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Abstract

By deploying wireless sensor nodes and composing a sensor network, one can remotely ob-

tain information about the behavior, conditions, and positions of entities in a region. Since sensor

nodes operate on batteries, energy-efficient mechanisms for gathering sensor data are indispens-

able to prolong the lifetime of a sensor network as long as possible. A sensor node consumes

energy in observing its surroundings, transmitting data, and receiving data. Especially, energy

consumption in data transmission scales proportionally to then-th power of the radius of the radio

signal. Therefore, cluster-based data gathering mechanisms effectively save energy. In cluster-

based data gathering, since each node can save transmission power and the number of collisions

is also reduced, sensor networks can live for longer period. In clustering, however, we need to

consider that a cluster-head consumes more energy than the other nodes in receiving data from

cluster members, fusing data to reduce the size, and sending the aggregated data to a base station.

In this study, first, we propose a novel clustering method where energy-efficient clusters are

organized in a distributed way through local communication among neighboring sensor nodes.

Our clustering method is based on the idea of ANTCLUST, a clustering algorithm which applies a

colonial closure model of ants. We adopt multihop transmission among cluster-heads taking into

account a limitation on the radio transmission range. Second, we analyze the relationship among

the radius of a cluster, the amount of energy consumed in data gathering, and the distance of a

cluster-head to the base station, for a cluster-head to autonomously determine its cluster radius to

prolong the lifetime of a sensor network. Through simulation experiments, we verified that our

method can gather sensor data with less energy consumption than methods with a fixed radius by

more than the half at most. In addition, we also showed that our method was adaptive to changes

of network conditions when the maximum transmission range was large.
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1 Introduction

With recent advancements and developments in Micro Electro Mechanical System (MEMS) tech-

nologies, large-scale networks of integrated wireless sensor nodes have become available. A sen-

sor node is very compact, containing one or more sensors, computation and radio communication

capabilities, and a power supply. By deploying sensor nodes and composing a sensor network, one

can remotely obtain information about behavior, conditions, and the position of entities in a region

[1]. Typically, a sensor network consists of many sensor nodes and a base station as illustrated in

Fig. 1. Hundreds or thousands of wireless sensor nodes are distributed in a region in uncontrolled

and unorganized ways. Sensor data obtained at sensor nodes are sent to a base station through

wireless communication, then presented to a user or sent to a remote host.

Since sensor nodes derive power from batteries, an energy-efficient data gathering mechanism

is indispensable to observe the region as long as possible. A sensor node consumes its energy

in monitoring its environment and receiving or sending radio signals. The amount of energy

consumed in radio transmission scales proportionally to thek-th power of the range of the radio

signal propagation [2, 3]. Since the distance from sensor nodes to the base station is larger than

among neighboring sensor nodes, it is energy-inefficient for all sensor nodes to send their data

directly to a distant base station. Consequently, cluster-based data gathering mechanisms are

proposed to effectively save energy [2-5]. In cluster-based mechanisms, groups of neighboring

sensor nodes form clusters. In each cluster, one representative node called a cluster-head gathers

sensor data from its members and sends the collected data to the base station.

Since cluster-heads consume more energy than cluster members in receiving sensor data from

their members, the processing received data, and sending the aggregated data to the base station,

monitoring region

sensing data

base 

station
sensor

monitoring region

sensing data

base 

station
sensor

Figure 1: Sensor network
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the role of the cluster-head must be rotated among sensor nodes. For example, in LEACH [3],

one of the most popular clustering protocols, a pre-determined percentage of sensor nodes be-

come cluster-heads. They first advertise their candidacy to the rest of the sensor nodes. Hearing

advertisements, each sensor node chooses the closest cluster-head and registers itself as a cluster

member. Eventually clusters are formed. Cluster members send their sensor data to a cluster-

head. Then each cluster-head combines alln-bit data into a singlen-bit data message and sends it

to the base station. By defining the probability of candidacy such that a sensor node which has not

become a cluster-head recently is more likely to advertise its candidacy, LEACH rotates the role

of cluster-heads among the sensor nodes. HEED [5] takes into account residual energy of sensor

nodes in electing cluster-heads. The probabilityCHprob of candidacy is given by multiplying the

pre-determined constant probability and the percentage of residual energy against the maximum

capacity. Each sensor node advertises its candidacy within a certain range with probability of

CHprob and then doubles its ownCHprob. Sensor nodes which received candidacy choose the

cluster-head with the minimum cost.

There are several requirements for a clustering method. First, a clustering method should be

completely distributed because central control of hundreds or thousands of sensor nodes is not

feasible. Second, clusters are needed to be geographically well-distributed for well-balanced en-

ergy consumption among sensor nodes. Third, of course, a clustering method itself should be

energy-efficient. Fourth, since sensor nodes are dynamically deployed, moved, and halted, a clus-

tering method should be able to adapt to changes of the sensor network. Earlier examples, LEACH

and HEED do not necessarily satisfy all requirements. Moreover, LEACH only satisfies the third

point and falls into the category of distributed mechanisms. However, LEACH’s clustering algo-

rithm assumes that sensor nodes are homogeneous and equal. In reality, however, their battery

capacities are different. In addition, the amount of energy consumed in gathering data also dif-

fers among cluster-heads, depending on the number of cluster members and their positions in the

region. Energy consumption also differs among cluster members due to the difference in the dis-

tance to a cluster-head. Some sensor nodes might also be deployed later for denser observations.

Consequently, the residual energy is not necessarily equal among all sensor nodes. In addition, the

optimum percentage of cluster-heads has to be determined in advance, considering the topology of

the sensor network. Therefore, LEACH cannot adapt to such changes in sensor networks as addi-

tion, removal, and transfer of sensor nodes, however the percentage of cluster-heads considerably
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affects the efficiency of data gathering. Finally, for organized clusters to cover an entire sensor

network, each cluster-head must broadcast its own advertisement to all the other nodes, another

inefficient use of energy. To tackle the problem, some variations of LEACH are proposed in [3].

LEACH-C (LEACH-centralized) is a centralized protocol, which takes into account the residual

energy in choosing sensor nodes for cluster-heads. HEED also takes into account the residual

energy of the sensor nodes in electing cluster-heads, but it needs multiple broadcasting to form

clusters and consumes more energy. Our goal is to propose a new clustering method to satisfy the

above mentioned features, where sensor nodes autonomously form appropriate clusters through

local communication among neighboring sensor nodes.

In biology, ants and other social insects construct clusters, i.e., colonies, parties, and cemeter-

ies in self-organizing ways [6]. For example, ants recognize each other by exchanging a chemical

substance. If they are similar, the ant is welcomed and treated as a member of the same nest.

Taking inspiration from such biological systems, much research has been done in the fields of

data clustering and graph partitioning [7, 8]. In [7], ANTCLUST is proposed, which is an algo-

rithm based on an ant behavior model of colonial closure, to solve data clustering problems. In

ANTCLUST, two randomly chosen objects meet. Based on their similarity, a cluster is created,

merged, or deleted. By repeating meetings, an appropriate set of clusters is eventually formed so

that similar objects are accommodated in the same cluster.

In this study, based on ANTCLUST, we propose a novel clustering method that organizes

energy-efficient clusters through local interactions among sensor nodes. Basically, our method

presented in this thesis is based on our previous research work [9], which was verified to out-

perform LEACH and HEED in terms of the lifetime of sensor networks and the amount of data

gathered. We newly consider multihop communications among cluster-heads taking into account

the limitation in the transmission range of radio signals. In our method, sensor nodes with more

residual energy independently become cluster-heads. Sensor nodes meet through local radio com-

munications and find other clusters. Each sensor node with less residual energy chooses a cluster

based on the residual energy of the cluster-head, distance to the cluster-head, and an estimation of

the cluster size. Energy-efficient clusters are eventually formed that extend the life of the sensor

network. Each cluster-head gathers sensor data from its members and sends it to a base station

by forwarding it over intermediate cluster-heads, i.e., multihop transmission. In the multihop

transmission among cluster-heads, a cluster-head additionally consumes energy in relaying sen-
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sor data from more distant clusters. To have energy-efficient clusters, the radius of each cluster

must be carefully determined. As the radius of the cluster increases, the amount of sensor data a

cluster-head must gather in its members and send to the next-hop cluster-head increases, whereas

the frequency of becoming a cluster-head becomes smaller. In addition, the amount of sensor data

that a cluster-head must relay depends on the distance from the base station. We analytically inves-

tigate the relationship among the cluster radius, the amount of energy consumed, and the distance

of a cluster-head to the base station. Based on the analytical results, each cluster-head can inde-

pendently determine its cluster radius that leads to energy-efficient cluster-based data gathering.

The rest of the thesis is organized as follows. Section 2 explains assumptions of sensor net-

works considered in this thesis. Section 3 introduces ANTCLUST, a clustering algorithm on which

our method is based. Then in Section 4, we propose a new clustering method for energy-efficient

data gathering in sensor networks. In Section 5, we analytically derive the appropriate cluster

radius that minimizes the amount of energy consumed in data gathering. We evaluate our self-

organizing clustering method in Section 6. Finally, Section 7 concludes the thesis and describes

future research issues.

2 Sensor Network

We consider an application of field monitoring where sensor data are gathered from all sensor

nodes to a base station at regular intervals and/or on demand. Examples of applications include

habitat monitoring, agriculture, and patrols of environments [1].

Sensor networks can contain hundreds or thousands of sensor nodes. To avoid installation

cost and the need for careful planning, sensor nodes are deployed in the region to monitor in an

uncontrolled and unorganized way. Since sensor nodes operate on energy-limited and irreplace-

able batteries. The capacity of batteries can differ among sensor nodes. Sensor nodes stop due to

starvation of battery power, move from one place to another, and are deployed at different times.

Sensor nodes can determine the distance to other sensor nodes and the base station from the re-

ceived signal strength or their positions obtained by using Global Positioning System (GPS) or

another position detection mechanism [10]. Sensor nodes have a wireless transmitter and receiver.

The range of the radio signals can be adjusted depending on the distance to the receiver within

the maximum transmission range. Control phases, e.g, cluster formation phase, are synchronized
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among all sensor nodes. Although other clustering methods or cluster-based data gathering meth-

ods such as LEACH make similar or even stronger assumptions, we should note here that the

number of applications where these assumptions hold would be limited.

3 ANTCLUST: Ant-based Clustering Algorithm

Ants synthesize a chemical substance called colony odor which differs by individuals, species,

and environment; they spread it on their cuticles [11, 12]. When two ants meet, they recognize

whether they belong to the same nest by exchanging and comparing these chemical substances,

which is updated at each meeting. After spending some time in the nest and repeatedly meeting

other ants, a young ant can prepare an appropriate chemical substance to recognize its mates.

ANTCLUST is a clustering algorithm which applies a colonial closure model and regards an

object as an ant and a cluster as a nest [7]. A similaritySim(i, j) ∈ [0, 1] is defined between a

pair of objectsi andj. Each objecti has a cluster identifier,Labeli, an acceptance threshold of

similarity,Templatei, an estimator of the cluster size,Mi ∈ [0, 1], and an estimator,M+
i ∈ [0, 1],

which measures how well the object is accepted in the cluster. They are initialized asLabeli = 0,

M = 0, andM+ = 0. Templatei is defined through a learning phase where objecti experiences

random meetings.

Templatei ← Sim(i, ·) + max(Sim(i, ·))
2

. (1)

Sim(x, ·) andmax(Sim(x, ·)) represent the average and the maximum value of similarity be-

tween objectx and all other objects that objectx has met, respectively.

In ANTCLUST, two randomly chosen objects meet. Based on their similarity, threshold val-

ues, and clusters, they create, merge, or delete clusters. By repeatedly conducting random meet-

ings, clusters are appropriately organized so that objects in the same cluster become more similar

with one another than those in different clusters.

We consider here the case when two objectsi andj meet. First, two objectsi andj decide

whether they accept their counterpart according to the similaritySim(i, j) and threshold values

Templatei andTemplatej .

Acceptance(i, j)⇔ (Sim(i, j) > Templatei) ∧ (Sim(i, j) > Templatej). (2)
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ThenTemplatei andTemplatej are updated by Eq. (1). Next, theirLabels are compared. When

neither of them belongs to any cluster and they accept each other, a new cluster is created.

Labeli ← LabelNEW , Labelj ← LabelNEW , (3)

if (Labeli = Labelj = 0)

∧ (
Acceptance(i, j)=True

)
.

If one of the two objects, say objecti, does not belong to any cluster, and if they accept each other,

objecti joins the cluster of the other.

Labeli ← Labelj ,

if (Labeli = 0)

∧ (Labelj �= 0)

∧ (
Acceptance(i, j) = True

)
.

When two objects belong to the same cluster and they accept each other, they increase their size

estimate of their cluster:

Mi ← (1− α)Mi + α, Mj ← (1− α)Mj + α,

M+
i ← (1− α)M+

i + α, M+
j ← (1− α)M+

j + α,
(4)

if (Labeli = Labelj)

∧ (Labeli �= 0)

∧ (Labelj �= 0)

∧ (
Acceptance(i, j) = True

)
.

Here,α is a constant between 0 and 1. When two objects belong to the same cluster and they
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reject each other, they first update the size of their estimates:

Mi ← (1− α)Mi + α, Mj ← (1− α)Mj + α,

M+
i ← (1− α)M+

i , M+
j ← (1− α)M+

j ,
(5)

if (Labeli = Labelj)

∧ (Labeli �= 0)

∧ (Labelj �= 0)

∧ (
Acceptance(i, j) = False

)
.

Here, objectx with the smaller estimate loses its cluster.

Labelx ← 0, Mx ← 0, M+
x ← 0, (6)

wherex =
{

x|M+
x = min(M+

i , M+
j )

}
. When two objects belong to different clusters and they

accept each other, they first estimate how the size of their clusters will be changed:

Mi ← (1− α)Mi, Mj ← (1− α)Mj , (7)

if (Labeli �= Labelj)

∧ (Labeli �= 0)

∧ (Labelj �= 0)

∧ (
Acceptance(i, j) = True

)
.

Then, objectx in the smaller cluster changes its cluster.

Labelx ← Label(k|k∈{i,j}\{x}), (8)

wherex = {x|Mx = min(Mi, Mj)}. When none of the above conditions holds, nothing hap-

pens.
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Figure 2: Overview of our proposal

4 Self-Organizing Clustering Method

4.1 Overview

In our method, we regard a sensor node as an ant and a cluster as a nest. The similarity of one

sensor node to another corresponds to the distance from the sensor node to each cluster-head.

Sensor nodes meet through wireless communications. Since a sensor node usually has an omni-

antenna, a radio signal is broadcast, and it is received by all sensor nodes within its transmission

range. Thus, it is a one-to-many communication. In addition, it is a one-way communication. In

our method, only the receiver of a signal adjusts its cluster while in ANTCLUST both encountered

objects adjust their clusters.

A cycle of data gathering, called a round, consists of four phases [3]: (i) cluster-head candi-

dacy, (ii) cluster formation, (iii) registration, and (iv) data transmission as illustrated in Fig. 2.

In the cluster-head candidacy phase, all sensor nodes initially consider themselves as candidates

for cluster-head. A sensor node with more residual energy has a chance to advertise its candidacy

earlier than others. It becomes a cluster-head by broadcasting an advertisement within a limited

rangeR. Those sensor nodes that receive advertisements from other sensor nodes abandon their

candidacy and join a cluster. Details of the cluster-head candidacy phase will be given in 4.2.
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Table 1: Status information of sensor node

Information about sensor nodei
i node identifier
ei residual energy
ci coordinates
Templatei threshold of similarity, initial valueR
Pi probability of candidacy [0, 1], initial value 0.5

Information about a cluster of sensor nodei

headi identifier of a cluster-head
Ei residual energy of a cluster-head
Ci coordinates of a cluster-head
Mi estimator of the number of cluster members

System parameters
R radius for broadcasting candidacy for cluster-head
r radius for broadcasting cluster information for meetings
Pex proportion of social sensor nodes that cause meetings [0, 1]

In the cluster formation phase, sensor nodes meet through radio communications. A percentage

Pex of sensor nodes that are not cluster-heads broadcast information about their clusters within a

limited ranger (r < R). Each of the neighboring sensor nodes which receive broadcast messages

determines which cluster to join based on the information about its own cluster and the newly ad-

vertised clusters. Further details will be given in Section 4.3. Next in the registration phase, which

will be explained in Section 4.4, each sensor node registers itself as a cluster member by sending

a registration message to a cluster-head. In the data transmission phase, cluster members send

their data to the cluster-head. The cluster-head receives its members’ data and aggregates them

into one. Then it sends the aggregated data to a cluster-head which is closer to a base station or

directly to a base station. Details of the data transmission phase will be given in Section 4.5. The

beginning of each round and the timing of phase-changes are synchronized among sensor nodes.

For constructing clusters, a sensor node maintains the information about itself and its cluster-

head as listed in Table 1. Among the parameters in Table 1, the first three are static.Templatei and

Pi are initialized when sensor nodei is deployed, and they are updated every round. Information

about a cluster is initialized at the beginning of each round. The last three parameters are initialized

at deployment, but they can be adjusted according to conditions surrounding sensor nodei.
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4.2 Cluster-Head Candidacy Phase

At the beginning of a round, all sensor nodes consider themselves candidates for cluster-head.

Cluster information is initialized as:

headi ← i, Ei ← ei, Ci ← ci, Mi ← 1. (9)

Assuming that the cluster-head candidacy phase has aT time unit duration, sensor nodei an-

nounces its candidacy within the radius ofR atT × (1−Pi) + K, whereK is a random value [0，

(Tp− 1)] to reduce the possibility of collisions among sensor nodes with identicalPi and weaken

the assumption of the synchronization among sensor nodes. To prolong the lifetime of a sensor

network, energy consumption among sensor nodes must be balanced. By adjustingPi in accor-

dance with the residual energy of neighboring sensor nodes as explained in the next subsection,

sensor nodes with more residual energy are more likely to become cluster-heads.p is a constant

value used in increasing or decreasingPi in Eq. (13). An advertisement of candidacy contains

cluster information, i.e.,headi, Ei, Ci, andMi, and its own residual energyei. When a candidacy

is announced,Ei is obviously identical toei.

When a sensor node that has not yet announced its candidacy receives an advertisement mes-

sage from another sensor node, it abandons its own candidacy and becomes a member of the

cluster. Furthermore, when a sensor node that already belongs to a cluster receives another ad-

vertisement message, it considers the offer and conducts the same procedure as in the next cluster

formation phase to determine which cluster it should join.

4.3 Cluster Formation Phase

At the end of the cluster-head candidacy phase, every sensor node belongs to a cluster as either a

cluster-head or as a member. A percentagePex of sensor nodes decide to be social and broadcast

information about their clusters within a radius ofr. On receiving an advertisement, sensor nodes

within radio signal range meet other sensor nodes and determine their clusters. The format for a

meeting advertisement is the same as for candidacy. If a sensor node is a cluster-head, it does not

initiate a meeting. Hereafter we describe a case where sensor nodei receives an advertisement

from sensor nodej.

If sensor nodei is not a cluster-head, then it adjusts its cluster. First, sensor nodei decides
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R
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headj

Rr

R

Templatei

Figure 3: An example where(headi �= headj) ∧ (Acceptance(i, j) = True)

whether to accept cluster-headheadj to which sensor nodej belongs by comparing the distance

to headj with thresholdTemplatei.

Acceptance(i, j)⇔ (
d(i, headj) ≤ Templatei

)
. (10)

Here,d(i, headj) represents the distance between cluster-headheadj and sensor nodei derived

from their coordinatesci andCj . If ci andCj are in the form ofx, y, and possiblyz coordinates,

d(i, headj) is an Euclidean distance. When sensor nodei accepts cluster-headheadj , that is,

sensor nodei considers that cluster-headheadj is close enough, sensor nodei compares the two

clusters. If sensor nodesi andj belong to the same cluster, sensor nodei increases its estimate of

size.

Mi ←Mi + 1, (11)

if (headi = headj) ∧ (Acceptance(i, j) = True).

If they belong to different clusters it implies that there is another cluster close to sensor nodei, as

illustrated in Fig. 3. Cluster-headheadj is in sensor nodei’s Templatei, but its advertisement

has not been heard by sensor nodei. For energy-efficient data gathering, it is effective for a sensor

nodei to choose a cluster that is closer to sensor nodei since sensor nodei can save energy by

sending sensor data to a closer cluster-head. In addition, sensor nodei should choose a cluster-

head with more residual energy to avoid driving an energy-poor sensor node to starvation. Finally,

a cluster with fewer members is preferred, since energy expended in gathering sensor data to a

cluster-head is proportional to the number of cluster members. Thus, sensor nodei changes its
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cluster:

headi ← headj , Ei ← Ej , Ci ← Cj , Mi ←Mj + 1, (12)

if (headi �= headj)

∧ (
Acceptance(i, j) = True

)
∧

( Ej

Mj · d2(i, headj)
≥ Ei

Mi · d2(i, headi)

)
.

Except for the procedure mentioned above, sensor nodei does nothing for cluster formation.

Regardless of whether sensor nodei is a cluster-head, it updates the probabilityPi of its

cluster-head candidacy to reflect the relationship among its own residual energyei and that of

sensor nodej, ej :

Pi ←




min(1, Pi + p), if ei > ej

max(0, Pi − p), if ei < ej

Pi, if ei = ej .

(13)

Here,p is a constant value which satisfiesp ∈ [0, 1]. Thus, the probability of a candidacy is

determined in relation to the residual energy of surrounding sensor nodes, not by its absolute

amount. Next, sensor nodei updates thresholdTemplatei:

Templatei =
d(i, ·) + max(d(i, ·))

2
(14)

where,d(i, ·) andmax(d(i, ·)) give the mean and maximum distance between sensor nodei and

all cluster-heads that sensor nodei recognizes through receiving advertisements.

4.4 Registration Phase

Each sensor node registers itself as a cluster member by sending a registration message to a cluster-

head. Through the registration phase, a cluster head recognizes its members. In a case that CSMA

is used in the following data gathering phase, a cluster-head can estimate the maximum duration

needed to gather sensor data from its members by using an analytical model of CSMA commu-

nications [13]. If TDMA is employed in the data gathering phase, a cluster-head determines slot

assignments. At the end of the registration phase, a cluster-head notifies its members of the sched-
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ule. Each cluster member can turn off unused components until its turn comes.

4.5 Data Transmission Phase

At the beginning of the data transmission phase, cluster members send their sensor data to a

cluster-head by CSMA, TDMA, or any other MAC protocol. The cluster-head receives sensor

data from its members and aggregates them and its own sensor data into one. If data fusion is

applicable, the size of the aggregated data becomes much smaller than the sum of sensor data

[14]. Then, the aggregated data are sent to the next-hop cluster-head, which is determined by

a multihop routing protocol. Many publications deal with energy-effiecient routing protocols for

sensor networks, e.g., [15]. Since we only focus on an energy-efficient clustering method, a routing

protocol is out of scope of this thesis.

We consider here a simple tree-based routing method, which resembles to [16]. First, a base

station broadcasts a beacon signal with a limited transmission power. On receiving beacon signals,

those sensor nodes within the range of the beacon signals then advertise that they are at the first

level of the tree within the range of radio signals. Receiving those advertisements, sensor nodes

around can recognize that they are at the second level and they can send their sensor data to

the base station via a mediation of the sources of the advertisements. Then, they also broadcast

advertisement messages for their level. By repeating advertisement level by level, all sensor nodes

determine their levels in the tree and identify their parent nodes. In the data aggregation phase,

a cluster-head sends the aggregated sensor data to a cluster-head which is the closest to the base

station among its parents.

5 Analysis of Energy Consumption in Cluster-based Data Gathering

To prolong the lifetime of a sensor network, cluster radii must be carefully determined. For ex-

ample, if a radius is large, a cluster-head consumes much energy in receiving sensor data from

its members and sending the aggregated data to the next-hop node. In addition, cluster-members

consumes much energy in sending their data to the distant cluster-head. However, at the same

time, since the number of nodes in a cluster increases, a sensor node becomes a cluster-head less

frequently. On the contrary, if a radius is small, the amount of energy consumed in data gather-

ing becomes small at the sacrifice of frequent rotation of the role of cluster-head. In addition to

18



intra-cluster communications, the distance to a base station also affects the energy consumption

of a cluster. If a cluster is close to a base station, a cluster-head has to relay more sensor data

from its outside region in multihop communication among cluster-heads. In this section, for each

cluster-head to independently determine an appropriate radius of its cluster,R in our method, we

analytically investigate the relationship among the energy consumption, cluster radius, and the

distance of a cluster-head to the base station.

5.1 Energy Consumption Model in Cluster-Based Data Gathering

To generalize the problem, we consider energy consumed in gathering data from cluster members

to a cluster-head and sending aggregated data to the base station by multihop transmission among

cluster-heads. Therefore, since we do not consider how clusters are organized, results in this

section can be applied to other cluster-based data gathering methods. We ignore energy consumed

in MAC layer processing in carrier sense, collision detection, and retransmission. The energy

consumed in transmitting and receiving ak bit message atd m is given in Eqs. (15) through (17)

[3].

Etransmit(k, d) =

{
k · (Eelec + εfs · d2), if d < d0 (15)

k · (Eelec + εmp · d4), if d ≥ d0 (16)

Ereceive(k) = k · Eelec (17)

A sensor node consumesEelec (nJ/bit) in transmitter or receiver circuitry andε (pJ/bit/mα) in

transmitter amplifier. The thresholdd0 is introduced to take into account the effect of multi-path

fading.

The total energyEcluster consumed in one cluster is given by Eq. (18).

Ecluster = Eall m→h + Ehead1 + Ehead2 + Ehead3 (18)

Eallm→h corresponds to the total amount of energy consumed by cluster members in sending their

sensor data to a cluster-head.Ehead1 is the energy consumed by a cluster-head in receiving sensor

data from its members.Ehead2 is the energy consumed by a cluster-head in receiving sensor data
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Figure 4: Model of sensor network for analysis

from other cluster-heads which it has to forward toward the base station. Finally,Ehead3 stands

for the energy consumed by a cluster-head in sending the aggregated sensor data to the next-hop

cluster-head or the base station. The amount of energy consumed per sensor node,Enode, averaged

over multiple rounds, where the role of cluster-head is rotated, is given by the following equation.

Enode =
Ecluster

n
, (19)

wheren denotes the number of sensor nodes in a cluster. When we assume the uniform distribution

of sensor nodes, the following equation holds.

n = ρ× Scluster, (20)

whereρ is the density of the sensor nodes andScluster corresponds to the area from which a

cluster-head gathers sensor data.

Parameters used in our analysis are summarized in Table 2. In our analysis, we consider a

circular monitoring region of radiusW at whose center a base station is llocated as in Fig. 4.

We assume that sensor nodes are uniformly distributed in the monitoring region with densityρ.

Through simulation experiments of our proposed clustering method, we observed that neighboring

clusters overlapped with each other by the half of the region of cluster as shown in Fig. 5. In

Fig. 5, a square corresponds to the base station, crosses stand for cluster-heads, and dashed circles
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Figure 5: Overlapping clusters

Table 2: Parameters used in analysis

r cluster radius (m)
k size of sensor data (bit)
ρ density of sensor nodes (nodes/m2)
S region that a cluster-head is responsible for in multihop transmission (m2)
W radius of sensor network (m)
t distance between cluster-head and base station (m)

are edges of clusters. By assuming that half of the sensor nodes in an intersection region belong

to one cluster and the other half to the other, we consider that the region from which a cluster-

head gathers sensor data, which we call a cover region, becomes a square as illustrated in Fig. 6.

When a diameter of cluster isr, the area becomes the square ofr. In multihop communication,

we assume that the distance from a cluster-head to the next-hop cluster-head isr.

All cluster members send their sensor data fromk bits to their cluster-heads, even if the base

station is closer to a member. In addition to the sensor data from its members and its own, a cluster-

head has to receive and forward data of sensor nodes in its outer regionS, which is illustrated in

Fig. 7. The area ofS is defined in accordance with the distancet of a cluster-head to a base station.

When the radius is smaller than the twice the distance to the base station,r < 2t, the area ofS
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Figure 8: Three conditions among the cover region and the monitoring region

becomes a polar rectangle, formed by the sector of the annulus between two circles. It is enclosed

by radius of the monitoring region and the left boundary of the cover region
√

t2 + rt + r2. The

sides of the polar rectangle are given by the boundaries of the cover region to its upper and lower

neighbors. On the other hand, when a cluster-head has a radius ofr ≥ 2t, we consider that it

is responsible for the half of the monitoring region in multihop data gathering. Note that in this

model, we do not consider either of data fusing or compression.

5.2 Derivation of Eall m→h

Depending on the relationship ofr andW , there are three conditions between the cover region and

the monitoring region as shown in Fig. 8. Among them, we consider only (i) and (ii)，because it

is unrealistic that the cluster radiusr is much larger than the radius of the monitoring regionW .

When we consider the effect of multipath fading in Eq. (16), two conditions are further categorized

into ten cases as shown in Figs. 9 and 10.

Whenr ≤ −t +
√

2W 2 − t2 holds，the whole cover region of a cluster fits within the mon-

itoring region as illustrated in Fig. 8 (i). This condition is divided into the following three cases

depending on the influence of multipath fading.

(a) r <
√

2d0

(b)
√

2d0 ≤ r ≤ 2d0

(c) 2d0 < r
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On the other hand, whenr > −t+
√

2W 2 − t2 holds, a part of the cover region protrudes from the

monitoring region as illustrated in Fig. 8 (ii). This condition is divided into the following seven

cases.

(d) r <
√

2d0

(e) (
√

2d0 ≤ r ≤ 2d0) ∧
((

d2
0−W 2−t2

2t ≤ −t− r
2

)
∨ (−W < −t− d0)

)
(f) (

√
2d0 ≤ r ≤ 2d0) ∧ (−W ≥ −t− d0) ∧

(
−t− r

2 <
d2
0−W 2−t2

2t < −t−
√

d2
0 − r2

4

)

(g) (
√

2d0 ≤ r ≤ 2d0) ∧ (−W ≥ −t− d0) ∧
(
−t−

√
d2

0 − r2

4 ≤
d2
0−W 2−t2

2t − t +
√

d2
0 − r2

4

)

(h) (
√

2d0 ≤ r ≤ 2d0) ∧ (−W ≥ −t− d0) ∧
(
−t +

√
d2

0 − r2

4 ≤
d2
0−W 2−t2

2t

)
(i) (2d0 < r) ∧ (−t− d0 ≥ −W )

(j) (2d0 < r) ∧ (−t− d0 < −W )

In the following, for each of cases, we first derive the average amount of energy consumed in

sending sensor data from a sensor node in a cover region to a cluster-head,Em→h. Then, the total

of Em→h, i.e.,Eall m→h is derived.

In cases (a) through (c), the areaScluster from which a cluster-head gathers sensor data is given

as:

Scluster = r2. (21)

Case (a)

In this case, all cluster members consume energy in proportional to the square of the transmission

distance.
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Figure 9: Cases of intra-cluster transmissions
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Figure 10: Cases of intra-cluster transmissions
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Em→h = k

{
Eelec + εfs

∫ r
2

− r
2

∫ r
2

− r
2

1
Scluster

(√
x2 + y2

)2
dxdy

}

= k

(
Eelec +

εfs

Scluster
· r

4

6

)
(22)

Eall m→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

(
Eelec +

εfs

Scluster
· r

4

6

)

= kρ

(
Sclsuster · Eelec + εfs · r

4

6

)
(23)

Case (b)

In this case, some of cluster members suffer from multipath fading. Letb1 andb2 correspond to

the region where Eq. (15) and (16) apply, respectively. Their areas are denoted asSb1 andSb2 ,

respectively. The sumdb1 of the square of the distance to the cluster-head of all sensor nodes in

regionb1 is derived as:

db1 = 2
∫ −

q
d2
0− r2

4

− r
2

∫ √d2
0−x2

−
√

d2
0−x2

(√
x2 + y2

)2
dydx +

∫ q
d2
0− r2

4

−
q

d2
0− r2

4

∫ r
2

− r
2

(√
x2 + y2

)2
dydx

= − 1
12

[
12d4

0

{
arcsin

(√
4d2

0 − r2

2d0

)
− arcsin

(
r

2d0

)}
− r(r2 + 2d2

0)
√

4d2
0 − r2

]
. (24)

The sumdb2 of the fourth-power of the distance to the cluster-head of all sensor nodes in

regionb2 is derived as:

db2 = 4
∫ −

q
d2
0− r2

4

− r
2

∫ r
2

√
d2
0−x2

(√
x2 + y2

)4
dydx

=
1

180

[
120d6

0

{
arcsin

(√
4d2

0 − r2

2d0

)
− arcsin

(
r

2d0

)}
(25)

−2r(r4 + 2d2
0r

2 + 6d4
0)

√
4d2

0 − r2 + 7r6

]
.

Then,Em→h andEall m→h can be derived by the following equations.
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Em→h = k

(
Eelec + εfs · Sb1

Scluster
· db1

Sb1
+ εmp · Sb2

Scluster
· db2

Sb2

)

= k

(
Eelec + εfs · db1

Scluster
+ εmp · db2

Scluster

)
(26)

Eall m→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρ (SclusterEelec + εfs · db1 + εmp · db2) (27)

Case (c)

In this case, the whole region where the energy consumption is given by Eq. (15) is in a cover

region of a cluster-head. Letc1 andc2 correspond to the region where Eq. (15) and Eq. (16) apply,

respectively. Their areas are denoted asSc1 andSc2 , respectively. The sumdc1 of the square of

the distance to the cluster-head of all sensor nodes in regionc1 is derived as:

dc1 =
∫ 2π

0

∫ d0

0
r3drdθ =

πd4
0

2
. (28)

The sumdc2 of the fourth-power distance to the cluster-head of all sensor nodes in regionc2 is

derived as:

dc2 =
∫ r

2

− r
2

∫ r
2

− r
2

(√
x2 + y2

)4
dydx−

∫ 2π

0

∫ d0

0
r5drdθ

=
7r6 − 60πd6

0

180
. (29)

Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs ·

(
Sc1

Scluster
· dc1

Sc1

)
+ εmp ·

(
Sc2

Scluster
· dc2

Sc2

)}

= k

(
Eelec +

εfs

Scluster
· dc1 +

εmp

Scluster
· dc2

)
(30)

Eallm→h = (ρScluster − 1) · Em→h ≈ ρSclusterEm→h

= kρ (Scluster · Eelec + εfs · dc1 + εmp · dc2) (31)

In the following cases (d) through (j) wherer > −t +
√

2W 2 − t2 holds, a part of a cover

region protrudes from the monitoring region. The areaScluster from which a cluster-head gathers
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sensor data is derived as:

Scluster =
r

2

(√
4W 2 − r2 − 2t + r

)
+ 2

∫ −
q

W 2− r2

4

Z

√
W 2 − x2dx

= −1
4

[
4W 2

{
arcsin

( Z

W

)
+ arcsin

(√4W 2 − r2

2W

)}
(32)

+4Z
√

W 2 − Z2 − r
√

4W 2 − r2 + 2r(2t− r)

]
,

whereZ is derived as:

Z = max(−W,−t− r

2
). (33)

Case (d)

In this case, cluster members consume energy in proportion to the square of the transmission

distance. Letd1 correspond to the region covered by a cluster. The area is denoted asSd1(=

Scluster). The sumdd1 of the square of the distance to the cluster-head of all sensor nodes in

regiond1 is derived as:

dd1 =
∫ −

q
W 2− r2

4

Z

∫ √
W 2−x2

−√
W 2−x2

(√
(x + t)2 + y2

)2
dydx

+
∫ −t+ r

2

−
q

W 2− r2

4

∫ r
2

− r
2

(√
(x + t)2 + y2

)2
dydx

= − 1
48

[
24W 2(W 2 + 2t2)

{
arcsin

( Z

W

)
+ arcsin

(√4W 2 − r2

2W

)}
(34)

+8(2Z3 + 8tZ2 + W 2Z + 6t2Z − 8tW 2)
√

W 2 − Z2

−r(2W 2 + 12t2 + r2)
√

4W 2 − r2 + 4r(12tW 2 + 4t3 − r3)

]
.
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Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs ·

(
Sd1

Scluster
· dd1

Sd1

)}

= k

(
Eelec +

εfs

Scluster
· dd1

)
(35)

Eall m→h = (ρScluster − 1) · Em→h ≈ ρSclusterEm→h

= kρ (Scluster · Eelec + εfs · dd1) (36)

Case (e)

In this case, some of cluster members suffer from multipath fading. Lete1 ande2 correspond to

the region where Eqs. (15) and (16) apply, respectively. Their areas are denoted asSe1 andSe2 ,

respectively. The sumde1 of the square of the distance to the cluster-head of all sensor nodes in

regione1 is derived as:

de1 = db1

= − 1

12

"
12d4

0

(
arcsin

„p
4d2

0 − r2

2d0

«
− arcsin

„
r

2d0

«)
− r(r2 + 2d2

0)
q

4d2
0 − r2

#
(37)

The sumde2 of the fourth-power of the distance to the cluster-head of all sensor nodes in region

e2 is derived as:

de2 = db2 − 2

Z −
q

W2− r2
4

−t− r
2

Z r
2

√
W2−x2

“p
(x + t)2 + y2

”4

dydx

= − 1

360

"
120W 2(W 4 + 6t2W 2 + 3t4)


arcsin

„√
4W 2 − r2

2W

«
− arcsin

„
2t + r

2W

«ff
(38)

+240d6
0

(
arcsin

„
r

2d0

«
− arcsin

„p
4d2

0 − r2

2d0

«)

−
n

2W 2(150tW 2 + 3rW 2 + 140t3 − 66rt2 − 6r2t + r3)

+20t5 + 26rt4 + 32r2t3 + 4r3t2 − 2r4t + r5
op

4W 2 − (2t + r)2

−r(6W 4 + 180t2W 2 + 2r2W 2 + 90t4 + r4)
p

4W 2 − r2

+4r(r4 + 2d2
0r

2 + 6d4
0)
q

4d2
0 − r2

+360rtW 4 + 720rt3W 2 + 72rt5 − 40r3t3 − 7r6

#
.
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Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

(
Eelec + εfs

„
Se1

Scluster
· de1

Se1

«
+ εmp

„
Se2

Scluster
· de2

Se2

«)

= k

 
Eelec +

εfs

Scluster
· de1 +

εmp

Scluster
· de2

!
(39)

Eallm→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

 
Eelec +

εfs

Scluster
· de1 +

εmp

Scluster
· de2

!

= kρ

 
Scluster · Eelec + εfs · de1 + εmp · de2

!
(40)

Case (f)

In this case, some of the cluster members suffer from multipath fading. Letf1 andf2 correspond

to the region where Eqs. (15) and (16) apply, respectively. Their areas are denoted asSf1 andSf2 ,

respectively. The sumdf1 of the square of the distance to the cluster-head of all sensor nodes in

regionf1 is derived as:

df1 = db1 −
∫ −W

Z2

∫ √d2
0−(x+t)2

−
√

d2
0−(x+t)2

(√
(x + t)2 + y2

)2
dydx

−2
∫ d2

0−W2−t2

2t

Z1

∫ √d2
0−(x+t)2

√
W 2−x2

(√
(x + t)2 + y2

)2
dydx

=
1
24

[
12d4

0

{
arcsin

(Z2 + t

d0

)
+ arcsin

(Z1 + t

d0

)
+ arcsin

(W 2 − t2 − d2
0

2d0t

)
(41)

+ arcsin
(W − t

d0

)
+ 2 arcsin

( r

2d0

)
− 2 arcsin

(√
4d2

0 − r2

2d0

)}

−12W 2(W 2 + 2t2)

{
k arcsin

(Z1

W

)
+ arcsin

(W 2 + t2 − d2
0

2tW

)}

+4(2Z3
2 + 6tZ2

2 + 6t2Z2 + d2
0Z2 + 2t3 + d2

0t)
√

d2
0 − (Z2 + t)2

+4(2Z3
1 + 6tZ2

1 + 6t2Z1 + d2
0Z1 + 2t3 + d2

0t)
√

d2
0 − (Z1 + t)2

−3(5W 2 + t2 + d2
0)

√
−W 4 + 2(d2

0 + t2)W 2 − (t2 − d2
0)2

+4(2W 3 − 6tW 2 + 6t2W + d2
0W − 2t3 − d2

0t)
√

d2
0 − (W − t)2

−4(2Z3
1 + 8Z2

1 t + W 2Z1 + 6t2Z1 − 8tW 2)
√

W 2 − Z2
1 + r(2r2 + 4d2

0)
√

4d2
0 − r2

]
.
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The sumdf2 of the fourth-power of the distance to the cluster-head of all sensor nodes in

regionf2 is derived as:

df2 = db2 − 2
∫ d2

0−W2−t2

2t

−t− r
2

∫ r
2

√
d2
0−(x+t)2

(√
(x + t)2 + y2

)4
dydx

−2
∫ −

q
W 2− r2

4

d2
0−W2−t2

2t

∫ r
2

√
W 2−x2

(√
(x + t)2 + y2

)4
dydx

=
−1
360

[
120W 2(W 4 + 6t2W 2 + 3t4)

{
arcsin

(√4W 2 − r2

2W

)
− arcsin

(W 2 + t2 − d2

2tW

)}
(42)

120d6
0

{
arcsin

(W 2 − t2 − d2
0

2d0t

)
− 2 arcsin

(√
4d2

0 − r2

2d0

)
+ arcsin

( r

2d0

)}

−20(10W 4 + 19t2W 2 + 4d2
0W

2 + t4 + d2
0t

2 + d4
0)

√
−W 4 + 2(t2 + d2

0)W 2 − (t2 − d2
0)2

−r(6W 4 + 180t2W 2 + 2r2W 2 + 90t4 + r4)
√

4W 2 − r2

+3r(r4 + 2d2
0r

2 + 6d4
0)

√
4d2

0 − r2 + r(360tW 4 + 720t3W 2 + 72t5 − 40r2t3 − 7r5)

]
,

where,Z1 andZ2 correspond toZ1 = max(−W,−t − r
2) andZ2 = min(−W,−t − r

2), respec-

tively. Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs

(
Sf1

Scluster
· df1

Sf1

)
+ εmp

(
Sf2

Scluster
· df2

Sf2

)}

= k

(
Eelec +

εfs

Scluster
· df1 +

εmp

Scluster
· df2

)
(43)

Eallm→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

(
Eelec +

εfs

Scluster
· df1 +

εmp

Scluster
· df2

)
= kρ (Scluster · Eelec + εfs · df1 + εmp · df2) (44)

Case (g)

In this case, some of the cluster members suffer from multipath fading. Letg1 andg2 correspond

to the region where Eqs. (15) and (16) apply, respectively. Their areas are denoted asSg1 andSg2 ,

respectively. The sumdg1 of the square of the distance to the cluster-head of all sensor nodes in
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regiong1 is derived as:

dg1 =
∫ −

q
W 2− r2

4

Z

∫ √
W 2−x2

−√
W 2−x2

(√
(x + t)2 + y2

)2
dydx

+
∫ −t+

q
d2
0− r2

4

−
q

W 2− r2

4

∫ r
2

− r
2

(√
(x + t)2 + y2

)2
dydx

+
∫ −t+ r

2

−t+

q
d2
0− r2

4

∫ √d2
0−(x+t)2

−
√

d2
0−(x+t)2

(√
(x + t)2 + y2

)2
dydx

= − 1
48

[
24W 2(W 2 + 2t2)

{
arcsin

( Z

W

)
+ arcsin

(√4W 2 − r2

2W

)}
(45)

+24d4
0

{
arcsin

(√
4d2

0 − r2

2d0

)
− arcsin

( r

2d0

)}

+8(2Z3 + 8tZ2 + W 2Z + 6t2Z − 8tW 2)
√

W 2 − Z2

−r(2W 2 + 6t2 + r2)
√

4W 2 − r2 − 2r(r2 + 2d2
0)

√
4d2

0 − r2 + 16rt(3W 2 + t2)

]
.

The sumdg2 of the fourth-power of the distance to the cluster-head of all sensor nodes in

regiong2 is derived as:

dg2 =
1
2
db2

=
1

360

[
120d6

0

{
arcsin

(√
4d2

0 − r2

2d0

)
− arcsin

(
r

2d0

)}
(46)

−2r(r4 + 2d2
0r

2 + 6d4
0)

√
4d2

0 − r2 + 7r6

]
.

Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs

(
Sg1

Scluster
· dg1

Sg1

)
+ εmp

(
Sg2

Scluster
· dg2

Sg2

)}

= k

(
Eelec +

εfs

Scluster
· dg1 +

εmp

Scluster
· dg2

)
(47)

Eallm→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

(
Eelec +

εfs

Scluster
· dg1 +

εmp

Scluster
· dg2

)
= kρ (Scluster · Eelec + εfs · dg1 + εmp · dg2) (48)
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Case (h)

In this case, some of the cluster members suffer from multipath fading. Leth1 andh2 correspond

to the region where Eqs. (15) and (16) apply, respectively. Their areas are denoted asSh1 andSh2 ,

respectively. The sumdh1 of the square of the distance to the cluster-head of all sensor nodes in

regionh1 is derived as:

dh1 =
∫ d2

0−W2−t2

2t

−W

∫ √
W 2−x2

−√
W 2−x2

(√
(x + t)2 + y2

)2
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+
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∫ √d2
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)2
dydx

= − 1
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{
arcsin
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W

)
− π

2

}
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−24d4
0

{
arcsin
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0
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)
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( r
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√
−W 4 + 2(t2 + d2
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0)2 − r(r2 + 2d2

0)
√

4d2
0 − r2

]
.

The sumdh2 of the fourth-power of the distance to the cluster-head of all sensor nodes in

regionh2 is derived as:

dh2 = 2
∫ −

q
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4

d2
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2t
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√
d2
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)4
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+2
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2

−
q
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4

∫ r
2

√
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)4
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= − 1
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[
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{
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4W 2 − r2
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)
− arcsin
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0

2tW
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(50)
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)
− arcsin
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r
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−20(20W 4 + 19t2W 2 + 4d2
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0)

√
−W 4 + 2(t2 + d2

0)W 2 − (t2 − d2
0)2
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]
.
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Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs

(
Sh1

Scluster
· dh1

Sh1

)
+ εmp

(
Sh2

Scluster
· dh2

Sh2

)}

= k

(
Eelec +

εfs

Scluster
· dh1 +

εmp

Scluster
· dh2

)
(51)

Eallm→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

(
Eelec +

εfs

Scluster
· dh1 +

εmp

Scluster
· dh2

)
= kρ (Scluster · Eelec + εfs · dh1 + εmp · dh2) (52)

Case (i)

In this case, some of cluster members suffer from multipath fading. Leti1 andi2 correspond to

the region where Eqs. (15) and (16) apply, respectively. Their areas are denoted asSi1 andSi2 ,

respectively. The sumdi1 of the square of the distance to the cluster-head of all sensor nodes in

regionh1 is derived as:

di1 = dSc1 =
πd4

0

2
. (53)

The sumdi2 of the fourth-power of the distance to the cluster-head of all sensor nodes in region
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i2 is derived as:

di2 = d4
Sc2
−

∫ −W
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∫ r
2
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+ arcsin
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(54)
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1 + 48tZ4
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1 + 24tW 2Z2
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1
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)√
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1
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2 + 720tZ4
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2

+120r2tZ2
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144Z5
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1 + 1440t3Z2

1

+120r2tZ2
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+144rW 5 − 1440rtW 4 + 1440rt2W 3 + 40r3W 3 − 2880rt3W 2 − 120r3tW 2

+720rt4W + 120r3t2W + 9r5W + 120r3t3 + 9r5t + 28r6 − 240d6
0π

]
,

where,Z1 = max(−W,−t− r
2) andZ2 = min(−W,−t− r

2).

Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs

(
Si1

Scluster
· di1

Si1

)
+ εmp

(
Si2

Scluster
· di2

Si2

)}

= k

(
Eelec +

εfs

Scluster
· di1 +

εmp

Scluster
· di2

)
(55)

Eallm→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

(
Eelec +

εfs

Scluster
· di1 +

εmp

Scluster
· di2

)
= kρ (Scluster · Eelec + εfs · di1 + εmp · di2) (56)

Case (j)

In this case, some of the cluster members suffer from multipath fading. Letj1 andj2 correspond
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to the region where Eqs. (15) and (16) apply, respectively. Their areas are denoted asSj1 andSj2 ,

respectively. The sumdj1 of the square of the distance to the cluster-head of all sensor nodes in

regionj1 is derived as:

dj1 =
∫ d2

0−W2−t2

2t

−W

∫ √
W 2−x2

−√
W 2−x2

(√
(x + t)2 + y2

)2
dydx

+
∫ −t+d0

d2
0−W2−t2

2t

∫ √d2
0−(x+t)2

−
√

d2
0−(x+t)2

(√
(x + t)2 + y2

)2
dydx

= −1
8

[
4W 2(W 2 + 2t2)

{
arcsin

(W 2 + t2 − d2
0

2tW

)
− π

2

}
− 2πd4

0 (57)

−4d4
0 arcsin

(W 2 − t2 − d2
0

2d0t

)
+ (5W 2 + t2 + d2

0)
√
−W 4 + 2(t2 + d2

0)W 2 − (t2 − d2
0)2

]
.

The sumdj2 of the fourth-power of the distance to the cluster-head of all sensor nodes in

regionj2 is derived as:

dj2 = dc2 −
∫ −t−d0

−t− r
2

∫ r
2

− r
2

(√
(x + t)2 + y2

)4
dydx

−2
∫ d2

0−W2−t2

2t

−t−d0

∫ r
2

√
d2
0−(x+t)2

(√
(x + t)2 + y2

)4
dydx

−2
∫ −

q
W 2− r2

4

d2
0−W2−t2

2t

∫ r
2

√
W 2−x2

(√
(x + t)2 + y2

)4
dydx

= − 1
360

[
120W 2(W 4 + 6t2W 2 + 3t4)

{
arcsin

(√4W 2 − r2

2W

)
− arcsin

(W 2 + t2 − d2
0

2tW

)}
(58)

+120d6
0 arcsin

(W 2 − t2 − d2
0

2d0t

)
−20(10W 4 + 19t2W 2 + 4d2

0W
2 + t4 + d2

0t
2 + d4

0)
√
−W 4 + 2(t2 + d2

0)W 2 − (t2 − d2
0)2

−r(6W 4 + 180t2W 2 + 2r2W 2 + 90t4 + r4)
√

4W 2 − r2

+360rtW 4 + 720rt3W 2 + 72rt5 − 40r3t3 − 7r6 + 60d6π

]
.

37



Then,Em→h andEall m→h can be derived by the following equations.

Em→h = k

{
Eelec + εfs

(
Sj1

Scluster
· dj1

Sj1

)
+ εmp

(
Sg2

Scluster
· dj2

Sj2

)}

= k

(
Eelec +

εfs

Scluster
· d2

Sj1
+

εmp

Scluster
· d4

Sj2

)
(59)

Eallm→h = (ρScluster − 1)Em→h ≈ ρSclusterEm→h

= kρScluster

(
Eelec +

εfs

Scluster
· dj1 +

εmp

Scluster
· dj2

)
= kρ (Scluster · Eelec + εfs · dj1 + εmp · dj2) (60)

5.3 Derivation of Ehead1

The amount of energyEhead1 consumed by a cluster-head in receiving sensor data from its mem-

bers is derived as:

Ehead1 = k(ρScluster − 1)Eelec ≈ kρSclusterEelec (61)

5.4 Derivation of Ehead2

Ehead2 corresponds to the energy consumed by a cluster-head in receiving sensor data from outside

cluster-heads. The aresS where sensor data to forward exists is calculated as following. When

the relationship between the cluster radiusr and the distance of the cluster-head to a base station

t satisfiesr < 2t, S takes the form illustrated in Fig. 7 (a). Whenr ≥ 2t holds,S becomes the

half of the monitoring region as illustrated in Fig. 7 (b). In case thatr ≥ −t+
√

4W 2−3t2

2 holds,S

becomes 0. Therefore,S can be derived as:

S =




θ

2
(W 2 − t2 − rt− r2), if (r < 2t) ∧ (r <

−t +
√

4W 2 − 3t2

2
)

0, if (r < 2t) ∧ (r ≥ −t +
√

4W 2 − 3t2

2
)

1
2

{
πW 2 + r2 − 2(Scluster + rt)

}
, otherwise

(62)

whereθ is derived as:

θ = arccos
(

1− r2

2t2

)
. (63)
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The total amountK of sensor data that a cluster-head receives from regionS is given as:

K = kρS.

Therefore, the energyEhead2 consumed in reception of sensor data from other cluster-heads is

given as:

Ehead2 = KEelec

= kρSEelec. (64)

5.5 Derivation of Ehead3

A cluster-head sends all sensor data to the next-hop, a cluster-head or the base station. The distance

to the next-hop isr, if r > t holds, ort, i.e., direct transmission.

If either of r < d0 or r ≥ d0 > t holds, a cluster-head consumes energy which scales propor-

tionally to the square of the transmission distance. Therefore,Ehead3 consumed in transmission

of sensor data is derived as:

Ehead3 = (kρScluster + K)
{
Eelec + εfs ·min(r2, t2)

}
= kρ(Scluster + S)

{
Eelec + εfs ·min(r2, t2)

}
. (65)

Otherwise, a cluster-head consumes energy which scales proportionally to the fourth power of the

transmission distance.

Ehead3 = (kρScluster + K)
{
Eelec + εmp ·min(r4, t4)

}
= kρ (Scluster + S)

{
Eelec + εmp ·min(r4, t4)

}
. (66)

5.6 Results of the Analysis

In Figs. 11 througth 16, we showEcluster andEnode with radiusr against the different size of the

monitoring regionW and the distancet of the cluster-head to the base station. The radiusW was

set at 100, 200, and 400. The distancet was set at 10%, 20%, 40%, and 80% ofW . We setEelec

at 50 (nJ/bit),εfs at 10 (pJ/bit/m2), andεmp at 0.0013 (pJ/bit/m4) in Eqs. (15) through (17). The
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thresholdd0 was set at 75 (m) [3].

First, from Figs. 11, 13 and 15, we observe that the amount of energy consumed in a cluster

Ecluster increases as radiusr increases whenr < t holds, that is, the radius is smaller than the

distance to the base station. This is because all ofEall m→h, Ehead1, Ehead2, andEhead3 increase

as radiusr increases. Whenr ≥ t holds, that is, the base station exists in a cluster, a cluster-head

sends the aggregated sensor data directly to the base station. Therefore, the slope becomes gentle

against the increase of radiusr. When radiusr is equal to2t, the region for which a cluster-head is

responsible in multihop communications changes from Fig. 7 (a) to Fig. 7 (b). Thus, in our model,

Ecluster suddenly increases. When radiusr goes beyond2t (r > 2t), Eall m→h andEhead1 keep

increasing whereasEhead2 and the distance to the next hop, i.e., the base station, do not change.

Consequently,Ecluster slowly increases.

Next, we consider the effect of the relationship among radiusr and thresholdd0 on the energy

consumption per node,Enode. Whenr < d0 holds, the amount of energy that cluster members

consume in transmitting their sensor data to a cluster-head is derived by Eq. (15). As radiusr

increases, the number of cluster members also increases. The total energy consumed in a cluster,

Ecluster, also increases, but its rate of increase is slower than that of the number of cluster mem-

bers. Therefore,Enode decreases with the increase of radiusr as far as the whole cover region

is within the monitoring region. On the other hand, when radiusr is larger than thresholdd0

(r ≥ d0), the energy consumption in data transmission of some cluster members scales propor-

tionally to the fourth-power of the distance. Thus, Eq. (16) applies. As a result,Enode increases

as radiusr increases. The reason why we observe sudden drops ofEnode at thresholdd0 is that

the energy derived by Eq. (15) is larger than the energy derived by Eq. (16) at thresholdd0.

Finally, we consider the effect of the relation between radiusr and distancet on the energy

consumption per node,Enode. When the base station is within the range of radio signals, i.e.,

r ≥ t, a cluster-head directly sends the aggregated data to the base station. Therefore, the increase

rate ofEcluster becomes small whereas the number of sensor nodes in a cluster keeps increasing at

the rate of the square of the radius. Consequently,Enode decreases as radiusr increases. When ra-

diusr is equal to2t, Ecluster suddenly increases as mentioned before. Thus,Enode also suddenly

increases. When radiusr becomes more than2t (r > 2t), the rate at whichEcluster increases

becomes small. Since the number of sensor nodes in a cluster keeps increasing,Enode once de-

creases. However, as radiusr further increases,Eall m→h andEhead1, which are proportional
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to the number of cluster members become more influential onEcluster. Therefore,Enode begins

to increase again. Although we observe the minimum ofEnode around this point, for example,

r = 205 for t = 50 in Fig. 16, the radius is not feasible for the limited transmission distance of ra-

dio signals. For example, in Zigbee specifications [17], which adopts the IEEE 802.15.4 standard,

the transmission range is not more than 100 meters.

In Figs. 17 through 19, we depict the transition of radiusropt which minimizesEnode against

distancet. Curves correspond to the cases that the maximum cluster radiusrmax are 40, 80 and

100 meters and the case without limitation. Radiusr has an additional limitationrlim due to our

analytical model.rlim is defined as the boundary of conditions Fig.8 (ii) and Fig. 8 (iii), i.e.,

rlim = t +
√

2W 2 − t2. Figure 17 shows that, when35 ≤ t holds, radiusropt is the radius which

minimizesS, that is,r which minimizesW 2 − t2 − rt − r2 from Eq. (62). On the other hand,

when0 ≤ t ≤ 35 holds, radiusropt becomes larger than 140. This is because that radiusr which

minimizesW 2− t2− rt− r2 exceeds2t. In this case, the model of surfaceS changes from Fig. 7

(a) to Fig. 7 (b).Enode is also minimized atr = 2t, where the surfaceS increased suddenly, that

Enode takes local minimum. Figs. 18 and 19 show the similar transitions. The behavior at both

ends of the graph is same as in Fig. 17. However, they have differences in the intermediates, where

ropt becomes 75 m.

6 Simulation Experiments

We evaluated the effectiveness of our method through simulation experiments. We considered

sensor networks which have a monitoring region with radiusW of 100, 200, and 400. The density

ρ of sensor nodes is fixed at 0.005. Then, the number of sensor nodes becomes 157, 628, and 2513

for eachW . We assume that a sensor node has the limited transmission range of radio signalsMt.

We setMt at 50, 100, and 150. The maximum cluster radiusrmax are set at 80 % ofMt. For the

comparison purpose, results of fixed cluster radius are also obtained. As a fixed radius, we choose

20, 40, 80, and 120. Each sensor generates an 800-bits data every round. The message size of

clustering information was set at 60 bits with a header of 120 bits. All sensor nodes had the same

initial residual energy of 0.5 J.

In the following figures, Figs. 20 through 22, we depict transitions of the cumulative amount

of data received at the base station and the total amount of energy consumed in each round against
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the number of rounds. When sensor nodes begin to die due to depletion of battery or a tree cannot

be built due to death of intermediate sensor nodes, a slope of a line becomes gentle in figures of the

cumulative amount of data. The total amount of energy takes into account all of energy consumed

in all four phases in our method proposed in Section 4. Figures 20, 21, and 22 correspond to cases

of W =100, 200, and 400, respectively.

In figures on the right column of Figs. 20, 21, and 22, it is clearly shown that our method

can reduce the total amount of energy consumed in a round. When the maximum transmission

rangeMt is small, a scheme with a fixed radius ofR =20 outperforms the others as depicted in

Figs. 20(a), 21(a), and 22(a). The reason is that our multihop routing algorithm fails in estab-

lishing a tree when a cluster radius is large in comparison with the maximum transmission range.

Since hearing advertisements of candidacy of others, a sensor node abandons its candidacy in our

method. Cluster heads are apart from each other by at least cluster radiusR. In multihop routing,

the next-hop node is chosen among cluster-heads within the maximum range of radio signals,Mt.

WhenR is close toMt, the possibility that a cluster-head can find another cluster-head becomes

small. Consequently, the cluster becomes isolated and sensor data cannot be gathered from the

cluster. On the contrary, when the maximum transmission rangeMt is 150, a scheme with a fixed

radius ofR =20 becomes inferior to others as shown in Figs. 20(e), 21(e), and 22(e). When a

cluster radius is small, the number of clusters becomes large. Since independently of cluster radius

R, each cluster-head consumes the same amount of energy in advertising its level to the maximum

transmission range of radio signals, the total amount of energy consumed in such advertisement

becomes large with a small fixed radius. The effect becomes more influential when the maximum

transmission range is large. When we compare results among different radii of monitoring regions,

we can see that the fixed radius that leads to the best performance in terms of the amount of data

received at the base station changes. Therefore, when we employ a clustering method with a fixed

cluster radius, we have to carefully choose a radius in accordance with the maximum transmission

rangeMt and the size of the monitoring regionW . On the contrary, although our protocol does

not attain the best performance among alternatives, it can adapt conditions of sensor networks. We

should note here that the performance degradation of our method with smallMt can be improved

by introducing more sophisticated multihop routing protocol.
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7 Conclusion

In this thesis, we first propose a distributed clustering method for energy-efficient data gathering in

sensor networks. Next we established an analytical model of energy consumption in cluster-based

data gathering with multihop communications among cluster-heads. Based on analytical results,

we considered a self-organizing clustering method where each cluster-head determined its cluster

radius based on the distance to the base station and other conditions of a sensor network. Through

several simulation experiments, we showed that our method consumed less energy than methods

with a fixed radius in sensor networks with radius of 100, 200, and 400 m. In addition, we also

showed that the cluster radius for the best performance differed among conditions and our method

was adaptive.

Several issues still remain to be solved. As we pointed out, our method cannot attain the

best performance in spite that the total amount of consumed energy is the least, due to our poor

tentative multihop routing protocol. We should consider another routing protocol that makes use

of the benefit of energy-efficiency of our method.
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Figure 13: Transition ofEcluster (W = 200)
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Figure 15: Transition ofEcluster (W = 400)
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(c) Cumulative amount of received data at BS
(Mt = 100)
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(d) Total amount consumed energy in a round
(Mt = 100)
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(e) Cumulative amount of received data at BS
(Mt = 150)
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(f) Total amount consumed energy in a round
(Mt = 150)

Figure 21: Cumulative amount of received data and total amount of consumed energy (W = 200)
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(a) Cumulative amount of received data at BS
(Mt = 50)
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(b) Total amount consumed energy in a round
(Mt = 50)
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(c) Cumulative amount of received data at BS
(Mt = 100)
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(d) Total amount consumed energy in a round
(Mt = 100)
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(e) Cumulative amount of received data at BS
(Mt = 150)
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(f) Total amount consumed energy in a round
(Mt = 150)

Figure 22: Cumulative amount of received data and total amount of consumed energy (W = 400)
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