
Hierarchically Aggregated Fair Queueing (HAFQ)

for Per-flow Fair Bandwidth Allocation in High Speed Networks

Ichinoshin Maki†, Hideyuki Shimonishi‡, Tutomu Murase‡, Masayuki Murata†, Hideo Miyahara†
†Graduate School of Information Science and Technology, Osaka University

‡Networking Research Labs, NEC Corporation
E-mail: i-maki@ist.osaka-u.ac.jp

Abstract—
Because of the development of recent broadband access technologies,

fair service among users are becoming more important criteria. The most
promising scheme of router mechanisms for providing fair service is per–
flow traffic management. However, it is difficult to be implemented in high–
speed core routers because per–flow state management is prohibitive; thus,
a large number of flows are aggregated into a small number of queues. This
is not a preferable situation because the more number of flows aggregated
into a queue increases, the worse fairness tends to become.

In this paper, we propose a new traffic management scheme called Hi-
erarchically Aggregated Fair Queueing (HAFQ) to provide per–flow fair
service. Our proposed scheme can adjust flow aggregation levels according
to the queue handling capability of various routers. That means the pro-
posed scheme is scalably used in high–speed networks. HAFQ improves
the fairness among aggregated flows by estimating the number of flows ag-
gregated in a queue and allocating bandwidth to the queue proportionally.
In addition, since HAFQ can identify flows having higher arrival rates si-
multaneously in estimating the number of flows, it enhances the fairness by
preferentially dropping their packets. We show that our proposed scheme
can provide per–flow fair service through extensive simulation and exper-
imental studies using a network processor. Since the currently available
network processors (Intel IXP1200 in our case) is not high capacity, we also
give extensive discussions on the applicability of our scheme to the high–
speed core routers.

I. Introduction
Fair service among users is already one of the most important
goals of those concerned with the quality of best effort traffic,
and it is becoming more important as broadband access tech-
nologies such as xDSL and optical fiber remove the limits on a
user’s use of network resources. That means aggressive users
may utilize a large amount of network resources and deteriorate
quality of other users extremely [1]. Therefore, it is important to
provide fair service for end users and many researches are done
in order to solve this problem.

There are two main traffic management schemes for provid-
ing per–flow fair service as router mechanisms. RED [2] and
SRED [3] are represented as the first main traffic management
scheme. These mechanisms take an advantage of easy hardware
implementation but hardly provide per–flow fair service for all
users [4]. As the second main traffic management scheme, per–
flow scheduling or per–flow accounting are represented. For ex-
ample, there are a lot of packet scheduling algorithms but the
DRR scheme [5] should be one of the easiest to accomplish the
per–flow service. When the line speed of a router is low enough
that all flow states can be maintained in large capacity mem-
ories, the router can employ per–flow queueing. However, it
is difficult to use per–flow queueing in high–speed core routers
because large capacity memories cannot operate so fast; thus,
a large number of flows are aggregated into a small number of
queues. This is not a preferable situation because the more num-
ber of flows aggregated into a queue increases, the worse fair-
ness tends to become.

In this paper, we therefore propose a new traffic manage-
ment scheme called Hierarchically Aggregated Fair Queueing
(HAFQ) to provide per–flow fair service. HAFQ improves the
fairness among aggregated flows by estimating the number of

flows aggregated in a queue and allocating bandwidth to the
queue proportionally. In addition, since our proposed scheme
can identify flows having higher arrival rates simultaneously in
estimating the number of active flows, it enhances the fairness
by preferentially dropping their packets.

Another advantage of our scheme is that it requires no flow
identification to assign a queue to a flow. The assignment can be
simply implemented by hashing methods because it has only to
guarantee that the difference between the number of flows ag-
gregated into each queue is not extremely large. Flow identifi-
cation is not required even in edge routers performing near per–
flow queueing because our scheme allows two or more flows to
occasionally be aggregated in the same queue.

We evaluate the proposed scheme through extensive simula-
tion studies. First, we show that our proposed scheme can es-
timate the number of active flows precisely in comparison to
the traditional schemes. Second, we also show that the pro-
posed scheme can provide per–flow fair service even when a
large number of flows are aggregated into the same queue.

In general, a scheduling complexity can be evaluated if the
scheduling algorithm is given. However, in today’s high–speed
network environment, its quantitative complexity of hardware
implementation can be fully investigated neither by simulation
nor by theoretical studies. We therefore implemented our pro-
posed scheme on Intel IXP1200 network processor [6]. Since
a network processor is programmable and it can realize many
router mechanisms, we can evaluate the proposed scheme in a
nearly actual environment. Since the processing capacity of the
IXP1200 is not high, we examine the results obtained in a rel-
atively slow network environment and discuss the applicability
in a high–speed network environment.

The remainder of the paper is structured as follows. In the
next section, we propose a new scalable traffic management. In
section III, we evaluate the scheme through extensive simulation
studies. In section IV, we discuss the implementation design is-
sues of the proposed scheme on the network processor and eval-
uate its scheduling complexity through experimental measure-
ments. Finally, we conclude in section V.

II. Hierarchically Aggregated Fair Queueing
(HAFQ)

A. Outline
The basic mechanism of our scheme is illustrated in Figure 1.
When a packet arrives at the router, a 16-bit CRC hashing func-
tion assigns it to a queue. It is because it can perform good load
balancing [7]. Then, the number of active flows in each queue is
estimated. The number of flows is estimated by using a zombie
list [3], which is a short history of newly arrived flows and is
prepared for each queue. This means that the number of flows is
estimated without maintaining the states of all active flows. And
because the zombie list also helps identifying flows whose hav-

3 3

4 1 4 1

2 2

4 3 1 2

Zombie

list

Zombie

list

Zombie

list
4 3 2 1

OutputInput

1

H
a
s
h
in
g

2

1

Active flow
count estimation

Active flow
count estimation Dynamic

Bandwidth allocation

Fig. 1. Outline of the proposed scheme.

flow ID

1 3

2 7

5

7

2

4

counterflow ID

1 3

2 7

5

7

2

4

counter

Prob: q

Prob: 1-q

(a)

(b)

(c)

flow ID

1 3

2 7

5

7

2

4

counterflow ID

1 3

2 7

5

7

2

4

counter

flow ID

1 3

2 8

5

7

2

4

counter

flow ID

1 3

3 1

5

7

2

4

counter

flow ID

1 3

2 7

5

7

2

4

counter

2

3

Miss

Hit

Fig. 2. Zombie list.

ing high packet arrival rates, fairness among aggregated flows
in the same queue can be improved by dropping those packets
preferentially.

As output operations, our proposed scheme allocates band-
width to the queue according to the number of flows aggregated
into each queue. Then, our scheme forwards a packet from the
queues using the DRR scheduling.

B. Zombie List
A zombie list is a table of constant size in which is a short history
of newly arrived flows. Each row in this table contains a flow ID
and a packet counter, and the list is revised every time a packet
arrives at the router. An entry in the zombie list is called zombie.
When a packet arrives at the router, it performs as below.

• Search into a zombie list.
− When the flow ID of the packet matches a flow ID in

the list, the corresponding packet counter is increased by
one. This is called Hit.

− When no entry matches, a row is selected randomly.
* With probability q, the flow ID of the new packet is

written into that row and the corresponding packet
counter is set to 1. This is called Swap.

* Otherwise (i.e., with probability 1 − q), nothing is
done. This is called No-swap.

Figure 2 shows an example in which the flow ID of an arriving
packet matches the second entry in the zombie list and the corre-
sponding packet counter is incremented by 1 (Fig. 2(a)). It also
shows examples of what happens when the new flow ID does
not match any of the entries in the zombie list. With probability
q, the flow ID is written into a randomly selected entry and the
corresponding packet counter is reinitialized (Fig. 2(b)). With
probability 1 − q, the zombie list is not changed (Fig. 2(c)).

C. Estimating the Number of Flows
In [3], a scheme which estimates the number of flows aggre-
gated in a queue is proposed but the number of active flows is
estimated almost accurately only when the arrival rates of all
flows are equal. Otherwise, the estimated number is too small.

We therefore propose a more accurate estimation scheme that

works appropriately even when the arrival rates of flows differ,
which is common in an actual situation. In the proposed scheme,
the arrival rates of incoming flows are estimated and their aver-
age is calculated. The number of flows can be derived from the
average rate because there is the following relation between the
average arrival rate λavg and the number of flows N .

λavg =
∑N

i=1 λi

N
(1)

N =
∑N

i=1 λi

λavg
(2)

where λi is the arrival rate of flow i. The above equations in-
dicate that the number of flows can be estimated by dividing
the total arrival rate by the average arrival rate. Note that these
equations hold when the arrival rates of the flows differ.

Now we define Ri as the ratio of the arrival rate of flow i to
the total arrival rate for the same queue, i.e.,

Ri =
λi∑N
i=1 λi

(3)

In the following, we will estimate the number of flows by de-
riving Ri using a zombie list. Here we assume that the packet
length is fixed, but the scheme is easily extended to handle vari-
able packet lengths.

Assume that a packet of flow i arrives at queue k and that
zombie list k is updated. Let M denote the number of entries
in a zombie list. If entry j (1 ≤ j ≤ M) is replaced by a newly
arrived flow, the arrival rate of the flow that had been registered
in that entry is estimated by using the packet counter value of the
entry before the entry is replaced. This is because the maximum
value of the packet counter is proportional to the rate of the flow.

When we define P1 as the probability that a flow in a entry is
replaced before packets of the flow arrives again (i.e., the prob-
ability that the maximum value of the packet counter is 1), P 1 is
given by

P1 = (1 − Ri)a + (1 − Ri)(1 − a)(1 − Ri)a
+ {(1 − Ri)(1 − a)}2(1 − Ri)a
+ · · · + {(1 − Ri)(1 − a)}n(1 − Ri)a

=
(1 −∑M

j=1 RXj)
q
M

(1 −∑M
j=1 RXj)

q
M + Ri

(4)

where Xj denotes the flow ID registered in entry j and a de-
notes the probability that an entry is replaced by a newly arrived
flow under the condition that an arrived packet matches no entry.
Namely,

a =
1 −∑M

j=1 RXj

1 − Ri
× q

M
(5)

In the same way, the probability Pn that the packet counter is
increased to n before the entry is replaced. Pn is given by

Pn = Rn−1
i P1 + (1 − Ri)(1 − a)Rn−1

i P1

+ {(1 − Ri)(1 − a)}2Rn−1
i P1

+ · · · + {(1 − Ri)(1 − a)}nRn−1
i P1

=
Rn−1

i (1 −∑M
j=1 RXj)

q
M

{(1 −∑M
j=1 RXj)

q
M + Ri}n

(6)

Therefore, the expectation Ei for the maximum value of the

packet counter is given by

Ei =
∞∑

i=1

i Pi =
Ri

(1 −∑M
j=1 RXj)

q
M

+ 1 (7)

Now let Ri be unknown and let R̃i denote the estimation for Ri.
If we assume that the packet counter value reaches Ẽi before the
entry is replaced, R̃i can be derived using Eq. (7) as follows:

R̃i =

1 −
M∑

j=1

RXj

 q

M
(Ẽi − 1) (8)

If we assume that no entries in the zombie list are swapped,
the probability p that incoming packets match one of the entries
(i.e., the probability of a Hit) approaches the sum of the rates
of the flows in the zombie list:

∑M
j=1 RXj . Therefore, if we

choose the smaller value for the swapping probability q, the sum
of RXj can be approximated by the probability p. Thus, R̃i can
be derived by the following equation:

R̃i = (1 − p)
q

M
(Ẽi − 1) (9)

Then, the scheme computes the average of R̃i. Since a flow
having a higher arrival rate is counted to the average arriving
rate more frequently than other flows, the average is overesti-
mated if some of the flows have higher arrival rates. Since flow
i is registered in the zombie list R̃i/Ẽi times per unit time, R̃i

should be counted into the average with the weight (R̃i/Ẽi)−1.
Therefore, the average R̃avg is given by

R̃avg =

{
1 − β

(
Ẽi

R̃i

)}
R̃′

avg + β

(
Ẽi

R̃i

)
R̃i

=

{
1 − α

1 − p
· Ẽi

Ẽi − 1

}
R̃′

avg + βẼi (10)

where α is a predetermined value which is βM
q and β is a

smoothing parameter for the average. Finally, the estimated
number of flows accommodated in the queue is calculated by
1/R̃avg using Eqs. (2) and (3).

N =
1

R̃avg

(11)

If the number of flows is no more than the number of entries in
a zombie list and all incoming packets are matched with one of
the entries, the packet counter can increase infinitely. Therefore,
we introduced another mechanism to deal with this problem but
do not describe it in this paper because of the space limitation.

D. Preferential Packet Dropping Using Packet Counters
Our scheme improves fairness among flows aggregated in the
same queue by detecting the flows having higher arrival rates
and preferentially dropping the packets of these flows. Since
Eq. (9) shows that the packet counter value is proportional to
the packet arrival rate, the packets of flows having higher ar-
rival rates can be detected easily. The proposed scheme there-
fore drops the incoming packet if the packet counter value is
more than the average of the packet counter value and the queue
length is greater than half of the buffer capacity.

III. Simulation Results
In simulation, we used the single–bottleneck network topology
shown in Fig. 3. We assumed that the bandwidth of the access

Sender Hosts Receiver Hosts

Router Router

Bottleneck
S1

Sn

R1

Rn

All links : 155 Mbps

Fig. 3. Single-link model.

links and the bottleneck link is 155 Mbps, and the propagation
delays of these links are respectively 0.1 and 1 ms. All hosts
use TCP or UDP (3.2 Mbps) and they have an infinite amount
of data to transmit. The number of entries in one zombie list is
four. All simulations were run using the NS simulator [8].
A. Estimated Number of Flows
We evaluated the flow number estimation of our scheme and
compared it with the estimation of SRED. Figures 4(a)–(c) show
the estimated number of flows aggregated in a queue and the
number of active flows. In these figures, “HAFQ w/o DROP”
denotes our scheme without the preferential packet–dropping
using packet counters and “HAFQ” denotes our scheme with
the packet–dropping. We assumed that one flow starts to trans-
mit at time 0, that the number of flows doubles every 2 seconds
until it reaches 64 and that all these flows are aggregated in one
queue.

In Fig. 4(a), all flows are TCP flows and their RTTs are same.
In this case, all three schemes give approximately correct num-
bers. In Fig. 4(b), half of the access links have 1 ms propagation
delays and the other half have 0.1 ms propagation delays. This
figure shows that RTTs have little influence on the estimated
number of flows. In Fig. 4(c), half the flows are TCP flows
and the other half are UDP flows. In this case, the number of
flows estimated by SRED are much smaller than the correct val-
ues. Since the arrival rates of UDP flows are much higher than
those of TCP flows, SRED counts flows as if the only flows in
the network are UDP flows. In our scheme without the packet–
dropping, however, the estimated numbers of flows are only
slightly less than the correct values. With the packet–dropping,
the estimation is improved and the error is less than 10%. This
is because packets of UDP flows are preferentially dropped and
the arrival rates of all flows become more uniform.
B. Throughput of Each Flow on the Middle Aggregation

Level
We next evaluated our scheme using 64 queues and determin-
ing the ones that flows were stored in by hashing the flow IDs,
in comparison with the FIFO scheme using tail drop for buffer
control. In this evaluation, the number of flows was 256. We run
each simulation during 10 sec.

Figure 5(a) shows the individual throughput of all TCP flows.
This figure shows that the throughput of the FIFO scheme differs
and the proposed scheme improves fairness among flows. In
Fig. 5(b), half of the TCP flows have longer RTTs as evaluated
in Fig. 4(b). The FIFO scheme gives TCP flows with shorter
RTTs more bandwidth than those with longer RTTs, and our
scheme decreases the difference between flows with different
RTTs.

In Fig. 5(c), half of the flows are TCP flows and the other
half are UDP flows (1.2 Mbps). In this case, the FIFO scheme
gives UDP flows much more bandwidth than TCP flows and our

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(a) TCP flows in a homogeneous environ-
ment

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(b) TCP flows in a heterogeneous environ-
ment

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(c) TCP and UDP flows in a homogeneous
environment

Fig. 4. The estimated number of flows in SRED and the proposed scheme.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(a) TCP flows in a homogeneous environ-
ment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(b) TCP flows in a heterogeneous environ-
ment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(c) TCP and UDP flows in a homogeneous
environment

Fig. 5. Throughput of TCP and UDP flows.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 4 16 64 256 1024

F
ai

rn
es

s
In

de
x

Number of flows

FIFO,TailDrop
DRR

HAFQ w/o DROP
HAFQ

(a) Only TCP flows

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

4 8 16 32 64 128 256 512 1024

F
ai

rn
es

s
In

de
x

Number of flows

FIFO,TailDrop
DRR

HAFQ w/o DROP
HAFQ

(b) TCP and UDP flows

Fig. 6. Fairness index versus the number of flows.

scheme improves fairness between TCP flows and UDP flows.
In these three cases, the packet–dropping of our new scheme
further improves fairness among flows.

C. Fairness Index on the High Aggregation Level

The throughput of a large number of flows was next examined
in order to evaluate a fairness property of our scheme in a large–
scale–network environment. In this evaluation, our scheme was
compared with the FIFO scheme and with a DRR per–flow
scheduling scheme. Based on a core router environment, we
suppose that both our new scheme and the DRR scheme have
64 queues. In the DRR scheme, each flow is accommodated in
its own queue if the number of active flows is less than 64; oth-
erwise the extra flows are accommodated in one of the queues
randomly for comparison purpose. Here we use a Fairness In-
dex as the fairness measure. Its value f is near 1 if the through-
puts of all flows are equal, and it gets smaller as differences in

throughput increase. It is calculated as follows

f(x1, x2, x3, · · · , xN) =
(
∑N

i=1 xi)2

N
∑N

i=1 xi
2

(12)

where xi is the throughput of flow i, and N be the total number
of flows.

Figures 6(a) and 6(b) show the fairness index plotted against
the number of flows. In Fig. 6(a) all flows are TCP flows, and in
Fig. 6(b) half of the flows are UDP flows. The fairness of FIFO
scheme becomes worst as the number of flows increases and,
compared to the other schemes, its fairness is worst in any situ-
ations. The DRR scheme provides excellent fairness if the num-
ber of flows is less than the number of queues (i.e., 64), but it
becomes increasingly less fair as the number of flows increases
beyond 64. This is because there is a difference in the number
of flows aggregated in one queue, while the same amount of the

SD-RAM

I/F

SRAM

I/F

Scratch

pad

SD-RAM SRAM

#1 #2 #3 #4

packet output

operations

#5 #6

Scheduling

packet input operations

Header verification
Destination address search
Header modification
HAFQ ingress operation

Micro Engine

IXP1200

Shared packet buffer

pool

Routing table

Packet

input

Packet

output

MAC

IX
-
B
u
s
 I
/F

Port

Queue

descriptor table

etc…

etc…

Fig. 7. Our task assignment on a network processor.

bandwidth is allocated to each queue. On the other hand, since
our scheme dynamically allocates bandwidth in proportion to
the estimated number of flows, its fairness index decreases only
gradually as the number of flows increases.

When the number of flows is 64, the fairness index of our
scheme is worse than that of the DRR scheme. This is be-
cause exactly one flow is accommodated in one queue in the
DRR scheme, whereas flows are accommodated in the queues
randomly in our scheme. For most numbers of flows, how-
ever, our scheme provides better fairness and its fairness is less
sensitive to the number of flows. These figures show that the
packet–dropping is especially effective when there are many ill–
behaved flows in the network.

IV. Implementation Design Issues of HAFQ on a
Network Processor

In this section, we discuss the implementation design issues of
HAFQ on the IXP1200 network processor [6], which has six
microengines for packet forwarding operations, each of which
can deal with four threads (contexts) concurrently. See also Fig.
7. A microengine is a 32–bit RISC programmable data engine
and a thread can realize multiple control streams in one program.
In addition, it provides (1) an SDRAM unit to access low cost,
high bandwidth memory for mass data, (2) an SRAM unit for
very high bandwidth memory to store lookup tables and other
data for packet processing, and (3) a scratch pad memory which
is an embedded memory unit.
A. Implementation Outline
The microengines #1 through #4 perform packet input opera-
tions including packet header verification, destination address
lookup, header modification of IPv4 packets and HAFQ ingress
operations of IPv4 packets. Then, the microengines #5 and #6
perform packet output operations including determination of the
transmitting queue by the DRR scheduling and dynamic band-
width allocation. This “2–to–1 allocation” is based on the sug-
gestion described in [9]. We use the SDRAM unit to deploy
packet data as a shared buffer pool. Since it has larger memory
capacity and higher memory bandwidth than the SRAM unit, it
is suitable to the shared packet buffer pool. On the other hand,
the SRAM unit holds the routing table, zombie list, and other
states which are needed in performing HAFQ operations.
B. Memory Model
A memory capacity is severely limited in high–speed routers.
Thus, we carefully designed the memory model of HAFQ.
Figure 8 shows the memory model for HAFQ operations. The
bit allocations for each variable are not explained in this paper
because of the space limitation but they are based on the as-
sumption that the number of active flows in each line interface
reaches several tens of thousands, and at least a few dozens of

M Q

Q

3Q

32 bit

Flow IDPackt counteretc

1-p
Average

arrival rate

Total of

packet counter

Allocated

bandwidth
Number of flows

Queue

length

Queue list

head pointer
etc

Queue list

tail pointer
etc

31 21 12 11 0

31 20 8 7 0

22

19

31 23 12 11 024

Fig. 8. Memory model for HAFQ operations.

queues can be maintained in the router. We assume that param-
eters {q, M} are {0.01, 4} to determine the bit allocations for
packet counters.

Based on these bit allocations, the required memory capacity
for the zombie lists is determined by M × Q × 32 bit, where Q
and M represent the number of queues and the number of entries
in a zombie list, respectively. The required memory capacity for
the flow count estimation and packet scheduling are Q × 32 bit
and 3 × Q × 32 bit, respectively. Therefore, the total required
memory capacity for implementing HAFQ is

(M + 4) × Q × 32 [bit] (13)

The arguments above are not limited to specific network pro-
cessors, but to a wider range of router architectures. For ex-
ample, 64K queues are maintained in edge routers with 2M
byte SRAM devices, and 1K queues are maintained in backbone
routers with a 32K byte on–chip memory macro integrated in a
queue control LSI.
C. Implementation Evaluation
We use the IXP1200 Developer Workbench [10] for evaluation.
We suppose the network model shown in Figure 3. 96 sender
hosts and 96 receiver hosts are connected through the router,
and each sender host generates IP packets whose length is a
fixed size of 512 byte. Each sender host generates packet at 100
Mbps (constant bit rate), and those sender hosts have an infinite
amount of data to transmit. We note that our current experimen-
tal implementation does not perform packet header modification
or routing table look–up, because we intend to evaluate the over-
head of the proposed scheme.
C.1 Evaluation on Packet Processing Capacity
In this subsection, we investigate the packet processing capac-
ity of the proposed scheme by comparing to that of the DRR
scheme. These two schemes have 16 queues, and additionally
HAFQ has two entries in each zombie list.

Figure 9 shows a packet processing capability of packet input
operations and output operations. In packet input operations, the
processing capability of HAFQ is about 5 percent lower than
that of DRR. This is because HAFQ operations require addi-
tional instructions such as searching the zombie list and esti-
mating the number of flows. As for packet output operations,
although the processing capability of HAFQ is lower than that
of DRR, the performance degradation is limited.
C.2 Fairness comparison for memory requirements
We evaluate the effect of required memory capacity, i.e., imple-
mentation cost, on the fairness property. Figure 10 shows the
fairness index against the required memory capacity. The num-
ber of active flows is 96. In the DRR scheme, the number of
queue is changed from 32 to 96; thus, its memory requirement

0

50

100

150

200

16 32 48 64 80 96

F
or

w
ar

di
ng

 R
at

e
[K

P
P

S
]

Number of flows

HAFQ (Input)
DRR(Input)

HAFQ (Output)
DRR(Output)

Fig. 9. Packet forwarding rate.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000 1100 1200

F
ai

rn
es

s
In

de
x

Memory Capacity [Bytes]

HAFQ / queue
HAFQ / zombie

DRR

Fig. 10. Fairness in the case of the different memory capacity.

ranges from 384 byte to 1152 byte. In the HAFQ scheme la-
beled by “HAFQ / queue”, the number of entries is fixed at two
in each zombie list and the number of queues is changed as 8,
16, and 24; thus, the memory requirement ranges as 192 byte
to 576 byte. Also, in the HAFQ scheme labeled by “HAFQ /
zombie”, the number of entries in a zombie list is changed from
2, 3, · · ·, 10 while the number of queues is fixed at eight; thus
the memory requirement ranges from 192 byte to 448 byte.

Figure 10 shows that the fairness of the HAFQ scheme is bet-
ter than that of the DRR scheme and HAFQ requires only one
third of the memory capacity compared to the DRR scheme to
achieve the same fairness level. The fairness index is improved
as the available memory capacity becomes large. This is because
the number of flows aggregated in one queue is small when the
number of queues is large, therefore, accuracies for both flow
count estimation and preferential packet dropping are improved.

In the two HAFQ schemes, HAFQ/zombie provides better
fairness than HAFQ/queue. This means that the memory ca-
pacity should be used for the larger zombie lists rather than in-
creasing the queue number. However, the computational cost
for the search increases as the zombie list becomes large; thus,
there would be specific limits for the zombie list size in specific
environments. This is a design choice for the tradeoff between
memory capacity and processing performance.

Since HAFQ provides far better fairness compared to DRR
when the available memory capacity is small (Fig. 10), and
also the degradation of the fairness of HAFQ is smaller than
that of DRR as the number of active flows increases (Fig. 6),
we can conclude that HAFQ provides fair network services in
high–speed routers with a small memory capacity and a large
number of active flows. Note that, although a router would have
several ten times more active flows compared to this evaluation,
the router would be able to have several ten times more memory
capacity.

C.3 Applicability to High–Speed Routers
The processing capacity of the IXP1200 is not high, and packet
processing capacity is limited up to about 200 KPPS in our ex-

periments. It is too small for the router with a 10 Gbps line in-
terface. Therefore, we last discuss the capability of our scheme
for 10 Gbps line interfaces.

Whether packet scheduling schemes can accommodate 10
Gbps line interfaces or not greatly depends on the processing
capacity and memory access bandwidth of routers. With such
high–speed lines, routers can spend only 40 ns in processing
one packet, and complex operations would easily lead to the
performance degradation. However, the processing capacity has
been rapidly improved and this problem is being solved. On the
other hand, the memory access bandwidth seems to be an obsta-
cle even in the future. Our scheme requires 13 memory accesses
and the DRR scheme requires 7 memory accesses in packet in-
put / output operations. Therefore, they require 325 million and
175 million memory accesses in 10 Gbps line interfaces. Thus,
those schemes must not use an off–chip memory but an on–chip
memory. If we use the on–chip memory, the memory access
bandwidth is not a problem, but the memory capacity is very
limited. However, even in such a circumstance, our scheme can
accommodate many active flows against the practical number
of flows keeping fairness on some level in case of the limited
memory usage; for example, if our scheme has six entries in
each zombie list and 1K queues, the required memory capacity
is 32 Kbytes as can be estimated from Eq. (13). That is, our
scheme can use an on–chip memory. On the other hand, the
DRR scheme requires 6 Mbyte memory capacity for 192,000
queues for achieving the same fairness index.

V. Conclusion
The new scalable queue management scheme described in this
paper provides fair per–flow service in backbone networks. The
scheme estimates the number of flows aggregated in a queue and
allocates the bandwidth to the queue proportionally. It also im-
proves fairness among flows in the same queue by preferentially
discarding the packets of flows having higher arrival rates. We
have shown the effectiveness of our proposed scheme through
extensive simulation and experimental studies.

References
[1] R. Mahajan and S. Floyd, “Controlling high bandwidth flows at the con-

gested router,” tech. rep., International Computer Science Institute techni-
cal report TR-01-001, Apr. 2001.

[2] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397–
413, Aug. 1993.

[3] T. J. Ott, T. Lakshman, and L. Wong, “SRED: Stabilized RED,” in Pro-
ceedings of IEEE INFOCOM 1999, pp. 1346–1355, Mar. 1999.

[4] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for web
traffic,” IEEE/ACM Transactions on Networking, vol. 9, pp. 249–264, June
2001.

[5] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round
robin,” IEEE/ACM Transactions on Networking, vol. 4, pp. 375–385, June
1996.

[6] “Intel IXP1200.” available at http://developer.intel.com/
design/network/products/npfamily/ixp1200.htm.

[7] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing–based schemes
for Internet load balancing,” in Proceedings of IEEE INFOCOM 2000,
pp. 332–341, Mar. 2000.

[8] “UCB/LBNL/VINT network simulator - ns (version 2).” available at
http://www-mash.cs.berkeley.edu/ns/.

[9] T. Spalink, S. Karlin, and L. Peterson, “Evaluating network processors in
IP forwarding,” tech. rep., Technical Report TR-626-00, Department of
Computer Science, Princeton University, Nov. 2000.

[10] “IXP1200 Developer Workbench.” available at http://www.intel.
com/design/network/products/npfamily/sdk2.htm.

