow changing the search range, which resolves the scalability to some extent

Ongoing Researches (3)

- Mobile Agent System with Location Transparency
 - Distributed location management
 - Multi-plain logical network for various applications
 - Agent authentication for secure communications

