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Abstract

With the growth of computing power and the proliferation of broadband access to the
Internet, the use of media streaming has become widely diffused. Peer-to-Peer (P2P) is
a new network paradigm designed to solve the problems in the traditional client—server
based architecture. In a P2P network, hosts, called peers, directly communicate with each
other and exchange information without the mediation of servers. One typical example of
P2P applications is a file-sharing system, such as Napster and Gnutella. Napster is one of
the hybrid P2P applications. A peer finds a desired file by sending an inquiry to a server
that maintains the file information of peers. On the other hand, Gnutella is one of the
pure P2P applications. Since there is no server, a peer broadcasts a query message over
the network to find a file. If a peer successfully finds a file, it retrieves the file directly from
a peer holding the file (called a provider peer). Thus, concentration of load on a specific
point of the network can be avoided if files are well distributed in a P2P network. In
addition, by selecting a provider peer nearby from a set of file holders, a peer can retrieve
a file faster than a conventional client-server based file sharing.

We propose effective methods for on-demand media streaming on pure P2P networks.
In our system, a media stream is divided into blocks for efficient use of network bandwidth
and cache buffer. By retrieving blocks from appropriate provider peers in time, a peer can
watch a desired media stream. Since there is no server that manages information on peer
and media locations, a peer has to find each block constituting a desired media stream by
emitting a query message into the network. Other peers in the network reply to the query
with a response message and relay the query to the neighboring peers. If a peer successfully

finds a block cached in other peers, it retrieves it from one of them and deposits it in its



local cache buffer. If there is no room to store the newly retrieved block, a peer performs
replacement on cached blocks with it. Through several simulation experiments, we showed
our proposed methods could accomplish continuous media play-out independent of media
popularity.

To verify the practicality of our system, we first design the proposed P2P media stream-
ing system. Then, based on the design, we implement a java-based system on a real envi-
ronment. Furthermore, we conduct several experiments to evaluate the effectiveness and
usefulness of the proposed system. Through evaluations, it is shown that our proposed

P2P media streaming system can provide users with a continuous media play-out.
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1 Introduction

With the growth of computing power and the proliferation of broadband access to the
Internet, such as Asymmetric Digital Subscriber Line (ADSL) and Fiber To The Home
(FTTH), the use of media streaming has become widely diffused. A user receives a media
stream from an original media server through the Internet and plays it out on his/her client
system as it progressively arrives. However, with the current Internet, the major transport
mechanism is still only the best effort service, which offers no guarantees of bandwidth,
delay, and packet loss probability. Consequently, such a media streaming system cannot
provide users with media streams in a dependably continuous way.

The proxy mechanism widely used in WWW systems offers low-delay delivery of data
by means of a “proxy server,” which is located near clients. The proxy server deposits
multimedia data that have passed through it in its local buffer, called the “cached buffer.”
Then it provides cached data to users on demand in place of the original content server.
By applying the proxy mechanism to streaming services, we believe that high-quality and
low-delay streaming services can be accomplished without introducing extra load on the
system [1, 2]. However, the media servers and proxy servers are statically located in the
network. Users distant from those servers are still forced to retrieve a media stream over a
long and unreliable connection to a server. If user demands on media and their locations in
the network are known in advance, those servers can be deployed in appropriate locations.
However, they cannot flexibly react to dynamic system changes, such as user movements
and user demands for media streams. Furthermore, as the number of users increases, load
concentration at the servers is unavoidable.

Peer-to-Peer (P2P) is a new network paradigm designed to solve these problems. In
a P2P network, hosts, called peers, directly communicate with each other and exchange
information without the mediation of servers. One typical example of P2P applications
is a file-sharing system, such as Napster and Gnutella. Napster is one of the hybrid P2P
applications. A peer finds a desired file by sending an inquiry to a server that maintains the
file information of peers. On the other hand, Gnutella is one of the pure P2P applications.
Since there is no server, a peer broadcasts a query message over the network to find a file.

If a peer successfully finds a file, it retrieves the file directly from a peer holding the file



(called a provider peer). Thus, concentration of load on a specific point of the network
can be avoided if files are well distributed in a P2P network. In addition, by selecting
a provider peer nearby from a set of file holders, a peer can retrieve a file faster than a
conventional client-server based file sharing.

Considering the fact that the client-server architecture lacks the scalability and adapt-
ability, there have been several research works on media streaming over P2P networks [3,
4, 5, 6]. Most of these were designed for use in live broadcasting. They have constructed
an application-level multicast tree whose root is an original media server while the peers
are intermediate nodes and leaves [3, 4, 5]. A media stream emitted from a server is
distributed over a tree. Each intermediate peer receives media data from its parent peer,
makes copies of data, and forwards them to its child peers. Thus, they are effective when
user demands are simultaneous and concentrated on a specific media stream. However,
when demands arise intermittently and peers request a variety of media streams, as in
on-demand media streaming services, an efficient distribution tree cannot be constructed.
Furthermore, the root of the tree, that is, a media server, can be regarded as a critical
point of failure because such systems are based on the client-server architecture. On the
other hand, the other works such as PROMISE [6] are similar to our proposed system,
where a peer finds a provider peer for the whole or a part of a desired media stream by
itself, retrieves it from the provider, and deposits it in its local buffer to supply to other
peers. However, those works did not take into account variations in the popularity among
multiple media streams.

In [7], effective methods for on-demand media streaming on pure P2P networks is
proposed. In the system, a media stream is divided into blocks for efficient use of network
bandwidth and cache buffer [8, 9]. By retrieving blocks from appropriate provider peers
in time, a peer can watch a desired media stream. Since there is no server that manages
information on peer and media locations, a peer has to find each block constituting a
desired media stream by emitting a query message into the network. Other peers in the
network reply to the query with a response message and relay the query to the neighboring
peers. If a peer successfully finds a block cached in other peers, it retrieves it from one
of them and deposits it in its local cache buffer. If there is no room to store the newly

retrieved block, a peer performs replacement on cached blocks with it.



There are several issues to resolve in accomplishing effective media streaming over pure
P2P networks. Scalability is the most important among them. Flooding, in which a peer
relays a query to every neighboring peer, is a powerful scheme for finding a desired media
stream. However, it has been pointed out that the flooding lacks scalability because the
number of queries that a peer receives significantly increases with the growth in the number
of peers [10]. In particular, a block-by-block search by flooding apparently introduces
much load on the network and causes congestion. To tackle this problem, we proposed
two scalable block search methods. Taking into account the temporal order of reference to
media blocks, a peer sends a query message for a group of consecutive blocks. Then, the
peer performs adaptive block search by regulating the search range based on the preceding
search result.

Since continuous media play-out is the most important factor for users in media stream-
ing services, we have to consider a deadline of retrieval for each block. To retrieve a block
by its corresponding play-out time, we proposed methods to determine an appropriate
provider peer (i.e., a peer having a cached block) from search results by taking into ac-
count the network conditions, such as the available bandwidth and the transfer delay.
By retrieving a block as fast as possible, the remaining time can be used to retrieve the
succeeding blocks from distant peers.

To improve the completeness of media play-out, we also proposed an effective cache
replacement algorithm that takes into account the supply and demand for media streams.
Since there is no server, a peer has to make conjectures about the behavior of other peers
by itself. A peer estimates the supply and demand from P2P messages that it relays and
receives from a flooding-based media search. Then a peer determines a media stream to
discard to make room for a newly retrieved block. Furthermore, a peer also adapts to
changes in the supply and demand of media streams. For this purpose, we propose a novel
caching algorithm based on the response threshold model of division of labor and task
allocation in social insects [11].

In biology, social insects, such as ants, also construct a distributed system [12]. In
spite of the simplicity of their individuals, the insect society presents a highly structured
organization. It has been pointed out that social insects provide us with a powerful

metaphor for creating decentralized systems of simple interacting [12]. In particular, a



recently proposed model of division of labor in a colony of primitively eusocial wasps, based
on a simple reinforcement of response thresholds, can be transformed into a decentralized
adaptive algorithm of task allocation [11]. By regarding the replacement of media streams
as a task, a fully distributed and autonomous cache replacement algorithm, which can
adapt to changes in environments, i.e., the supply-to-demand, is proposed. The proposed
algorithm is also insensitive to parameter settings since it adaptively changes the response
threshold taking into account the obtained information from the network.

Through several simulation experiments, it is shown that our proposed methods could
accomplish continuous media play-out independent of media popularity. In this thesis,
to verify the practicality and effectiveness, we design, implementation, and evaluation
our proposed system. We first introduce the design of the proposed P2P media streaming
system. Then, we implement a java-based system based on the design. Finally, we conduct
several experiments to evaluate the effectiveness and usefulness of the proposed system.
Through evaluations, it is shown that our proposed P2P media streaming system can
provide users with a continuous media play-out.

The rest of this thesis is organized as follows. In section 2, we describe our proposed
system for on-demand media streaming on pure P2P networks. In section 3, we explain
the design of the P2P media streaming system. Then, section 4 gives several experiments
to evaluate our implemented system. Finally, we conclude this thesis and describe future

works in section 5.



2 Continuous and Scalable P2P Media Streaming System

2.1 Overview of Proposed System

Figure 1 illustrates our media streaming system on pure P2P networks. A peer participat-
ing in our system first joins a logical P2P network for the media streaming. For efficient
use of network bandwidth and cache buffer, a media stream is divided into blocks. In our
system, a peer retrieves a media stream and plays it out in a block-by-block manner. To
find a block, a peer emits a query message to a P2P network. A query message is diffused
over a P2P network by being copied and relayed by peers as shown as ‘Relay’ in Fig. 1.
To avoid flooding a network with query messages, taking into account the temporal order
of reference in a media stream, our method employs a per-group search scheme. A peer
sends out a query message for every N consecutive blocks, called a round. Figure 2 illus-
trates an example of N = 4. P4, Pp, Pc, and Pp indicate peers within the range of the
propagation of query messages. Numbers in parentheses next to peers stand for identifiers
of the blocks that a peer has. At time T(1), a query message for blocks 1 to 4 is sent out

from P to the closest peer P4. The query is relayed among peers, that is, flooding. Since
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Figure 1: Overview of our media streaming on pure P2P networks

10



Roundl Blockl Block2 Block3 Block4 _
Waiting Time | Logical topology
A
— @

Py (4.5, 6)—F——3 ;

P (6,7,8) 7 ! “". /\ \ 5
Py (1,2, 3————— \ — @)

T 1T - ®
T.(1) / / T, 1} T,2) | T,3) |T,(4)

LM T.(2) |T.O) |T.(4)
Play-out

() T,2) T,3)  T,(4)
Query (upward) and Response (downward) ---»
Request (upward) and Transmit (downward) —

Figure 2: Example of per-group search and retrieval

P4, Pp, and Pp have one or more block out of four requested blocks, they return response
messages.

To accomplish continuous media play-out, P sends a query for the next round at time
that is 2RTTyorst earlier than the start time of the next round. RTT,rs: is the RTT
to the most distant peer among the peers that returned response messages in the current

round. Range of the next search is determined based on the search results of the current

round as described later.
From search results obtained by the query, P determines a provider peer for each block

in the round, from which a block can be retrieved in time. Then, a peer retrieves blocks
from provider peers as illustrated in Fig. 2. If the in-time block retrieval is expected to

fail due to changes in network conditions, a peer switches provider peers. We will propose

a block retrieval method adaptive to system changes.

If there is no room for depositing a newly retrieved block in its cache buffer, P deter-
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mines a media stream of which cached blocks are replaced with the new block, taking into
account the balance between the supply and demand for media streams in the network.

The detail of the cache replacement is given later.

2.2 Scalable Block Search

Since each peer retrieves a media stream sequentially from the beginning to the end, we
can expect that a peer that sent back a responses message for the current round has some
blocks of the next round. In our methods, a peer tries flooding at the first round. However,
in the following rounds, it searches blocks in a scalable way based on the search results of
the previous round.

A query message consists of a query identifier, a media identifier, and a pair of block
identifiers to specify the range of blocks needed, i.e., (1, N), a time stamp, and Time
To Live (TTL). A peer that has any blocks in the specified range sends back a response
message. A response message reaches the querying peer through the same path, but in the
reversed direction, that the query message traversed. The response message contains a
list of all cached blocks of the requested media stream, TTL values stored in the received
query, and sum of the time stamp in the query and processing time of the query. Each
entry of the block list consists of a media identifier, a block number, and block size. If
TTL is zero, the query message is discarded. Otherwise, after decreasing the TTL by
one, the query message is relayed to neighboring peers except for the one from which it
received the query. In the case of Gnutella, a fixed TTL of seven is used. By regulating
TTL, the load of finding a file can be reduced. We have called this flooding scheme with
a fixed TTL of seven “full flooding,” and that with a limited TTL based on the search
results, “limited flooding.”

In limited flooding, for the kth round, a peer obtains a set R of peers based on response
messages obtained at round k — 1. R is a set of peers expected to have at least one of
the blocks belonging to round k. Since time has passed from the search at round k — 1,
some blocks listed in the response message may have already been replaced by other
blocks. Assuming that a peer is watching a media stream without interactions such as
rewinding, pausing, and fast-forwarding, and that the cache buffer is filled with blocks,

we can estimate the number of removed blocks by dividing the elapsed time from the
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generation of the response message by one block time B;. We should note here that we
do not take into account blocks cached after a response message is generated. In limited
flooding, TTL is set to that of the most distant peer among the peers in R.

To attain an even more efficient search, we also proposed another search scheme. The
purpose of flooding schemes is to find peers that do not have any blocks of the current
round but do have some blocks of the next round. Flooding also finds peers that have
newly joined our system. However, in flooding, the number of queries relayed on the
network exponentially increases according to the TTL and the number of neighboring
peers [10]. Therefore, when a sufficient number of peers are expected to have blocks in
the next round, it is effective for a peer to directly send queries to those peers. We call
this “selective search.”

By considering the pros and cons of full looding, limited flooding, and selective search,
there is an efficient method based on combining them, called the FLS method. For the
next round’s blocks, a peer conducts (1) selective search if the conjectured cache contents
of peers in R contain every block of the next round, (2) limited flooding if any one of the
next round’s blocks cannot be found in the conjectured cache contents of peers in R, or,
finally, (3) full flooding if none of the provider peers it knows is expected to have any block
of the next round, i.e., R = ¢.

2.3 Block Retrieval for Continuous Media Play-out

The peer sends a request message for the first block of a media stream just after receiving
a response message from a peer that has the block, because it cannot predict whether any
better peer exists at that time. In addition, it is essential for a low-delay and effective
media streaming service to begin the media presentation as quickly as possible. Thus, in
our method, the peer plays out the first block immediately when its reception starts. Of
course, we can also defer the play-out in order to buffer a certain number of blocks in
preparation for unexpected delays.

The deadlines for retrieval of succeeding blocks 7 > 2 are determined as follows:

Tp(5) = Tp,(1) + (5 — 1) By, (1)
where Tj,(1) corresponds to the time that the peer finishes playing out the first block.

13



Although block retrieval should follow a play-out order, the order of request messages
does not. We do not wait for completion of reception of the preceding block before issuing
a request for the next block because this introduces an extra delay of at least one round-
trip, and the cumulative delay affects the timeliness and continuity of media play-out.
Instead, the peer sends a request message for block j at 7,(j), which will be given by
Equation (3), so that it can start receiving block j just after finishing the retrieval of
block j — 1, as shown in Fig. 2. As a result, our block retrieval method can maintain the
continuity of media play-out.

The peer estimates the available bandwidth and the transfer delay from the provider
peer by using existing measurement tools. For example, by using the inline network
measurement technique [13], those estimates can be obtained through exchanging query
and response messages without introducing any measurement traffic. Furthermore, the
estimates are updated through reception of media data. Every time the peer receives a
response message, it derives the estimated completion time of the retrieval of block j, that
is T¢(j), from the block size and the estimated bandwidth and delay, for each block to
which it has not yet sent a request message. Then, it determines an appropriate peer in
accordance with deadline T, (j) and calculates time 7;.(j) at which it sends a request. The

detailed algorithm to determine the provider peer is given below.

Step 1 Set j to r, which is the maximum block number among blocks that have already

been requested.

Step 2 Calculate set S, a set of peers having block j. If § = ¢, that is, there is no
candidate provider, set Tf(j) < T,(j), j < j + 1 and repeat Step 2 for the next
block. Otherwise, proceed to Step 3.

Step 3 Derive set S’, a set of peers from which a peer can retrieve block j by deadline
Tp(j), from S. Time required to retrieve block j from provider peer ¢ becomes the
sum of round trip time R(%) to peer i and the transfer time of block j obtained by
dividing block size B(j) by available bandwidth A(7) from peer i. For each peer i in
S, the estimated completion time of the retrieval of block j from peer ¢ is derived as
max(Ty(j — 1), Tnow + R(2)) + %, considering the case that the retrieval of block

j — 1 lasts more than R(7) and the request for block j is deferred. Here, T}, is the
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time when this algorithm is performed. If the estimated completion time is earlier
than Tp(j), the peer is put in S'. If §" = ¢, set T¢(j) + Tp(j), j < j+ 1 and go
back to Step 2.

Step 4 Determine provider peer P(j) of block j from S’. We propose the following two
alternative methods for determining the provider peer.
SF (Select Fastest) Method selects a peer whose estimated completion time is
smallest among peers in S’. By retrieving block j as fast as possible, the remainder
Tp(j) — T¢(j) can be used to retrieve the succeeding blocks from distant peers or
peers with insufficient bandwidth.
SR (Select Reliable) Method selects a peer with the lowest possibility of block
disappearance among those in S’. Since the capacity of a cache buffer is limited,
block j may be replaced by another block before a request for block 7 arrives at the
provider peer. The list of block identifiers in a response message is in ascending order
of referenced time. Thus, a block located closer to the head of the list is likely to
be removed in the near future. In SR method, in order to perform reliable retrieval,
we consider the peer with a buffer in which block ;7 has the largest number among

those of peers in S’

Step 5 Derive estimated completion time of retrieval Tf(j) and time T;(j) to send a

request message for block j as follows.

Ty() = max(Tfu—1>,TW+R(P<J'>)>+% @)
T.() = Tf(j)—R(P(j))—% 3)

Step 6 If j = kN, finish and wait for receiving the next response message. Here, k is the

round number. Otherwise, set j <— 7 + 1 and go back to Step 2.

A peer emits a request message for block j to peer P(j) at T,.(j) and sets r to j. On
receiving the request, peer P(j) initiates block transmission. If it replaced block j with
another block since it returned a response message, it informs the peer of a cache miss.
When a cache miss occurs, the peer determines another provider peer based on the above
algorithm. However, if it has already requested any block after j, it gives up retrieving

block j in order to keep the media play-out in order.
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After receiving block j, the peer replaces Tf(j) with the actual completion time. In
the algorithm, the estimated completion time of retrieval of block j depends on that of
block j — 1, as in Eq. (2). Therefore, if the actual completion time T(j) of the retrieval
of block j changes because of changes of network conditions or estimation errors, the peer
applies the algorithm and determines provider peers for succeeding blocks. Our proposed
algorithm stated above depends on the accuracy of estimation. One of possible solutions to
inaccurate estimates is to introduce some reserved time in Eq. (2). In addition, deferment

of the play-out also contributes to absorb estimation errors.

2.4 Supply-Demand-based Cache Replacement Algorithm

Although LRU is a simple and widely used scheme, it has been shown that LRU cannot
accomplish continuous media play-out under heterogeneous media popularity [14]. This
is because popular media streams are cached excessively while unpopular media streams
eventually disappear from the P2P network.

In this section, to solve this problem, we propose a bio-inspired cache replacement
algorithm that considers the balance between supply and demand for media streams. Since
there is no server in a pure P2P network, a peer has to make conjectures about the behavior
of other peers by itself. It is important to avoid the situation where a peer aggressively
collecting information on supply and demand by communicating with other peers, since
this brings extra load on the system and deteriorates the system scalability. Therefore,
in our scheme, a peer estimates them based on locally available and passively obtained
information, i.e., search results it obtained and P2P messages it relayed. Then, each peer
autonomously determines a media stream to replace so that the supply and demand is
well-balanced according to the media popularity in the network. For this purpose, we use
the response threshold model [11].

In the response threshold model of the division of labor, the ratio of individuals that
perform a task is adjusted in a fully-distributed and self-organizing manner. The demands
to perform a task increases as time passes and decreases as it becomes accomplished as
s(t+1) = s(t) + 6 — alNget/N, where 6 and « are parameters, Ny is the number of
individuals performing a task among N individuals. The probability P(X; =0 — X; = 1)

that an individual 7 performs a task is given by the demand, i.e., stimulus s, and the
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response threshold 6; as for example. The probability P(X; =1 — X; = 0) is given

52
2402
by a constant p. When the individual i performs the task, the threshold to the task is
decreased as 0; = 0; — £, and thus it tends to devote itself to the task. Otherwise, the
threshold is increased as 8; = 0; + . After performing the task several times, it becomes
a specialist in the task. Through threshold adaptation without direct interactions among
individuals, the ratio of individuals that perform a specific task is eventually adjusted
to some appropriate level. As a result, they form two distinct groups that show different
behaviors toward the task, i.e., one performing the task and the other hesitating to perform
the task. When individuals performing the task are withdrawn, the associated demand
increases and so does the intensity of the stimulus. Eventually, the stimulus reaches the
response thresholds of the individuals in the other group, i.e., those not specialized for
that task. Some individuals are stimulated to perform the task, their thresholds decrease,
and finally they become specialized for the task. Consequently, the ratio of individuals
allocated to the task again reaches the appropriate level.

By regarding the replacement of media streams as a task, we propose a cache replace-
ment algorithm based on the response threshold model. In the cache replacement, a task
corresponds to discarding a block of a media stream. However, per-block based decision
consumes much computational power and memory. In addition, it leads to fragmentation
of cached streams, and a cache becomes a miscellany of variety of independent blocks of
media streams. Thus, we define a stimulus as the ratio of supply to demand for a media
stream. By introducing the response threshold model, a peer continuously replaces blocks
of the same stream with newly retrieved blocks once a stream is chosen as a victim, i.e., a
media stream to be replaced. As a result, fragmentation of media streams can be avoided.
Each peer discards blocks based on the following algorithm when there is no room in the

cache buffer to store a newly retrieved block.

Stepl Estimate the supply and demand for media streams per round. For a set of cached
media streams M, a peer calculates supply S(i) and demand D(i) for media stream
1 € M from search results it received and messages it relayed at the previous round.
S(i) is the ratio of total number of blocks for media stream 7 in received and relayed

response messages to the number of blocks in media stream i. Here, to avoid over-
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estimation, only response messages received are taken into account for S(i) when a
peer watches stream 4. D(z) is the number of query messages for media stream i,

which the peer emitted and relayed.

Step2 Determine a media stream to replace. Based on the “division of labor and task

allocation”, we define ratio P, (i) that media stream i is replaced as follows:

i) = s () @)
" s2(3) + 02(3) + 12(3)’

where s(7) is derived as max (ng;)l,O), which indicates the ratio of supply to de-

mand for media stream ¢ after the replacement. s(i) means how excessively media
stream ¢ exists in the network after it is discarded. [(¢) is the ratio of the num-
ber of locally cached blocks to the number of blocks in media stream ¢. In our
previous work, we found that continuous media play-out could not be sufficiently
accomplished without /(i) due to the fragmentation of cached streams. [(z) is used
to restrain the replacement of a fully or well-cached stream. Among cached streams

except for the stream being watched, e.g., stream m, a victim is chosen with prob-
Py (i)
iEM—m Pr(d)”

stream at random. As in [15], thresholds are regulated using Eq.(5). Thus, media 4

ability T Then, a peer discards blocks from the head or the tail of the

is to be discarded more often once it is chosen as a victim.

e, oG =4 V¢ = 5)

0()+¢ ifj#1
Inspired by biological systems, we can accomplish fully distributed but globally well-
balanced cache replacement. Furthermore, our proposed algorithm is insensitive to pa-
rameter settings since it adaptively changes the response threshold in accordance with
the obtained information from the network. With slight modification of equations of the
response threshold model, we can apply our proposed algorithm to other caching problems

in distributed file sharing systems.
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3 Design of Continuous and Scalable P2P Media Streaming
System

In this subsection, we describe the design of our system. Figure 3 illustrates the modules
that constitute our P2P media streaming system. Each arrow, dashed arrow, chain arrow,
and box corresponds to data flow, message flow, signal, and module, respectively. The
media streaming is controlled through a RTSP (Real Time Streaming Protocol) [16]/TCP
session between the player and the manager, the query/response messages are transferred
over TCP sessions. Since our media streaming system is based on the existing P2P file
sharing system, the media data are also transferred over TCP sessions.

A peer participating in our media streaming service first initiates Manager module
which controls all functions constituting our system, such as, Participation, Block Search,
Block Retrieval, and Block Replacement. Then, the Manager tries to get a candidate list
of neighbors. We assume the list can be obtained from a bootstrap server that manages
and stores IP addresses of peers joining the streaming service. The Manager makes TCP
connections with several peers in the obtained list through the Participation module.
The connected peers become neighbors of the peer and the Manager adds them into
the Neighbor Table. After setting up the TCP connections with neighbors, the user on
the peer can start watching its desired media stream. The user sends a request for the

desired media stream to the Manager through Player. We assume that the Player is a

—— Data  -eeeeeees » Message - — - = Signal
Cache Neighbor
Table |% -+ Table
< » — '
Player | RTSP / TCP Manager [¢= - = - = |Forwarding |
) ] 7 L Table HDD
e . . ‘~
- Vs AR ~
» 4
Block Block > Block
L PN
Participation Search Retrieval |= - = - Replacement
H H H
TCP ; TCP ; TCP i TCP
v v v
Neighbor Neighbor / Provider Provider

Figure 3: Modules constituting system of our proposed P2P media streaming

19



typical media player that is compatible with RTSP, such as QuickTime Player [17] and
RealOne Player [18]. The Player establishes a RTSP session with the Manager and sends
an RTSP PLAY message only once at the beginning of the session specifying Range. The
Manager derives the desired blocks based on the specified time range and the block time.
Then, the Manager sends a query message through the Block Search to its neighbors or
candidate peers as providers in accordance with the block search method described in
subsection 2.2. At the same time, the Manager updates its Forwarding Table by adding
a new entry consisting of the query identifier and the peer identifier to which the query
is sent. On receiving the query message, the Block Search looks up the Cache Table
through the Manager. If there is the desired block in the cache buffer, the Block Search
sends a response message back to the peer originating the query message. In the case of
flooding based search, the Block Search also forwards the query message to the neighbors
until the TTL in the query message is greater than zero. On receiving the response
message, the Block Search looks for the corresponding entry in the Forwarding Table. If
the response message is not originated by the peer, the Block Search forwards it to the
peer corresponding to the entry listed in the Forwarding Table. Otherwise, it calls the
Block Retrieval with the information consisting of response message, available bandwidth,
and RTT. The Block Retrieval determines an appropriate provider peer in accordance
with the block retrieval methods described in subsection 2.3. On receiving the block, the
Block Retrieval passes it to both the Block Replacement and the Manager. If there is not
enough room to store the newly retrieved block in the cache buffer, the Block Replacement
replaces it with cached blocks by using the cache replacement algorithm in subsection 2.4
and updates the Cache Table. At the same time, the Player plays out the block obtained

from the Manager.

3.1 Estimation of Available Bandwidth

In our system, the proposed block retrieval methods rely on the estimation of available
bandwidth and RTT from the provider peer. RTT can be estimated by using the time
stamp in the query/response message. On the contrary, the estimation of the available
bandwidth generally needs much more probe traffic and time than that of RTT. In [19],

they propose a new mechanism, called InTCP (Inline measurement TCP), that estimates
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the available bandwidth by exploiting data packets transmitted in a TCP connection. Our
proposed system is based on the existing P2P file sharing system such as Gnutella, the
block is transferred over a TCP connection. By applying the ImTCP to our system, the
peer can estimate the available bandwidth without introducing extra load on the network.

We briefly explain the mechanism of ImTCP. ImTCP is based on the probe rate
method [20]. Measurement packets are sent by a sender host to a receiver host that
immediately transmits the packets back to the sender host. The sender host changes the
interval of sending measurement packets. Then, it estimates the available bandwidth of
the path based on the arrival intervals of the echoed packets. ImTCP uses ACK pack-
ets as the packets sent from a receiver to a sender. During every measurement, ImTCP
searches for the available bandwidth only within a given search range. The search range
is a range of bandwidth that is expected to include the current available bandwidth. By
introducing the search range, InTCP can avoid sending probe packets at an extremely
high rate. Through simulation experiments, it was shown that ImTCP could also keep

the number of probe packets for the measurement quite small.
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4 Experimental Evaluation of Implemented System

We implement a prototype of our system in Java, that consists of Manager, Participation,
and Block Retrieval modules based on the design described the previous section. In this
section, we conducted experiments to evaluate the implemented system.

Figure 4 illustrates the configuration for our experimental system. Peer A is connected
to peer B and peer C through router A and router B, respectively. Each router can control
the available bandwidth of the links to which it connects by using NIST Net [21] that is
a network emulator. In the following experiments, a peer uses the bandwidth configured
by the NIST Net when it determines a provider peer based on the algorithm described in
subsection 2.3. Four media streams of 3 minutes length are available. The media coding
rate is set to CBR 500 kbps. A media stream is divided into blocks of 10 sec. Thus, one
block amounts to 625 KBytes. Each peer has a cache buffer of 22.5 MB, which corresponds

to two media streams. The number of blocks in a round is set to 6.

4.1 Evaluation of Basic Behavior

In this subsection, we conduct the following scenario to evaluate the basic behavior of the
block retrieval methods. The available bandwidths between peer A to peer B and between
peer A and peer C are set to 700 kbps and 600 kbps, respectively. At first, peer A obtains
the search result of peer B, then determines an appropriate provider peer for each block
of round 1 as shown in Tab. 1. Note that the search result is locally given at the time
scheduled at the start of the experiment because our prototype does not include the Block
Peer B

Windows XP
Pentium Il 1.27GHz (dual)

PC Router A
100Base-T
Redhat Linux 7.2
Pentium 1l 844MHz

Peer A 100Base-T Pger C
Windows XP ] Windows XP

i ) Pentium I1l 933MHz
Pentium IV 3.2GHz (dual) PC Router B %

100Base-T
Redhat Linux 7.2
Pentium Il 844MHz

Figure 4: Experimental Environment
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Search module. In the table, the block identifier is denoted by Xy, which means Y'th block
of media stream X. z \, y means blocks from x to ¢ in order of the priority of the block
replacement. Block identifiers emphasized by the bold type indicate that those blocks will
be retrieved by peer A in the case of SF/SR method. Then, peer A also obtains the search
result of peer B and recalculates the provider peer for each block from A to Ag as shown
in Tab. 2. In this case, independent of block retrieval methods, peer A retrieves all blocks
from peer B at about 7-sec intervals. In this experiments, blocks of peer B are renewed at
10-sec intervals, which is equal to block time B;. On the other hand, those of peer C does
not change during the experiments, that mean peer C pauses watching a media stream.
As a result, peer A obtains the search result of peer B for round 2 as shown in Tab. 3,
which corresponds to the 45.45 sec (= 45.5 —0.05) later condition of Tab. 1. Then, peer A
also obtains the search result of peer C, and the provider peer for each block is determined
as shown in Tab. 4. In the case of SF method, peer A selects peer B as the provider peer
for all blocks because it tries to retrieve a block as fast as possible. On the other hand,
in the case of SR method, taking into account the possibility of block disappearance, peer
A selects peer C as the provider for each block except for block A7. This is because it
obtains the search result of peer B earlier than that of peer C'. In similar fashion, peer
A obtains search results at round 3 and determines an appropriate provider peer for each
block as shown in Tabs. 5 and 6.

Figures 5 through 8 illustrate the experimental results in the above scenario. Figures 5
and 6 depict T, T, and T}, for each block in the case of SF and SR method, respectively.
As shown in these figures, SF and SR methods can retrieve all blocks in time because the
available bandwidths from both provider peers exceed the media coding rate during the
experiments. Furthermore, we find that SF method finishes retrieving the last block, i.e.
18, 42.1 sec earlier than the deadline T,(18). On the contrary, in the case of SR method,
the remainder time is 34.2 sec. Figures 7 and 8 depict the reception rate of peer A, which
is measured by tcpdump [22] in the case of SF and SR method, respectively. We observe
that both block retrieval methods can retrieve all blocks in accordance with the above
scenario. Furthermore, we find that the reception rate is slightly lower than the available
bandwidth due to the performance limitation of TCP Reno. We expect that this gap can
be reduced by using the InTCP [19] instead of the TCP Reno.

23



4.2 Evaluation with Changes in Network Condition

In subsection 4.1, we showed both SF method and SR method could accomplish retrieving
all blocks in time under an ideal situation where the available bandwidths did not change
during the experiments. However, in an actual situation, the available bandwidth changes
during the streaming session due to the network congestion caused by background traffic.
In such a case, we expect that SF method, which retrieves blocks as fast as possible, is
more effective than SR method.

In this subsection, we conduct the following scenario to evaluate the effectiveness of
SF method. At the start of the experiments, the available bandwidth between peer A and
peer B and between peer A and peer C are set to 800 kbps and 600 kbps, respectively.
In this scenario, the block lists that peer B and peer C have do not change during the
experiments. The search results obtained at rounds 1, 2, and 3 are shown in Tabs. 7
through 9. At round 1, independent of block retrieval methods, peer A retrieves block A,
from peer B because it obtains the search result of peer B earlier than that of peer C.
For the following blocks from As to Ag, in the case of SF method, peer A selects peer B
as the provider to retrieve them as faster as possible. On the other hand, in the case of
SR method, it retrieves them from peer C that is more reliable than peer B. Then, at
round 2, in the both methods, peer A retrieves block A7 from peer B because of the same
reason at round 1. Here, we depress the available bandwidth between peer A and peer B
from 800 kbps to 300 kbps at 65 sec, that is, peer A detects the bandwidth degradation
during the retrieval of block A1g. Therefore, in the case of SF method, peer A retrieves
blocks between Ag and A1y from peer B, then switches the provider peer to peer C whose
available bandwidth is 600 kbps. On the contrary, in the case of SR method, peer A keeps
to retrieve the succeeding blocks from peer C. At round 3, independent of block retrieval
methods, peer A tries to retrieve all blocks from peer B that is the only provider for them.
Here, we assume that the available bandwidth between peer A and peer B recovers to
800 kbps at 150 sec, that corresponds to the time when peer A is retrieving block Ais.
In the case of SF method, peer A can retrieves all blocks in time by using the remainder
time accumulated at the previous rounds even when the available bandwidth is far below

the media coding rate of 500 kbps. On the contrary, in the case of SR method, peer A
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fails to retrieve block Ai5 in time due to the lack of the available bandwidth.

Figures 9 through 12 illustrate the experimental results in the above scenario. Figures 9
and 10 depict T, Ty, and T}, for each block in the case of SF and SR methods, respectively.
As shown in Fig. 9, peer A can retrieve all blocks in time in the case of SF method. On
the other hand, in the case of SR method, it fails to retrieve blocks from A5 to Aig as
shown in Fig. 10. Peer A cannot find any provider peer for block A;5 until the deadline
T,(15) comes. Although the available bandwidth between peer A and peer B recovers to
800 kbps at 150 sec, peer A cannot detect it because there is no data transmission from
peer B after finishing the retrieval of block A14. As a result, it also fails to retrieve the
succeeding blocks. This implies the underlying problem in our proposed system, that is,
a peer cannot detect the changes in network condition when there is no message/data
transmission. To tackle this problem, we can introduce an additional search when a peer

cannot find any provider peer during a round.

4.3 Evaluation of Reliability

In subsection 4.1, we found SF method can retrieve blocks faster than SR method under an
ideal situation where the blocks that the provider peer has change during the experiments
at 10-sec intervals, which is equal to one block time. However, in an actual situation,
this assumption is not certainly approved because the provider peer may also retrieves
its desired blocks at higher rate than the media coding rate by using SF/SR method.
In such a situation, we expect that SR method, which considers the possibility of block
disappearance, is more effective than SF method.

In this subsection, we conduct the following scenario to evaluate the effectiveness of
SR method. The available bandwidth between peer A and peer B and between peer A
and peer C' are set to 600 kbps and 560 kbps, respectively. Blocks of peer B are renewed
at 6-sec intervals, which is faster than one block time of 10 sec. On the other hand, those
of peer C' does not change during the experiment. The search results obtained at round
1, 2, and 3 are shown in Tabs. 10 through 12. At round 1, independent of the block
retrieval methods, peer A can retrieve all blocks in time. However, at round 2, in the
case of SF method, a cache miss occurs to block A;; because peer B updates its block list

at 6-sec intervals while peer A retrieves blocks at 580 kbps, which corresponds to 8.6-sec
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intervals. When the cache miss occurs, peer A recalculates the provider peer for block
Aq1. Consequently, it retrieves block Ai; from another provider peer, that is, peer C. On
the other hand, in the case of SR method, peer A can retrieve blocks without any cache
misses since it selects peer C, that permanently keeps blocks in its cache buffer, as the
provider for all blocks. Similarly, in round 3, SF method fails to retrieve block A4 from
peer B while SR method does not.

Figures 13 through 16 illustrate the experimental results in the above scenario. Fig-
ures 13 and 14 depict T, Ty, and T}, for each block in the case of SF and SR method,
respectively. On the contrary to our expectation, these figures show that SF method can
retrieve blocks faster than SR method. In the case of SF method, there are 4 cache misses
to blocks A1, A1, A14, and A1 as shown in Fig. 15. When a cache miss occurs, peer
A obtains a latest block list from the current provider, i.e. peer B. Then, it recalculates
the provider peer and retrieves the block from a new provider peer. Consequently, it
takes at least the sum of one-way delay from the current provider peer and RTT from
the new provider peer. However, Fig. 15 shows that there are almost no degradation of
the reception rate when cache misses occur. As mentioned above, the actual reception
rate is slightly lower than the available bandwidth in our experiments, thus, the estimated
completion time of the block retrieval always becomes earlier than the actual completion
time of the block retrieval. Since peer A sends a request to the provider peer at the
calculated time based on the estimated completion time, it notices the cache miss before
finishing the retrieval of the previous block. As a result, it can retrieve the following block
without almost no delay despite of the cache miss. Even if the reception rate is equal
to the available bandwidth, we expect that SF method is more effective than SR method
because the time needed to switch the provider peer is less than 1 sec in our experimental
environment.

One possible solution to reduce the probability of cache miss is following. A peer can
conjecture the behavior of the provider peer taking into account the difference between
search results of two successive rounds, that is, it can estimate the change interval of
the block list of the provider peer. By considering the estimated interval when the peer

determines a provider peer, we can reduce the probability of cache misses.
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Table 1: Search Results of Peer B at Round 1 (Basic Behavior)

Block Retrieval Method SF Method | SR Method
Peer Identifier Peer B Peer B
1-3 | Big «Big | Big \« Bis
Priority of Block Replacement 4-9 A1\ Ag A1\ Ag
10-18 | A7 N\(Ais | A7 N\ A5
19-36 | C1 \Cis | C1\(Cis

Table 2: Search Results of Peer B and Peer C at Round 1 (Basic Behavior)

Block Retrieval Method SE Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
1-3 | Big \«Bis | A1\ As | Bis \«Bis | A1 (A3
Priority of Block Replacement | 4-9 Al A | AsNAy | Al N\ As | Al N Ay
10-18 | A7 N Ais | Ao N\ Ais | A7 N\ Az | Aio \(Ais
19-36 | C1 \(Cis | B1 \yBig | C1 \\Cis | B1 \(Bis

Table 3: Search Results of Peer B at Round 2 (Basic Behavior)

Block Retrieval Method SF Method | SR Method
Peer Identifier Peer B Peer B
1-5 Az N\ A As N\ As
6-11 | A7 \(A12 | A7 \( A1z
Priority of Block Replacement | 12-14 | A3\ A5 | A1z \( 415
15-32 | C1\Cis | C1 \Cis
33-36 | D; \( Dy Dy~ Dy
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Table 4: Search Results of Peer B and Peer C at Round 2 (Basic Behavior)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
1-5 Az \( A A N\ A5 Az \( As A\ As

6 Aq Ag Ar Ag

7 Ag Aq Ag Aq
811 | Ag \(Aga | Az \(A11 | Ag (A2 | Ag \( Anx

Priority of Block Replacement 12 Aqz Ais Aqz Aq2
13-14 | Ara N\ Ars | Az N\ Ana | Aia \Ars | Az (A
15-18 | C1N\Cs | A1z \(A1s | C1 \(Cy | A5\ A1s
19-32 | CsN\Cis | Bi\yBus | C5\Cis | Bi \yBua
33-36 | D1 N\Ds | Bis \yBis | D1 \yDs | Bis \«Bus

Table 5: Search Results of Peer B at Round 3 (Basic Behavior)

Block Retrieval Method SF Method | SR Method
Peer Identifier Peer B Peer B
1-7 Ag \( A1o Ag (A1
Priority of Block Replacement | 810 | A1z \( A1s | A13 \( A1s
11-28 | C1 \( Cis Ci \(Cis
27-36 | Dy \  Dg Dy N\ Dg
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Table 6: Search Results of Peer B and Peer C at Round 3 (Basic Behavior)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
1-7 A N\ A1z Al NA7 | As (A A\ Aq
8 A13 As A13 AS
9-10 | A1a \(Ais | Ao N Ao | Ais A5 | A9 N\ Ao
Priority of Block Replacement | 11-13 C1 \(Cs A \( A3 C1 \( (s Ay \(Ais
14-15 | Ca NG5 | AlaNAis | Ca NG5 | A1a \(A1s
16-18 | Cg \( Cs Ae A1z | Cs \Cs | A1e \( A1s
19-28 | Cyg\Cig | Bi\(Bio | Cg\Cigs | Bi\/ By
29-36 | Dy \(Dg | Biy \(Big | Dy \«Dg | Bi1 \(Bis
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Figure 5: Flow of Block Retrieval (Basic Behavior, SF)
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Table 7: Search Results of Peer B and Peer C at Round 1 (Changes in Network Condition)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C

1 Ay By Ay B,
26 | As Ny Ag | Bo N\ Bs | A>s\ As | By \ Bs
7-18 | A7 N\ Ais | Br \(Bis | A7 \(Ais | Br \(Bis

Priority of Block Replacement 19 B Ay B Ay
20-24 | Bo\¢Bs | A2 \As | Ba\(Bs | A2\ As
25-30 | By \(Biz2 | A7 \( A1z | By \(Biz2 | A7 N\ Ap
31-36 | B3 \(Big | C1 \yCs | B3 \yBigs | C1 \\Cs
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Table 8: Search Results of Peer B and Peer C at Round 2 (Changes in Network Condition)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
1-6 A\ A B; \(Bs A \( A B; \( Bs
7 Aq By Az By
810 | Ag Ao | Bs\Bio | 4As A | Bs\Bio
11-12 | Ayp A1z | Biu \Biz | Ai1 A1z | Bii B2
Priority of Block Replacement | 13-18 | A;3 \  A1g | Bis \¢Bis | A13 \(A1s | Bi3z \( Bis
19-24 | B; \( Bs A1 N\ 46 Bi N\« Bs A1 N\ A4
25 By Az By Az
26-28 | Bg \( Big Ag N\ Ao Bg \(Bio | Ag \( A1o
29-30 | Bi1 \(Bi2 | A11 \( A12 | Bi1 \(Bi2 | A11 \( A2
31-36 | Bis\Bis | Ci\«Cs | Biz\Bis| C1\Cs

Table 9: Search Results of Peer B and Peer C at Round 3 (Changes in Network Condition)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
1-12 | Ay N A2 | Bi \(Bp» AN\ Aro B1 N\ B12
Priority of Block Replacement | 13-18 | A13 \( A1s | Bis \y Bis | A1z \( A1s | Bis \( Bis
19-30 | B; \( B2 Ay \(Aps B; \( B1> A N\ A
31-36 | Bis\Bis | Ci1\Cs | Biz\«Bis | C1\Cs
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Table 10: Search Results of Peer B and Peer C at Round 1 (Reliability)

Block Retrieval Method SE Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
14 | Bis \Bis | A1 \vAs | Bis \yBis | A1 A4
5-10 | A1 \(Ae | A5 \(A10 | A1 \(Ag | A5 \ Ao
Priority of Block Replacement | 11-18 | A7 N\ A14 | A11 \(A1s | A7 \(A1a | A11 \(A1g
19-22 | Ajs Ny Ais | Bi\yBs | Ais \vAis | Bi \(Bs
23-36 | C1 \(Cis | Bs\(Big | C1 \yCia | Bs \(Bis
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Table 11: Search Results of Peer B and Peer C at Round 2 (Reliability)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C
1-2 As N\ Ag Ar N A2 | A5 N\ As A N\ A
3 Az A3 Ar A3
4-5 Ag \( Ay Ay N\ As Ag N\ Ay Ay N\ As
6-7 | Ao (A1 | As A7 | Ao A | As N\ A7
Priority of Block Replacement 8 Aq2 Ag Ajs Ag
9-12 | Az NvAre | Ao N A1z | A1z \(A1e | Ao N\ A1z
13-14 | Az N\ Aig | Az N\ Awg | Arg N Arg | Az N\ Ang
1518 | C; \,Cy Ais Ny A1s | C1 \Cs | A5\ Ass
19-32 | C5N\Cis | Bi\yBua | Cs\Cis | Bi (B
33-36 | Dy \ D4 Bis \yBis | D1 \yD4 | Bis \  Big

Table 12: Search Results of Peer B and Peer C at Round 3 (Reliability)

Block Retrieval Method SF Method SR Method
Peer Identifier Peer B Peer C Peer B Peer C

15 | Ara N A1s | A1 N As | A N\ Ass A1 N As

6-12 Cy \, Cy Ag A | C1\(Cy As N\ A1z
13 Cs Ajs Cs A1s

Priority of Block Replacement | 14-18 Co \( C13 Ay (A1 | Cg \(Ci3 | A14 \( A1s
19-23 | Ciu\Cis | Bi\yBs | Cia\Cis | Bi\(B;s
24-36 | D1 \yDi3 | Bs\(Big | Di\yDiz | Bs \(Bis
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Figure 14: Flow of Block Retrieval (Reliability, SR)
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5 Conclusion

In this thesis, we first designed our P2P media streaming system considering the compat-
ibility with the existing media player and protocol. Then, we implemented a java-based
prototype of our system on a real environment. Through several experimental evaluations,
it was shown that our P2P media streaming system can provide users with a continuous
media streaming service. In particular, SF method is more superior to SR method in
various situations.

As future research works, we have to implement the rest of the designed system and
evaluate the implemented system in large-scale networks. We expect that a network
emulator developed by our research group can be used to the evaluation. Furthermore, we
would also need to improve the proposed methods taking into account the experimental

results.
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