
Scalable Resource Management for
High-performance Web Servers

Go Hasegawa, Tatsuhiko Terai, Takuya Okamoto and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University

1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-850-6864, Fax: +81-6-850-6868

E-mail: {hasegawa, terai, tak-okmt, murata}@ist.osaka-u.ac.jp

Abstract

Although many research efforts have been devoted to network congestion in the face of

an increase in the Internet traffic, there is little recent discussion on performance improve-

ments for endhosts. In this paper, we propose a new architecture, called Scalable Socket

Buffer Tuning (SSBT), to provide high-performance and fair service for many TCP con-

nections at Internet endhosts. SSBT has two major features. One is to reduce the number of

memory accesses at the sender host by using some new system calls, called Simple Memory-

copy Reduction (SMR) scheme. The other is Equation-based Automatic TCP Buffer Tuning

(E-ATBT), where the sender host estimates ‘expected’ throughput of the TCP connections

through a simple mathematical equation, and assigns a send socket buffer to them according

to the estimated throughput. If the socket buffer is short, max-min fairness policy is used.

We confirm the effectiveness of our proposed algorithm through both simulation technique

and an experimental system. From the experimental results, we have found that our SSBT

can achieve up to a 30% gain for Web server throughput, and a fair and effective usage of

the sender socket buffer can be achieved.

Keywords: TCP (Transmission Control Protocol), HTTP (HyperText Transfer Protocol),

Socket Buffer, Resource Management, Web Server

All correspondence should be directed to:

Go Hasegawa

Graduate School of Information Science and Technology, Osaka University 1-3

Machikaneyama, Toyonaka

Osaka 560-8531, Japan

E-mail: hasegawa@ist.osaka-u.ac.jp

Phone: +81-6-850-6864

Fax: +81-6-850-6868

1

1 Introduction

With the rapid growth of Internet users, many research efforts have been directed to avoiding

and dissolving network congestion against an increase of network traffic. However, there has

been little recent discussion on improvement of the performance of Internet endhosts in spite of

the projection that the bottleneck is now being shifted from the network to endhosts [1]. For

example, busy WWW (World Wide Web) servers currently receive hundreds of requests for

document transfers every second at peak times.

Of course, proposals for the improvement of protocol processing by endhosts are not new.

An early example can be found where the authors proposed the ‘fbuf’ (fast buffer) architecture,

which shares memory space between the system kernel and the user process to avoid redundant

memory copies during data exchanges [2]. It is based on the observation that memory copy is

a main cause of the bottleneck at endhosts in TCP data transfer. Other approaches can also be

found [3, 4]. However, past research including the above approaches do not consider the ‘fair’

treatment of connections, in which connections receive fair service from the server. By achieving

fair service among connections, we can also expect performance improvement for the following

reasons. Suppose that a server host is sending TCP data to two clients, one of 64Kbps dial-up

(say, client A) and the other of 100Mbps LAN (client B). If the server host assigns equal sizes

of the send socket buffer to both clients, it is likely that the amount of the assigned buffer is too

large for client A, and too small for client B, because of the difference of capacities (more strictly,

bandwidth-delay products) of their connections. For an effective buffer allocation to both clients,

a compromise on buffer usage should be taken into account.

Another important example that requires ‘fair’ buffer treatment can be found in a busy In-

ternet WWW server, which simultaneously accepts a large number of TCP connections with

different bandwidths and round trip times (RTTs) at the same time. The authors have proposed a

buffer tuning algorithm called Automatic TCP Buffer Tuning (referred to as ATBT in this paper),

that dynamically adjusts the send socket buffer size according to the change of the TCP sending

window size of the connection [5]. However, it cannot provide ‘fairness’ among connections

because the throughput of TCP connections is not proportional to the sending window size [6].

We will discuss the problems of ATBT more in the next section.

In this paper, we propose a novel architecture, called Scalable Socket Buffer Tuning (SSBT),

to provide high performance and fair service for many TCP connections at the sender host. For

this purpose, we developed the following two mechanisms for SSBT. These are the SMR (Simple

Memory-copy Reduction scheme) and E-ATBT (Equation-based Automatic TCP Buffer Tuning).

The SMR scheme provides a set of socket system calls in order to reduce the number of memory

copy operations at the sender host in TCP data transfer. It is a replacement of the existing so-

called ‘zero-copy’ mechanisms. However, it is much simpler and can still achieve the same effect

2

in reducing the overhead at the sender host. However, our main contribution in this paper is E-

ATBT, which provides a fair assignment of the socket buffer. In E-ATBT, we consider ‘expected’

throughput of TCP connections by an analytic approach. It is characterized by the packet loss

rate, RTT and RTO (Retransmission Time Out) values of the connections, which can easily be

monitored by the sender host. The send socket buffer is then assigned to each connection based

on its expected throughput, with consideration on max-min fairness among connections.

We validated the effectiveness of our proposed mechanism through both simulation and im-

plementation experiments. In the simulation experiments, we confirmed the fair assignment of

the socket buffer using our E-ATBT algorithm under various network situations. In the im-

plementation experiments, we first confirmed the behavior of SSBT at the transport-layer, that

is, we used native TCP data transfer in the experiments, followed by experiments on a SSBT-

implemented Web server. We showed the effectiveness of SSBT in terms of overall server per-

formance, the number of accommodated connections, and fairness among connections.

We also noted that fairness is recently being paid more attention from various aspects; for

TCP enhancements [7, 8, 9] and for router support [10, 11, 12] in order to achieve that fairness.

Perhaps, all of the above technologies including our proposed method for endhosts are necessary

to provide end–to–end fairness to users.

This paper is organized as follows. In Section 2, we first briefly introduce the ATBT algo-

rithm for reference purposes. In Section 3, we propose our SSBT algorithm. We evaluate the

effectiveness of our proposed algorithm through simulation experiments in Section 4, followed

by implementation experiments in Section 5. Finally, we present some concluding remarks in

Section 6.

2 Related Work; Automatic TCP Buffer Tuning (ATBT)

To provide the fairness among multiple TCP connections, the sender host has to assign its send

socket buffer to the connections by taking care of differences in the connections’ characteris-

tics. In this section, we first introduce related research on buffer tuning, and point out several

problems.

An Automatic TCP Buffer Tuning (ATBT) mechanism has been proposed, where the as-

signed buffer size of each TCP connection is determined according to the current window size of

the connection [5]. That is, when the window size becomes large, the sender host tries to assign

more buffer to the connection. It decreases the assigned buffer size as the window size becomes

small. When the total required buffer size of all TCP connections becomes larger than the send

socket buffer size prepared at the sender host, send socket buffer is assigned to each connec-

tion according to a max-min fairness policy. More specifically, the sender host first assigns the

buffer equally to all TCP connections. If some connections do not require a large buffer, the

3

excess buffer is re-assigned to connections requiring a larger buffer. Through this mechanism, it

is expected that a dynamic and fair buffer assignment can be provided by considering different

characteristics.

However, ATBT has several problems. It assigns the send socket buffer to each TCP connec-

tion according to its current window size at regular intervals. Therefore, when the sender TCP

suddenly decreases its window size due to, e.g., an occasional packet loss, the assigned buffer

size sometimes gets smaller than that the connection actually requires. This might be resolved

by setting the update interval to a smaller value. In that case, however, the assigned buffer size

is changed too frequently, which causes the system instability. Furthermore, as network band-

width becomes larger, the oscillation of the window size also becomes large, leading to a large

oscillation of the assigned buffer size.

Another problem exists in the max-min sharing policy adopted in ATBT. Suppose that three

TCP connections (connections 1, 2 and 3) are active, and the required buffer sizes calculated

from the window sizes of connections are 20 [KBytes], 200 [KBytes], and 800 [KBytes], respec-

tively. If the total size of the send socket buffer is 300 [KBytes], the sender host first assigns

100 [KBytes] to each connection. Since connection 1 does not require such a large buffer, the

sender re-assigns the excess buffer of 80 [KBytes] of connection 1 equally to connections 2

and 3. As a result, the assigned buffer sizes of both connections 2 and 3 become 140 [KBytes].

However, it would be better to assign the excess buffer proportionally to the required buffer size

of connections 2 and 3. In this case, the assigned buffers become 116 [KBytes] for connection 2

and 164 [KBytes] for connection 3 by a proportional re-assignment. This assignment is more

effective because the throughput improvement of connection 3 becomes larger. The remaining

problem is how to estimate the buffer size each TCP connection actually requires. ATBT can-

not re-assign the excess buffer proportionally because it determines the buffer size only by the

current window size of the connection.

3 Scalable Socket Buffer Tuning (SSBT)

Our proposed “Scalable Socket Buffer Tuning” (SSBT) method includes two mechanisms, (1)

the Equation-based Automatic TCP Buffer Tuning (E-ATBT) and (2) the Simple Memory-copy

Reduction (SMR) scheme, as explained below.

3.1 Equation-based Automatic TCP Buffer Tuning (E-ATBT)

E-ATBT solves the problems raised in Section 2. In E-ATBT, the sender host estimates an ‘ex-

pected’ throughput for each TCP connection by monitoring three parameters (packet loss proba-

bility, RTT, and RTO values. It then determines the required buffer size of the connection from

4

the estimated throughput, not from the current window size of TCP. The estimation method of

TCP throughput is based on the analysis result in Hasegawa et al [13]. There the authors derived

the average throughput of a TCP connection for a model in which multiple connections with dif-

ferent input link bandwidths share a bottleneck router employing the RED algorithm [14]. The

following parameters are necessary to derive the throughput;

• p: packet dropping probability of the RED algorithm

• rtt: the RTT value of the TCP connection

• rto: the RTO value of the TCP connection

In the analysis, the average window size of the TCP connection is first calculated from the above

three parameters. The average throughput is then obtained by considering the performance degra-

dation caused by the TCP’s retransmission timeout. The analysis developed in Hasegawa et

al [15] is easily applied to our case, by viewing the packet dropping probability of the RED

algorithm as the observed packet loss rate.

The parameter set (p, rtt, and rto) is obtained at the sender host as follows. Rtt and rto can

be directly obtained from the sender TCP and the packet loss rate p can also be estimated from

the number of successfully transmitted packets and the number of lost packets detected at the

sender host via acknowledgement packets. A possible cause of estimation error in p is due to

the stochastic nature of packet losses since the analysis in Hasegawa et al [16] assumes random

packet loss. Thus, we need a validation for the case where the packet losses occur at the drop-tail

router, since in that case, packets tend to be dropped in a bursty nature. We present evaluation

results on this aspect in Section 4.

Note that the appropriateness of the estimation method used in the E-ATBT algorithm has

been validated [16]. However, we can apply another estimation result of TCP throughput given

in Padhye et al [6] using the additional parameter of Wmax, the buffer size of the receiver.

λ = max

⎛
⎝Wmax

RTT
,

1

(RTT
√

2bp
3

+ T0 min(1, 3
√

3bp
8

)p(1 + 32p2)

⎞
⎠

where b is set to 2 if the receiver uses TCP’s Delayed ACK option, and 1 if not.

We denote the estimated throughput of connection i by ρi. From ρi, we simply determine Bi,

the required buffer size of connection i, as;

Bi = ρi × rtti

where rtti is RTT of connection i. By this mechanism, a stable assignment of the send socket

buffer to TCP connections is expected to be provided if the parameter set (p, rtt, and rto) used

in the estimation is stable. However, in ATBT, the assignment is inherently unstable even when

three parameters are stable, since the window size oscillates more significantly regardless of the

5

Data File Application
Buffer
Application
Buffer

Memory Copy
(File to
Application Buffer)

Socket System Call
(Copying data from
User space to Kernel
Space)

Socket System Call
(Copying data from
User space to Kernel
Space)

Call socket system call

Socket
Buffer

User Space

Kernel Space

Memory Copy
(Application Buffer to
Socket Buffer)

TCPTCP

(a) Original Mechanism

Data File

Socket System Call
(Copying data from
User space to Kernel
Space)

Socket System Call
(Copying data from
User space to Kernel
Space)

Memory Copy
(File to Socket Buffer)

Socket
Buffer

Call socket system call

TCPTCP

User Space

Kernel Space

(b) Proposed Mechanism of SMR scheme

Figure 1: Memory Copy Operations in TCP data Transfer

sendto sendit sosend TCP

UDP

ICMP

Figure 2: Flow Chart of Socket System Call

stability of the parameters.

As in ATBT, our E-ATBT also adopts a max-min fairness policy for re-assigning the ex-

cess buffer. Differently to the ATBT algorithm, however, E-ATBT employs a proportional re-

assignment policy as explained in the previous subsection. That is, when excess buffer is re-

assigned to connections needing more buffer, the buffer is re-assigned proportionally to the re-

quired buffer size calculated from the analysis. Whereas ATBT re-assigns excess buffer equally,

since it has no means to know the expected throughput of the connections.

3.2 Simple Memory-copy Reduction (SMR) Scheme

Another mechanism we implemented is the Simple Memory-copy Reduction (SMR) scheme. In

TCP data transfer, two memory-copy operations are necessary at the sender host in TCP data

transfer [17]. One is from the file system to the application buffer, and the other is from the

application buffer to the socket buffer, as shown in Figure 1(a). The problem is that memory

access is the largest obstacle in improving TCP data transfer [18], so reducing the number of

memory copy operations in TCP data transfer is a key to improving the server’s protocol pro-

cessing speed. Reducing the number of memory accesses in TCP data transfer is not a new

subject [2, 3, 4]. In Drushel and Peterson [2], the authors proposed a ‘fbuf’ (fast buffer) archi-

6

tecture, which shares the memory space between the system kernel and user processes to avoid

redundant memory copies during data transfers. However, it is difficult to implement fbuf on

actual systems, because its complicated architecture requires many modifications in the memory

management mechanism of operating systems. In this paper, we propose a Simple Memory-

copy Reduction (SMR) scheme, which is a new and simpler mechanism that can avoid memory

copying from the file system to the application buffer.

A detailed mechanism at the sender host in TCP data transfer of the original BSD UNIX

system is illustrated in Figure 1(a). When the user application transfers a file by using TCP, the

file is first copied from the file system (on disk or memory) to the application buffer located in

the user memory space by one memory copy operation. Then, the data in the application buffer

is copied to the socket buffer which is located in the kernel memory space. It is performed by

a couple of system calls provided by the socket interface, and so two memory copy operations

are necessary. It is redundant, however, to copy the file in the file system to the socket buffer via

the application buffer, as it can be directly copied from the file system to the socket buffer in the

file transfer. Of course, the memory space should be clearly divided into user and kernel spaces

by the UNIX memory management system, so that the kernel memory space is protected from

illegal accesses caused by user applications. When we consider the performance improvement of

TCP data transfer, we can avoid memory copying from the file system to the application buffer.

Since our SMR scheme is limited to the file system to be applied, there is not so critical problem

about the memory usage by the kernel system and the user applications.

Figure 1(b) illustrates the proposed mechanism of the TCP data transfer. In the proposed

mechanism, a transferring file in the file system is directly copied to the socket buffer by the new

socket system calls. The socket system calls of the original mechanism require the application

buffer as one of the arguments to copy the data from the application buffer to the socket buffer.

However, in the proposed mechanism, socket system calls are modified to specify a file descriptor

of a transferring file as an argument, by which a direct copy of the data from the file system to

the socket buffer can be accomplished. Then, the redundant memory copying procedure can be

avoided. In what follows, we explain the new socket system calls implemented in our proposed

mechanism. See Figure 2 for the flow chart of the socket system call of the FreeBSD system.

We implemented the proposed mechanism by modifying three system calls, and adding two

new arguments to the mbuf structure [19]. All system calls for TCP data transfer call a sosend

system call, in order to copy the transferring data from the user memory space to the kernel

memory space and pass the data for further protocol processing. In the proposed mechanism, we

change one of the arguments of sosend from the application buffer to the file descriptor, so that

sosend can copy the data directly from the file system to the socket buffer. We also modify

sendto and sendit system calls to handle the file descriptor according to the changes to the

sosend system call.

7

3.3 Transfer of Small Documents

In E-ATBT, the sender estimates the throughput of each TCP connection from observed param-

eters associated with that connection. Therefore, if the size of the transmitted data is small, it

is impossible to obtain an accurate and reliable estimation. A similar discussion is also applied

to the SMR scheme, where the effect of avoiding a memory-copy operation is likely to be lim-

ited if the document size is small. One of the reasons is that the connection set-up time (TCP’s

three-way handshake) is likely to dominate the document transfer time.

The above problem becomes an obstacle for the application of our proposed mechanism to

Web servers since Web documents are comparatively small. It is reported in Nabe et al [20]

that the average size of Web documents at several Web servers was under 10 [KBytes]. More

important, Crovella and Cestavos [21] report that Web document size exhibits a heavy-tailed

nature, meaning that very long documents exist with certain probabilities, but at the same time

small-sized documents exist with large probabilities. Thus, when there are many connections on

the Web server requesting small documents, the buffer assignment of the E-ATBT mechanism

may become unstable as the number of connections fluctuates greatly.

One possible way to overcome this problem is to exclude connections requesting small-sized

documents from the fair buffer assignment described above. By this modification, a stable as-

signment of buffer is expected to be achieved. However, it leads to another difficulty that the

threshold value of the document size cannot be determined a priori because the appropriate set-

ting of the threshold is dependent on the access frequency of the Web server, processing power of

the Web server, the network condition, and so on. Fortunately, the ‘persistent connection’ mech-

anism recently proposed and adopted in HTTP/1.1 can alleviate the above-mentioned problem.

In HTTP/1.1, the server preserves the status of the TCP connection when it finishes the document

transfer, and re-uses the status when a new connection is established in the same session. Then,

E-ATBT is able to utilize the status information for an effective buffer assignment even when

most of connections request small documents.

4 Simulation Results of E-ATBT

In this section, we present simulation results of E-ATBT using a network simulator [22]. For

evaluating the effectiveness of E-ATBT, we compared the following three algorithms.

EQ: All of active TCP connections are assigned an equal size of the send socket buffer.

ATBT: The send socket buffer size is assigned according to the automatic TCP buffer tuning

algorithm described in Section 2.

E-ATBT: The sender host assigns the send socket buffer in accordance with the equation-based

automatic TCP buffer tuning algorithm described in Subsection 3.1.

8

In the three algorithms, buffer re-assignment is performed every second.

In the simulation experiment, we conducted two cases for packet loss occurrence. In the first

case, packet loss took place at a constant rate, implicitly assuming that the router was equipped

with the RED algorithm. It meant that packet loss took place randomly with a given probability.

Such an assumption has been validated [6]. However, random packet dropping is a rather ideal

case for our E-ATBT since our method largely relies on an adequate estimation of the packet

loss rate in determining the throughput of TCP connections. Hence, we also considered the case

of the drop-tail router where packet loss occurred due to buffer overflow at the router. In this

case, we can never expect random packet losses, and they tend to occur in a bursty fashion.

Due to space limitation, we only show the case of constant packet loss rate case. However, we

have obtained the results that the estimation error of the packet loss rate make little effect on the

performance of E-ATBT in drop-tail case.

4.1 Simulation Experiment 1: Constant Packet Loss Rate Case

Here we investigated the case where each TCP connection experiences random packet losses with

constant rate. The network model used in this simulation experiment is depicted in Figure 3. It

consisted of a sender host, and eight receiver hosts (from receiver host 1 to 8), each of which

was connected by a link of 100 [Mbps] to the sender host. The propagation delays between the

sender host and receiver hosts (denoted by τ) were equally set to 6 [msec]. We set the packet loss

probability on each link between the sender host and the receiver host i to pi. The sender host

had B [packets] of the socket buffer size in total. Each of simulation experiments started at time

0. TCP connection i, which was established from the sender host to the receiver host i, started

packet transmission at time t = (i−1)×125 [sec]. All connections stopped packet transmission

at t = 1000 [sec].

We first set the packet dropping probability pi’s as p1 = 0.0001 and p2 = ... = p8 = 0.02. The

socket buffer size of the sender B was set to be 500 [packets], and the packet size was fixed

at 1000 [bytes]. Expected throughput values obtained by the receiver hosts then became about

95 [Mbps] for the receiver host 1, and about 7 [Mbps] for the rest of receiver hosts. Figure 4

plots the time-dependent behaviors of the assigned buffer size and throughput values of connec-

tions obtained by three mechanisms; EQ, ATBT, and E-ATBT. In the figure, labels “#1” – “#8”

represent connections 1 through 8. In the EQ mechanism (Figures 4(a) and 4(d)), the throughput

of connection 1 was degraded during 200 < t < 500 [sec] and 600 < t [sec] of the simulation

time. The first degradation occurred because the assigned buffer size of connection 1 was sud-

denly decreased at the time when the second and third connections started packet transmission.

It resulted in temporal degradation of the throughput of connection 1. At t = 600 [sec], the

number of active connections exceeded six. However, connection 1 required about 110 [packets]

9

Sender Host

Receiver Hosts

Buffer Size:
B [packets]

Connection 1:
bw = 100 [Mbps]
p= p1

Connection 2:
bw = 100 [Mbps]
p= p2

Connection 7:
bw = 100 [Mbps]
p= p7

Connection 8:
bw = 100 [Mbps]
p= p8τ = 6 [msec]

Figure 3: Network Model for Simulation Experiment 1

to achieve its estimated throughput for p1 = 0.0001. If the active number of connections exceeds

six, its assigned buffer would be below 110 [packets] in the EQ mechanism. This was the reason

the throughput of connection 1 was decreased. On the other hand, the other connections only

required about 10 [packets] of the send socket buffer and therefore, those connections attained a

constant throughput even though the assigned buffer size got smaller.

In both ATBT and E-ATBT cases, on the other hand, the throughput of connection 1 could

retain a high value even when the number of connections became large as shown in Figures 4(e)

and 4(f). This is because the send socket buffer was assigned appropriately, that is, the connec-

tion 1 was assigned a larger buffer size than other connections (see Figures 4(b) and 4(c)) even

after other connections joined. When comparing ATBT and E-ATBT mechanisms, E-ATBT can

offer stable buffer assignment as shown in Figure 4(b). However, it can also be observed by

comparing Figures 4(e) and 4(f) that the obtained throughput values of the two cases are not

different.

We next decreased the total buffer size, B, to 100 [packets]. See Figure 5. In all of three

mechanisms, the throughput of connection 1 was degraded as the number of connections in-

creased, but E-ATBT provided the highest throughput to connection 1. E-ATBT estimates the

required buffer size for all connections, and then assigns a small buffer to connections 2 through 8

since those do not require a large buffer due to a high packet loss rate. Thus, the excess buffer

can be utilized by connection 1 so that connection 1 can enjoy high throughput as shown in Fig-

ure 5(c). Further, the buffer assigned by E-ATBT was very stable compared with the ATBT case.

In ATBT, connections 2 through 8 temporarily inflated their window size according to the con-

10

0
50

100
150
200
250
300
350
400
450
500

0 200 400 600 800 1000
A

ss
ig

ne
d

B
uf

fe
r

S
iz

e
[p

ac
ke

t]

Time [sec]

#1

#2

#3

#4

#5

#6

#7

#8

(a) EQ: Assigned Buffer Size

0
50

100
150
200
250
300
350
400
450
500

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1#2-#8

(b) ATBT: Assigned Buffer
Size

0
50

100
150
200
250
300
350
400
450
500

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2-#8

(c) E-ATBT: Assigned Buffer
Size

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(d) EQ: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000
T

hr
ou

gh
pu

t [
M

bp
s]

Time [sec]

#1

#2-#8

(e) ATBT: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(f) E-ATBT: Throughput

Figure 4: Result of Simulation Experiment 1: p1 = 0.0001, p2 = . . . = p8 = 0.02, B =
500 [packets]

0

20

40

60

80

100

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1
#2

#3
#4

#5

#6

#7
#8

(a) EQ: Assigned Buffer Size

0

20

40

60

80

100

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1#2-#8

(b) ATBT: Assigned Buffer
Size

0

20

40

60

80

100

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2
#3
#4
#5
#6
#7
#8

(c) E-ATBT: Assigned Buffer
Size

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(d) EQ: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(e) ATBT: Throughput

0

20

40

60

80

100

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1

#2-#8

(f) E-ATBT: Throughput

Figure 5: Result of Simulation Experiment 1: p1 = 0.0001, p2 = . . . = p8 = 0.02, B =
100 [packets]

11

0

50

100

150

200

0 200 400 600 800 1000
A

ss
ig

ne
d

B
uf

fe
r

S
iz

e
[p

ac
ke

t]

Time [sec]

#1

#2

#3
#4

#5
#6

#7
#8

(a) EQ: Assigned Buffer Size

0

50

100

150

200

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1 #2 #3 #4 #5 #6 #7 #8

(b) ATBT: Assigned Buffer
Size

0

50

100

150

200

0 200 400 600 800 1000

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[p
ac

ke
t]

Time [sec]

#1

#2
#3

#4 #5
#6

#7

#8

(c) E-ATBT: Assigned Buffer
Size

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1 #2

#3 #4

#5 #6 #7
#8

(d) EQ: Throughput

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000
T

hr
ou

gh
pu

t [
M

bp
s]

Time [sec]

#1 #2

#3 #4

#5
#6

#7

#8

(e) ATBT: Throughput

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1 #2

#3 #4

#5 #6 #7

#8

(f) E-ATBT: Throughput

Figure 6: Result of Simulation Experiment 1: p1 = p2 = 0.02, p3 = p4 = 0.01, p5 = p6 = 0.002,
p7 = p8 = 0.001, B = 200 [packets]

gestion algorithm of TCP, which resulted in a decrease of the assigned buffer size of connection 1

(Figure 5(e)), and led to the throughput degradation of connection 1 in ATBT.

For another experiment using the network model depicted in Figure 3, we set pi’s as follows;

p1 = p2 = 0.02, p3 = p4 = 0.01, p5 = p6 = 0.002, p7 = p8 = 0.001. That is, four kinds of con-

nections were set up at the sender host. We set the buffer size B to 200 [Kbytes], which was

relatively small compared with the total value of the required buffer sizes of the 8 connections.

Results are shown in Figure 6. Connections 7 and 8 started the packet transmission at 750 [sec]

and 875 [sec], respectively. In the EQ mechanism, those connections received the same through-

put as connections 5 and 6 as shown in Figure 6(d), even though connections 7 and 8 had a

lower packet loss rate than connections 5 and 6. In ATBT, throughputs of connections 7 and 8

were slightly higher than connections 5 and 6 (Figure 6(e)), but the buffer assignment had a

large oscillation (Figure 6(b)). On the other hand, Figure 6(c) shows that E-ATBT kept a stable

buffer assignment. It could also provide the highest throughput to connections 7 and 8 without

throughput degradation of other connections (Figure 6(f)).

12

� � � � � � � � � 	
 �

� � � � � � � � � � � � � 	 �

� � � � � �
 � � � � � � � � � � � � �
 � � � 	 	 � � �
 � � � � � � �

� � � � � �
 � � � � � � � � � � � � �
 � � � 	 	 � � �
 � � � � � �

� � � � � �
 � � � � � � � � � � � � �
 � � � 	 	 � � �
 � � � � � �

� � � � � � � � � � � 	
 �

� � � � � � � � �� � � � � � � � �

Figure 7: Network Environment (1)

5 Implementation Experiments of SSBT

In this section, we present the results obtained from our experimental system. We implemented

EQ, ATBT and SSBT mechanisms on an Intel Pentium PC running FreeBSD, with the two ma-

chines directly connected. In the experiments, we focused on the following four subjects;

1. Fair buffer assignment among different connections

2. Scalability against the number of connections

3. Performance improvement of the Web server

The experimental results concerning these four points are shown in turn in the following subsec-

tions.

5.1 Experiment 1: Fair Buffer Assignment among Different Connections

We next evaluated the E-ATBT mechanism of SSBT. First, we investigated the fairness property

of the three buffer assignment algorithms described in Section 4. In this experiment, we con-

sidered the situation where three TCP connections were established at the sender host through a

622 [Mbps] MAPOS link. Three connections have different packet loss rates; 0.005 for connec-

tion 1, 0.01 for connection 2, and 0.02 for connection 3, as shown in Figure 7. In the experiment,

packets were intentionally dropped at the receiver host. Note that with those packet loss rates,

three connections could achieve throughput values of about 55, 90, and 220 [Mbps], respectively,

when enough of the send socket buffer was assigned to each connection.

Figure 8 compares throughput values of the three connections and total throughput. The

horizontal axis shows the total size of the send socket buffer. In the EQ case (Figure 8(a)), the

three connections could achieve their maximum throughputs when the total buffer size was larger

than 240 [KBytes], while ATBT and E-ATBT needed only about 200 [KBytes] and 170 [KBytes],

respectively. This is due to the same reason as set out in Section 4. Connections 2 and 3 did

not need as much buffer size as connection 1, but the EQ algorithm cannot re-allocate the excess

buffer of connections 2 and 3 to connection 1. Contrarily, ATBT and E-ATBT algorithms worked

well for the buffer assignment.

By comparing the ATBT and E-ATBT algorithms in Figures 8(b) and (c), it is clear that E-

ATBT can provide a much higher throughput for connection 1 and the total throughput. The

13

0

50

100

150

200

250

300

350

400

80 100 120 140 160 180 200 220 240 260 280
T

hr
ou

gh
pu

t [
M

bp
s]

Total Buffer Size [KBytes]

Total

Connection1

Connection2

Connection3

(a) EQ Case

0

50

100

150

200

250

300

350

400

80 100 120 140 160 180 200 220 240 260 280

T
hr

ou
gh

pu
t [

M
bp

s]

Total Buffer Size [KBytes]

Total

Connection1

Connection2

Connection3

(b) ATBT Case

0

50

100

150

200

250

300

350

400

80 100 120 140 160 180 200 220 240 260 280

T
hr

ou
gh

pu
t [

M
bp

s]

Total Buffer Size [KBytes]

Total

Connection1

Connection2

Connection3

(c) E-ATBT Case

Figure 8: Fairness among Three Connections

Sender Host

Receiver Host 1

Receiver Host 2

Router 1

Router 2

1000 [Mbps]
1000 [Mbps]

100 [Mbps] 100 [Mbps]

Figure 9: Network Environment (2)

difference is due to the re-assignment policies of the excess buffer to the connections, as de-

scribed in Section 2 and confirmed by the simulation results in Section 4.

We next present the time dependent behavior of the buffer size assigned to each connection

in Figure 10 using the network topology depicted in Figure 9. For routers 1 and 2 in the figure,

we used a PC-based router called ALTQ [23] to realize the RED router. We established connec-

tions 1, 2, and 4 between the server host and client host 1, and connection 3 between the server

host and client host 2. In this experiment, connections 1 and 2 first started packet transmission

at time 0 [sec]. Then, connections 3 and 4 joined the network at times of 5 [sec] and 10 [sec],

respectively. Here, we set the total buffer size to 512 [KBytes]. In ATBT (Figure 10(a)), the as-

signed buffer sizes heavily oscillated because the ATBT algorithm adapted the buffer assignment

according to the window size. Another and more important reason was that when retransmis-

sion timeout expiration occurred at a certain connection, that connection reset the window size

to 1 [packet] according to the TCP retransmission mechanism. Then, the assigned buffer size

14

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[K
B

yt
es

]

Time [sec]

Connection 1
Connection 2
Connection 3
Connection 4

(a) ATBT Case

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

A
ss

ig
ne

d
B

uf
fe

r
S

iz
e

[K
B

yt
es

]

Time [sec]

Connection 1
Connection 2
Connection 3
Connection 4

(b) E-ATBT Case

Figure 10: Changes of Assigned Buffer Sizes

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t [

M
bp

s]

Number of Ethernet Connections

E-ATBT

ABT

EQ

64KB

16KB

Figure 11: Throughput of the MAPOS Connection vs. the Number of Ethernet Connections

of that connection became very low. Once the assigned buffer got small, the connection could

not inflate its window size for a while because of the throttled buffer size. This was the reason

why the assigned buffer size kept low for a while in the ATBT algorithm. On the other hand, E-

ATBT can provide a stable and fair buffer assignment as shown in Figure 10(b). It brings higher

throughput to each TCP connection as shown in Figure 11 in Subsection 5.2.

5.2 Experiment 2: Scalability against the Number of Connections

We next turn our attention to the scalability of the buffer assignment algorithms against the

number of connections. Figure 12 depicts the experimental setting for this purpose. One TCP

connection was established using the MAPOS link (which is referred to below as the MAPOS

connection). Several numbers of TCP connections were simultaneously established through the

Ethernet link (Ethernet connections). In this experiment, we intended to investigate the effects

of the number of Ethernet connections on the performance of the MAPOS connection.

Figure 11 shows the throughput values of the MAPOS connection dependent on the number

of Ethernet connections. In addition to the results of EQ, ATBT and E-ATBT algorithms, we

also present the results for the situation where the constant size (16 [KBytes] or 64 [KBytes]) of

the send socket buffer is assigned to each TCP connection. Such a constant assignment is the

default mechanism of the current TCP/IP implementation in major operating systems. Results

are plotted in the figure with labels “16KB” and “64KB.” In this figure, we set the total of the send

15

� � � � � � � � � 	
 �

� � � � � � � � � � � � � � � � � �

 ! � � � �
 � � � � � � �
 � � � � �

�
�

 ! � � � �
 � � � � � � �
 � � � � "

� � � � � � 	 � � � � � � � � � � �
 � � � �

� # # � � � 	

� � � � � � � � � � � 	
 �

Figure 12: Network Environment (3)

socket buffer to 256 [KBytes]. Therefore, if we assign the constant buffer size of 64 [Kbytes] to

each TCP connection, the sender would allow up to four connections at the same time.

From Figure 11 several important observation can be made. First, we can see that the constant

assignment algorithm, which is widely employed in current Operating Systems, has the following

drawback. If a 16 [KBytes] send socket buffer is assigned to each TCP connection, the MAPOS

connection suffers from very low throughput because it is too small for the 622 [Mbps] MAPOS

link. When each connection is given 64 [KBytes] buffer size, on the other hand, the throughput

of the MAPOS connection becomes considerably higher as shown in Figure 11. However, the

number of connections which can be simultaneously established is severely limited. In the EQ

algorithm, when the number of Ethernet connections exceeds four, the throughput of the MAPOS

connection is suddenly decreased to about 11 [Mbps]. This is because the EQ algorithm does

not distinguish the MAPOS connection from the Ethernet connections, and assigns equal sizes

of the send socket buffer to all connections. Therefore, as the number of Ethernet connections is

increased, the assigned buffer size to the MAPOS connection is decreased, leading to throughput

degradation of the MAPOS connection.

When we employ the ATBT and E-ATBT algorithms, the throughput degradation of the MA-

POS connection can be limited even when the number of Ethernet connections is increased.

However, when the number of Ethernet connections exceeds 11, the throughput values of ATBT

and E-ATBT algorithms become distinguishable, as shown in Figure 11. This is again caused by

the instability of the assigned buffer size and by the poor re-assignment algorithm of ATBT, as

explained in the previous subsection. Even in the E-ATBT algorithm, the throughput of the MA-

POS connection is slightly degraded by the larger number of Ethernet connections because the

total required buffer size of Ethernet connections is increased, even though the required buffer

of each Ethernet connection is small. Thus, the buffer assigned to the MAPOS connection is

decreased because the excess buffer becomes small. However, the degree of the throughput

degradation of the MAPOS connection can be limited in the E-ATBT algorithm.

16

10

20

30

50

100

200

300

500

1000

1000 10000 100000 1e+06 1e+07
A

ve
ra

ge
 P

er
fo

rm
an

ce
 G

ai
n

[%
]

Document size [Bytes]

(a) 10 Clients

10

20

30

50

100

200

300

500

1000

1000 10000 100000 1e+06 1e+07

A
ve

ra
ge

 P
er

fo
rm

an
ce

 G
ai

n
[%

]

Document size [Bytes]

(b) 100 Clients

10

20

30

50

100

200

300

500

1000

1000 10000 100000 1e+06 1e+07

A
ve

ra
ge

 P
er

fo
rm

an
ce

 G
ai

n
[%

]

Document size [Bytes]

(c) 300 Clients

10

20

30

50

100

200

300

500

1000

1000 10000 100000 1e+06 1e+07

A
ve

ra
ge

 P
er

fo
rm

an
ce

 G
ai

n
[%

]

Document size [Bytes]

(d) 600 Clients

Figure 13: Document Size vs. Average Performance Gain by the SSBT Scheme

5.3 Experiment 3: Web Server Performance Evaluation

In this experiment, the effectiveness of the SSBT scheme is investigated using a machine running

an Apache Web server [24]. We used the network topology in Figure 9, and ran the SSBT-enabled

Web server at the sender host. At the receiver host, we ran httperf [25] to generate document

transfer requests to the Web server by HTTP. Furthermore, to to make it a realistic scenario for

traffic arriving at the server, we followed Barfort and Crovella [26] in determining the charac-

teristics of the Web access, which included document size distribution, idle time distribution of

the requests, and distribution for the number of embedded documents. We used HTTP/1.1 for

Web access to the server. The send/receive socket buffer size of each TCP connection was set to

64 [KBytes]. We ran each experiment for 30 minutes, which corresponded to the generation of

about 25,000 document transfer requests from each client.

Figure 13 shows the average performance gain of the SSBT scheme as a function of the

document size. Here, the average performance gain for the documents with size i [Bytes] was

determined as follows. Letting the number of document requests during the experiments be

MSSBT,i and Morig,i for cases with and without the SSBT scheme, respectively. Similarly, the

observed transfer time of the jth document with size i was denoted as TSSBT,i,j and Torig,i,j ,

17

respectively. Then, the average performance gain Gi for documents with size i was defined as;

Gi [%] = 100 ×
⎛
⎝

∑Morig,i

j=1
i

Torig,i,j

Morig,i

⎞
⎠/ ⎛

⎝
∑MSSBT,i

j=1
i

TSSBT,i,j

MSSBT,i

⎞
⎠

Note that since we generated the requests according to the probability functions for the document

sizes, idle time, and the number of embedded documents, Morig,i and MSSBT,i may be different

in the experiments with or without SSBT. If G(i) was over 100 [%], it meant that our SSBT

outperformed the original mechanism.

The cases of 10, 100, 300, and 600 clients are shown in Figures 13(a)–13(d), respectively. It

appears that SSBT sometimes degraded the performance of the WWW server, especially when

the document size was small. This is caused by TCP’s retransmission timeouts, which were

explainable as follows. When a requested document size was small, the window size of the TCP

connection carrying the document did not become so large. Therefore, if packet loss occurred,

the TCP connection tended to wait retransmission timeout since the window size was too small

to invoke a fast retransmit algorithm. It resulted in the timeout duration occupying the largest

part of the document transfer. That is, the transfer time of the small document was dominated by

whether the timeout occurred or not, not by whether the SSBT algorithm was used or not.

On the other hand, when the document size was large, the effectiveness of the SSBT became

apparent as was expected. Especially when the number of clients increased, it greatly reduced

the document transfer times (see Figure 13(d)). It meant that the SSBT algorithm shared the Web

server resource in an effective and fair manner, compared with the original mechanism. That is,

when the business/academic users deal with larger documents on their internal servers, and the

proposed scheme is applied to those servers, the effectiveness of the proposed mechanism can be

observed more clearly.

6 Conclusion

In this paper, we have proposed SSBT (Scalable Socket Buffer Tuning), a novel architecture for

effectively and fairly utilizing the send socket buffer of a busy Internet server. SSBT consists of

two algorithms, the SMR and E-ATBT schemes. The SMR scheme can reduce the number of

memory-copy operations when the data packet is sent by TCP, and improve the overall perfor-

mance of the server host. The E-ATBT algorithm assigns send socket buffers to the connections

according to the estimated throughput of those connections. We have confirmed the effective-

ness of the SSBT algorithm through both simulation and implementation experiments, and have

shown that SSBT can improve the overall performance of a server, as well as providing a fair

assignment of the send socket buffer to the heterogeneous TCP connections. Although the simu-

18

lation and implementation experiments in this paper assumes the Web server, we believe that the

proposed scheme can apply to other Internet servers like Web proxy servers, P2P/Grid network,

and so on. Especially when the transmitted data size is quite large, such as in Data Grid network,

the effectiveness of the proposed scheme becomes more obvious.

In Subsection 5.3, we have only shown the effectiveness of the SMR scheme under the re-

alistic traffic scenario based on the statistical model proposed in [26]. We are now conducting

the experiment to investigate the effectiveness of the E-ATBT algorithm using the same traffic

model. The experiment in the real Internet environment is also one of the future work. Further-

more, in order to improve the server performance, we will have to consider the management of

other server resources, such as a CPU utilization.

Acknowledgements

This work was partly supported by the Research for the Future Program of the Japan Society

for the Promotion of Science under the Project “Integrated Network Architecture for Advanced

Multimedia Application Systems,” a Grant-in-Aid for Encouragement of Young Scientists (A)

13750349 from The Ministry of Education, Culture, Sports and Science and Technology of

Japan, and by the “Research on High-performance WWW server for the Next-Generation In-

ternet” program of from the Telecommunications Advancement Foundation.

References

[1] B. L. Tierney, “TCP tuning guide for distributed application on wide area network,”

USENIX ;login:, vol. 26, Feb. 2001.

[2] P. Druschel and L. L. Peterson, “Fbufs: a high-bandwidth cross-domain transfer facility,” in

Proceedings of the Fourteenth ACM symposium on Operating Systems Principles, pp. 189–

202, Dec. 1993.

[3] J. Chase, A. Gallatin, and K. Yocum, “End-system optimizations for high-speed TCP,”

appear in IEEE Communications, special issue on high-speed TCP, June 2000.

[4] A. Gallatin, J. Chase, and K. Yocum, “Trapeze/IP: TCP/IP at near-gigabit speeds,” in Pro-

ceedings of 1999 USENIX Technical Conference, June 1999.

[5] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,” in Proceedings of

ACM SIGCOMM’98, pp. 315–323, Aug. 1998.

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a simple

model and its empirical validation,” in Proceedings of ACM SIGCOMM’98, pp. 303–314,

Aug. 1998.

19

[7] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the Internet,”

IEEE/ACM Transactions on Networking, vol. 6, Aug. 1999.

[8] J. Martin, A. Nilsson, and I. Rhee, “The incremental deployability of RTT-based congestion

avoidance for high speed TCP Internet connections,” in Proceedings of ACM SIGMETRICS

2000, pp. 134–144, June 2000.

[9] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement of fairness between

TCP Reno and Vegas for deployment of TCP Vegas to the Internet,” in Proceedings of IEEE

ICNP 2000, Nov. 2000.

[10] D. Lin and R. Morris, “Dynamics of random early detection,” ACM Computer Communi-

cation Review, vol. 27, pp. 127–137, Oct. 1997.

[11] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round robin,”

IEEE/ACM Transactions on Networking, vol. 4, pp. 375–385, June 1996.

[12] T. J. Ott, T. V. Lakshman, and L. Wong, “SRED: Stabilized RED,” in Proceedings of IEEE

INFOCOM’99, Mar. 1999.

[13] K. Tokuda, G. Hasegawa, and M. Murata, “TCP throughput analysis with variable packet

loss probability for improving fairness among long/short-lived TCP connections,” in Pro-

ceedings of The 16th International Workshop on Communication Quality & Reliability

(CQR2002), May 2002.

[14] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”

IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, Aug. 1993.

[15] G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara, “Comparisons of packet schedul-

ing algorithms for fair service among connections on the internet,” Journal of High Speed

Networks, vol. 12, pp. 1–28, Nov. 2002.

[16] G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara, “Comparisons of packet scheduling

algorithms for fair service among connections on the Internet,” in Proceedings of IEEE

INFOCOM 2000, Mar. 2000.

[17] X. Xiao, L. Ni, and W. Tang, “Benchmarking and analysis of the user-perceived perfor-

mance of TCP/UDP over Myrinet,” Tech. Rep., Michigan State Univ., Dec. 1997.

[18] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of TCP processing

overhead,” IEEE Communications Magazine, vol. 27, pp. 23–29, June 1989.

[19] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts:

Addison-Wesley, 1994.

[20] M. Nabe, M. Murata, and H. Miyahara, “Analysis and modeling of World Wide Web traf-

fic for capacity dimensioning of Internet access lines,” Performance Evaluation, vol. 34,

pp. 249–271, Dec. 1999.

[21] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and

possible causes,” IEEE/ACM Transactions on Networking, vol. 6, pp. 835–846, Dec. 1997.

20

[22] “Network simulator - ns (version 2)..” available from http://www.isi.edu/

nsnam/ns/.

[23] ALTQ (Alternate Queueing for BSD UNIX) , available from http://www.csl.sony.

co.jp/˜kjc/software.html.

[24] “Apache Home Page.,” available from http://www.apache.org/.

[25] D. Mosberger and T. Jin, “httperf – a tool for measuring Web server performance,” Techni-

cal Report, Hewlett-Packard Laboratories, HPL-98-61, Mar. 1998.

[26] P. Barford and M. Crovella, “Generating representative Web workloads for network and

server performance evaluation,” in Proceedings of ACM SIGMETRICS ’98, 1998.

21

