Master’'sThesis

Title

Achieving Scalability and Self-Adaptivity
to Networ k Bandwidth and Delay
for Measurement-based TCP Congestion Control

Supervisor

Professor Masayuki Murata

Author

Tomohito Iguchi

February 15th, 2005

Department of Information Networking
Graduate School of Information Science and Technology

Osaka University

Master’'s Thesis

Achieving Scalability and Self-Adaptivity to Network Bandwidth and Delay

for Measurement-based TCP Congestion Control

Tomohito Iguchi

Abstract

The heterogeneity and complexity of the Internet are increasing with the degelopment
of such networking technology as wireless and DSL/FTTH access netinks, gigabit/terabit-
level high-speed backbone network links, and the explosive growttiedhternet population. As
network link bandwidth increases, server and client machines directiyecorio higher-speed
networks to deliver gigabyte/terabyte data to other hosts. When TCP Réiah is the de facto
standard transport layer protocol in the current Internet, is usesufthi high-speed data trans-
mission, it cannot achieve sufficient throughput because of the natiteessential congestion
control mechanism. The main reason is that TCP Reno does not utilize theidmohformation
of the network path, one of the most important factors for congestionalantthe Internet. The
variants of TCP Reno previously proposed for large bandwidth anddefay networks have the
same shortcomings.

In this thesis, we propose a new congestion control mechanism basee medsurement of
the network bandwidth information. We adopt inline network measuremerg gisean measure
physical and available bandwidths from data/ACK packets transmitted lwe d¢@iP connections
in an inline fashion. Our proposed mechanism directly obtains bandwidttmatan by using the
inline network measurement technique and adjusts congestion window sis@lgyan algorithm
based on a logistic growth model and a Lotka-Volterra competition model frophjpgics.

Through mathmatical analysis, we compare the proposed mechanism with traldiicP
Reno and its variants, and exhibit its effectiveness for scalability to theonletsandwidth and
delay, convergence time, fairness among competing connections, ailityst&hrthermore, we
confirm that the proposed mechanism has the above characteristicghttaxtensive simulation

experiments.

Keywords

Transmission Control Protocol (TCP), Congestion Control, Inline Nekvbeasurement, Physi-

cal Bandwidth, Available Bandwidth, Logistic Growth Model, Lotka-Volte@ampetition Model

Contents
1 Introduction

2 Research Background
2.1 MathematicalModels
2.1.1 LogisticModel
2.1.2 Lotka-Volterra Competition Model

2.2 Inline Network Measurement o v v v i e

3 Proposed Mechanism Design
3.1 Application to Window Size Control Algorithm

3.2 ImplementationIssues

4 Characteristics of Proposed Mechanism
4.1 Scalability and Convergence Time
4.2 Parameter Settings e e
421 ~Setting e
422 eSetting.
4.3 CompetitionwithTCPReno

5 Simulation Results
5.1 Simulation Settings e
5.2 Fundamental Behavior
5.3 Scalability to Network Bandwidthand Delay
5.4 AdaptabiltyandFairness e
5.5 Effect of Heterogeneity in Physical Bandwidth

6 Conclusion
Acknowledgement

References

37

40

List of Figures

© 00 N o o b~ wWw N P

N e O o i
N~ o o0 W N B O

Changes in population of species with Logistic growth model 10
Changes in population of only two species with Lotka-Volterra competition mod4
Changes in population of 10 species with Lotka-Volterra competition model . 12
Pseudocode of proposed mechanism algorithm 15
Model for fairness analysis 20

Changes in the window sizes of TCP Reno and the proposed mechanism . . 21

Ratio of throughput for various buffersizes 24
Ratio of throughput for various physical bandwidths 24
Network topology in simulation experiments 27
Changes in window sizeB(//=100 [Mbps]) 28
Change inwindow sizedW=1[Gbps]) 28
Changes in convergence time against bottleneck link bandwidths30
Changes in convergence time against bottleneck link delays 30
Effect of changes in number of connections 32
Adaptability to change in available bandwidth (throughput) 33
Adaptability to change in available bandwidth (queue size) 33
Effect of different access link bandwidths 35

1 Introduction

Transmission Control Protocol (TCP) [1] is the de facto standard toahkgyer protocol of the
current Internet first designed in the 1970s: the first Requestdanrr@ents (RFC) on TCP was
released in 1981 [2]. TCP has also been frequently modified and esthéemaccommodate the
development of the Internet [3-5].

TCP has various functions to realize reliable and efficient data transmissitre network.
The congestion control mechanism [1] is one of the most important. Its mairogelig to
avoid and resolve network congestion and to distribute network bandwidghelmong competing
connections. To do that, TCP employs a window-based congestion car@cblanism that adjusts
data transmission speed by changing congestion window size. A congestaow indicates the
maximum amount of data that can be sent out on a connection without béingvdedged.

TCP Reno is the most popular version of TCP in current operating syst&sngindow size
control algorithm allows a TCP sender to continue to additively increase figestion window
size until it detects a packet loss (or losses), decreasing it multiplicativegnva packet loss
occurs. This is called an Additive Increase Multiplicative Decrease (@Jidolicy. In [6], the
authors argue that an AIMD policy is suitable for efficient and fair badtiwusage in a distributed
environment, if congestion indication signals are simultaneously distributeddoraikections.

However, with increases in the heterogeneity and the complexity of the étitenany prob-
lems have emerged in TCP Reno’s congestion control mechanism ([orléjdmple). The main
reasons are that the congestion signals are only indicated by packetnidsECP Reno uses
fixed AIMD parameter values in increasing and decreasing window sizereas they should be
changed according to the network environment.

For example, a previous paper [10] maintained that the throughput of d@fections de-
creases when it traverses wireless links, since TCP cannot distinguigkstion-oriented packet
loss caused by network congestion, and wireless-oriented packeddossd by link loss and/or
handoff. Some solutions can be found in [12-14]. Another problem iftkehroughput of TCP
connections in large bandwidth and long delay networks. In [11], theoesidrgued that a TCP
Reno connection cannot fully utilize the link bandwidth of such networksesthe increasing
parameter, which is one packet per a Round Trip Time (RTT), is too smalttendecreasing

parameter, which halves the window size when a packet loss occurs, lgrg@ofor networks

with a large bandwidth-delay product. Although there are many solutions fordidem [11, 15,
16], almost all of them inherit the fundamental congestion control meamamisd CP Reno: the
AIMD mechanism triggered by the detection of packet losses in the netwidrk. mechanisms
improve the throughput by adjusting the increasing and decreasing gararstatically and/or
dynamically. However, most previous papers focused on changingliB parameters for ac-
commodating particular network environments. That is, since those methodsmpudgy ad hoc
modifications for a certain network situation, their performance is not cleanwapplied to other
network environments. Therefore, we believe they have not essentidldsthe problem.

Because window size indicates the maximum amount of packets that TCP rsmitréor one
Round Trip Time (RTT), adequate window size for a TCP connection islequhe product of
the available bandwidth and the propagation delay between the sendexcaier hosts. TCP
Reno measures the RTTs of the network path between sender ancerduests by checking
the departure times of the data packets and the arrival times of the cordesp@CK packets.
However, it does not have an effective mechanism to recognize thlaldesbandwidth. This is
the essential explanation of the problem: it cannot adjust window size tdesquate value under
various network environments. In a sense, the traditional TCP Renoceceonisidered a tool that
measures available bandwidth because of its ability to adjust the congestibmwsize to achieve
a transmission rate appropriate to the available bandwidth. However, it iedtie¢ since it only
increases window size until a packet loss occurs. In other words ute@sipacket losses to obtain
information about the available bandwidth(-delay product) of the netwdtat is, even when
the congestion control mechanism of TCP works completely, the TCP sexpleriences packet
losses in the network at some intervals. Since all modified versions of Ti@g§ ABVD policy
contain this essential problem, they cannot avoid periodic packet |oAgdselieve, therefore, if a
TCP sender recognizes the bandwidth information quickly and adequageban create a better
mechanism for congestion control in TCP.

Fortunately, many measurement tools have been proposed in the literaf:g2][that mea-
sure the physical and available bandwidths of network paths. Howegeannot directly employ
those existing methods into TCP mechanisms since they utilize a lot of test proketgahey
also require too much time to obtain one measurement result. We have prapostdod called
Inline measurement TCP (IMTCP) that avoids these problems in [23-2&0eH not inject extra

traffic into the network, and instead it estimates the physical/available bandwafithe network

path from data/ACK packets transmitted by an active TCP connection in an fakh@on. Fur-
thermore, since the ImMTCP sender obtains bandwidth information every T+, R can follow
the traffic fluctuation of the underlying IP network well. Furthermore, heeat is implemented
at the bottom of the TCP layer, all kinds of TCP’s congestion control nméshes can include this
measurement mechanism.

In this thesis, we propose a new congestion control mechanism of TCHitilieds the in-
formation of physical and available bandwidths obtained from an inline measunt technique.
The proposed mechanism does not use ad hoc algorithms such as T&H2&]g instead it em-
ploys algorithms that have a mathematical background that enable us to mathéyndiscuss
and guarantee their behavior even though posing a simplification of the ssgigem. More im-
portantly, it becomes possible to give a reasonable background obotrotparameter selections
within TCP, instead of conducting intensive computer simulations and/or tlgpparameters
in an ad hoc fashion. We designed a window size control algorithm that aiosidkly adjust
window size to an adequate value by using bandwidth information to fairly dis¢risandwidth
among competing connections. Therefore, we borrowed algorithms frophysics: the logis-
tic growth model and the Lotka-Volterra competition model [27], which descritanges in the
population of species, are applied to the window updating algorithm of thgopeal TCP. This
application can be done by considering the population of a species as awaize of a TCP
connection, the carrying capacity of the environment as physical hdtigwand interspecific
competition among species as bandwidth share among competing TCP corsedteopresent
in detail how to apply the logistic growth and Lotka-Volterra competition models todghgestion
control algorithm of our TCP as well as analytic investigations of the preghatgorithm. Then,
we can utilize the existing discussions and results on various charactenisties mathematical
models, including scalability, convergence, fairness and stability. Givioggticharacteristics to
TCP is the main objective of this thesis. We also present extensive simulasioltsreo evalu-
ate the proposed mechanism and show that, compared with traditional T@RaRewther TCP
variants, it utilizes network bandwidth effectively, quickly, and fairly.

The rest of this thesis is organized as follows. In Section 2, we introdutieematical models
in biophysics and inline network measurement we utilize in our proposed misaian Section 3,
we design the proposed TCP mechanism. In Section 4, we analyze anskdisecharacteristics

of the proposed mechanism. In Section 5, we present its effectivendgseaformance through

various simulation experiments. We finally conclude this thesis and offerefutark in Section
6.

2 Research Background

In this section, we briefly introduce the mathematical models in biophysics thapatied to the

proposed mechanism in the next section, and the inline network measumedrnism.

2.1 Mathematical Models
211 Logistic Modd

The logistic equation is a formula that represents the evolution of the poputdiiosingle species
over time. Generally, the per capita birth rate of a species increases asphiatpn of the
species becomes larger. However, since there are various restrictidigng environments,
the carrying capacity of the environment exists, which is usually determigetiebavailable
sustaining resources. The logistic equation describes such changepaoptiiation of the species
as follows [27]:

d N
dtN:e(lK)N (1)

wheret is time, N is the population of the speciek, is the carrying capacity of the environment,
ande is the intrinsic growth rate of the species<().

Figure 1 shows changes in the population of the sped8sas a function of time where
K =100 and: changes to 1.0, 2.0, 4.0 and 8.0. Looking at the lines, we can obsena|tverig
characteristics of the logistic equation: wh&his much smaller thati, the increasing speed of
N becomes larger a¥ increases. On the other hand, wh€rbecomes close t&, the increasing

rate decreases, aid converges td<. As e increases, convergence time becomes smaller.

2.1.2 Lotka-Volterra Competition Model

The Lotka-Volterra competition model is famous for the population growth ofdmmore species
including interspecific competition among them. In the model, Equation (1) is mottifiadlude
the effects of interspecific competition as well as intraspecific competitionbasie two-species

Lotka-Volterra competition model with each speci¥s and N, having logistic growth in the

140 T T T T T
e=10 —
€=20
120 - £=4.0 ----o 1
€=8.0
o 100
Q
5] ;
2 -
(7] 80 B : ‘«‘ 7]
'-06 ",
L 60 i -
[= ;
> ;
Z 40+ -
20| ! .
0 1 1 1 1 1
0 2 4 6 8 10 12

Time [sec]

Figure 1: Changes in population of species with Logistic growth model

absence of the other is comprised of the following equations [27]:

d Ni+712- Ny
NI =a (1 —1> N,)
d No + 721 - N1
—_— — 1 _—— —
dtNQ €9 (Xy > Ny 3)

whereN;, K;, ande; are the population of the species, the carrying capacity of the environment,
and the intrinsic growth rate of the specigsrespectively. ;; is the ratio of the competition
coefficient of specieson specieg.

In this model, the population of species 1 and 2 does not always coneesgalue larger than
0, and in some cases one of them becomes extinct. It depends on thefvalu@odys;. Itis a
common characteristic that when the following conditions are satisfied, tvetespesan survive in
the environment [27]:

Ko

K
4
Y12 < Ky’ Vo1 < K, (4)

Assuming that the two species have the same characteristics, they hava¢habzed(= K; = K,

€ = €1 = €9, andy =1 = 9. Then, Equations (2) and (3) can be written as follows:

d Ny +7- Ny

—N; = 1—-— =N

di ! 6< K) 1 ()
d NQ—F’)/'Nl

ANy =127 N 6
di 2 6< K > 2 (6)

10

120 T T T

Species #Ifl —_—
Species #2

100

80

60

40

Number of Species

20

0 | | | |
0 20 40 60 80 100

Time [sec]

Figure 2: Changes in population of only two species with Lotka-Volterra eitigmn model

Besides, Equation (4) can be written+asc 1. Figure 2 shows the population changes in the two
species by using Equations (5) and (6), wh&re 100,e = 1.95 andy = 0.90, and species 2 join
the environment 10 seconds after species 1. We can observe frongthestfiat the population of
the two species converges quickly at the same value.

We can easily extend Equations (5) and (6)/i@pecies as follows:

iMze(l— T Lt]>Ni (7)

dt K

Figure 3 shows population changes in the ten species by using Equatjomh@ie K = 100,

e =1.95 andy = 0.90, and new species join the environment one after another. We sarvelhat

ten species converge as two species do in Figure 2. Note that sumvivabavergence conditions
are identical: that isy < 1. Even when two or more species exist, each independently utilizes
Equation (7) for obtainingV;, and the population of the species can converge to the value equally
shared among competing species. Of course, this model can be diredidapphe congestion

control algorithm of TCP because it has to obtain We discuss it in Subsection 3.1.

2.2 Inline Network M easurement

In [23-25], the authors proposed ImTCP, which is an inline network nreasent technique for the

physical and available bandwidths of network paths between TCP samdeeceiver hosts. It can

11

120 | : | - |
Species #1
100 Species #3 -]
Species #4
4]
g Ol Species #7 - |
> Species #8 -
“U_) Species #9 - - .
> T Species #10 ———
@ .
E \
2 40 - y‘;»\‘ 1
O ,"‘ ! | | 1 f
0 500 1000 1500 2000 2500

Time [sec]

Figure 3: Changes in population of 10 species with Lotka-Volterra competitimorel

continuously measure bandwidths by using data and ACK packets of adr@eation under data
transmission. That is, the TCP sender transmits data packets at intervafsideteby an inline
measurement algorithm and checks the arrival interval times of the porrésig ACK packets
to estimate bandwidth. Since it performs the measurement without transmitting adbjtrobe
packets into the network, it negligibly affects other network traffic. It aso quickly update the
latest changes in bandwidths by frequently performing measurementeguitper 1-4 RTTS) as
long as TCP transmits data packets. The authors have also proposed anemtpkion design of
ImTCP, where the measurement program is located at the bottom of the T&2Pitayaintains the
transmission/arrival intervals of TCP data/ACK packets by introducing-®Hluffer between the
TCP and IP layers. Note that the measurement algorithm does not affeét ongestion control
algorithm, but only refers to the window size of the TCP sender. This meahg#measurement

algorithm can be applied to any TCP variants having a different congesiitnol algorithm.

12

3 Proposed Mechanism Design

3.1 Application to Window Size Control Algorithm

We consider that the changing population trends of species depicted ire&igand 3 are ideal
to control the transmission speed of TCP. That is, by using Equationr{ifjga@ongestion control
algorithm of TCP, rapid and stable link utilization can be realized.

To convert Equation (7) to a transmission rate control algorithm, we canidas the trans-
mission rate of a TCP sendérand K as the physical bandwidth of the bottleneck link. Fur-
thermore, when applying Equation (7) to the congestion control algorithrodienection, it is
necessary for connectiarto know the data transmission rates of all other connections that share
the same bottleneck link. This assumption is quite unrealistic in the currentéhtérherefore,
we approximate the sum of the data transmission rates of all of other comeebiiausing the

physical and available bandwidths as follows:

En: Nj =K — A

j=1,i#]
Thus, Equation (7) becomes:
d Ni+v- (K —4)
—N;j=e€(1- N;
at ¢ (K ®

where 4; is the available bandwidth for connectionsWe assume that all connections share the
same bottleneck link.

A TCP sender controls its data transmission rate by changing its window gzetdin the
essential characteristics of TCP and decrease the implementation ovexesamhploy window-
based congestion control in our proposed TCP by converting Equ&jda ¢btain an increasing
algorithm of window size in TCP. The window size of connectipw;, is calculated fromV;, the

transmission rate, by the following simple equation:
w; = NiTi

wherer; is the minimum value of the RTTs of connectigrwhich is assumed to equal the prop-
agation delay without a queueing delay in the intermediate routers betweder semd receiver

hosts. Now Equation (8) can be rewritten as follows:

iw‘—e 1—wi+7(K_Ai>Ti w;
d ' KT; ’

(9)

13

Finally, we integrate Equation (9) as follows:

w0 e o (- gy

e (10)
w;(0) <€€t{1y(li‘l>} - 1) +{K =y (K- A)}n

w; (t) =

In Equation (10), when we set the initial value of the window sizg()) and the current time to
0 (t = 0), we can directly obtain window size;(¢) at any timet. We use the above equation for
the control algorithm of the window size of TCP connections.

The proposed congestion control algorithm is based on the traditionalReD®, and we
integrate the inline network measurement technique in INTCP [23-25]. EqUa0) requires the
measurements of the physical and available bandwidths of a network gagtefdre, we use the
same algorithm as TCP Reno for the window updating algorithm until measureeserits are
obtained through inline network measurements. In cases of packet idgsges), window size is
decreased in an identical way to TCP Reno in both cases of timeout amdtfasismit [1].

When bandwidth information is obtained, the congestion control algorithnstzdjs window
size using Equation (10). That is, Wherth ACK packet is received at sender TCP, we use
Equation (10) to obtain the new value of the congestion window size of thecb@Rection by
the following calculation: sei;(0) to the current window size artdo the time duration from the
arrival time of the {-1)-th ACK packet to that of thg-th ACK packet. In Figure 4, we show the

pseudocode of the congestion control algorithm of our proposed mischa

3.2 Implementation | ssues

Equation (10) has the* calculation. Generally, exponentiation cannot be operated in the system
kernel because of the lack of library and processing overheadrefbine, we give the Taylor

polynomial of degree 4 around= q for functione” as follows,

1
exweazg(az—a}k

k=0
whereq is an integer part of (ex. a = 0 when 0< z < 1). By preparingz* on a memory table

for the limited range of,, we can calculate® with minimal processing overhead. In determining

14

/I on event of receiving one ack
onEventACK()
{
IF BW_measured = 1 THEN // Bandwidth is measured?
w_0=cwnd_ // set current window size
t j=now()
t=t j-t j1 //time duration
cwnd_ = getCurrentCwnd(w_0, t) // use Equation (10)
tj1=1]j
ELSE
cwnd_ = cwnd_ + getRenoCwnd() // use TCP Reno algorithm
ENDIF

}

N

Figure 4: Pseudocode of proposed mechanism algorithm

the maximum value of in our proposed mechanism, we consider the following equation:

i (-9)

< et

That is, when we assume that the maximum RTT of TCP connection is 10\g&cin determine

the maximum value of to | 10¢|.

15

4 Characteristics of Proposed Mechanism

In this section, we analyze the various characteristics of the proposdehmem such as scal-
ability, convergence, stability, and so on. This analysis illustrates that tpoged mechanism

essentially solves TCP Reno’s problems.

4.1 Scalability and Convergence Time

Assuming physical bandwidtk™ and available bandwidtA are constant, the window size con-
verges to a certain value in the proposed mechanism. The convergedwsimky which is de-

noted asv*, can be obtained by settinly /dt = 0 in Equation (9):
w* ={(1-7)K+~A}r (11)

We obtain timel,;oposed, Which is required to increase window size fram to pw* (0 < p < 1,

wo < pw*), by using Equation (10) as follows:

T = ! ln(& w*_w())
proposed_e{l_fy(_%)} 1—p wy

1 p o w'—wg
<=) 12

where 0< A < K is satisfied. In the case of TCP Reno, we can easily calculateTims the

time necessary to increase window size fragto w*, as follows:
Treno = (W' —wo)7 = [{(1 —) K + yA}r — wo|7T (13)

whereT is the average value of the RTTs of the TCP connection. Here, we ignerefféct of
delayed ACK option [1] and focus only on the congestion avoidancegpdia8CP Reno. In the
case of HighSpeed TCP (HSTCP) [11], which is denotedihy.,,, is given by:

* 1-K Alr —
w wo%:{(VK +yA}T wo

Gmax Gmax

Thstcp >

(14)

whereanax is a parameter of HSTCP that indicates the maximum amount of window size in-
creased in one RTT (equivalent&gi?’) in [11]). In a Scalable TCP (STCP), we calculate time

Tstcp as follows:

e = 2 (lnw) __ 1 (ln{(l — K + WA}T)))

Wo

16

wherea is a STCP parameter, which is the amount the window size increased iningckixCK
packet. In [15]a = 0.01 [packet] is the default value.

From Equations (13) and (14), it is observed that the time it takes to ircitagvindow
size is proportional to physical bandwidith and propagation delay. It illustrates that the time
it takes to utilize the bandwidth-delay product of the network path fully is @rignal to the
bandwidth-delay product. HSTCP proposed in [11] was designed asvaongestion control
mechanism to resolve the problem in TCP Reno for high-speed and longatteorks. However,
since the window size control algorithm of HSTCP is essentially based onItf® Aolicy, it
suffers from bad scalability to the bandwidth-delay product. STCP ham@dow size control
algorithm based on Multiplicative Increase Multiplicative Decrease (MINbBljcy and describes
logarithmic increases of time against increases of link bandwidth, as sho&quation (15).
Hence, it has good scalability to bandwidth. However, Equation (15)Iglslaows bad scalability
to propagation delay. On the other hand, the proposed mechanism astegarithmically time

against increases of link bandwidth and propagation delay in Equatiyn (12

4.2 Parameter Settings

The congestion control algorithm of the proposed mechanism has twmetmis,y ande. In this
subsection, we discuss the effect of those parameters and show sioielngs to configure and

€.

421 -~ Setting

~ indicates the degree of the influence of the other competing connectionshtrat the same
bottleneck link. To converge window size to a positive value despite thdgqathymndwidthK;

of each connection, it is necessary to satisfy conditienf) < 1. From Equations (11) and (12),
furthermore, we need to consider the trade-off between convergpesasl and the final amount
of packets accumulated within the buffer at the bottleneck link. That is, ajthemallery leads
to faster convergence speed, it increases the queue size of the lmtttenter buffer when the

window size is converged. By using Equation (11) we can easily obtainutineo$ the window

17

size ofn TCP connections as follows:
" n
i =— K 16

2 Ty _
where we assume that physical bandwidhand the delay- of each connection are identical.
From Equation (16) queue siZgat the bottleneck link is given by:

—1)(1 —
1+ (n—1)y

This equation shows th&) increases as becomes larger. However, agjoes to infinity, we can

obtain the following equation:

n—oo

lim Q=17 ~ Tkr (18)

That is, there exists an upper bound of the queue size against arsimarfetne number of con-
current TCP connections. Therefore, if the bottleneck link has a largegh buffer, the proposed
mechanism will induce no packet losses regardless of the number ofdr@eations. TCP Reno,
HSTCP, and STCP, on the other hand, increase their window size untiiulheutilize the buffer

at the bottleneck link. As a result, they cannot avoid periodic packetdogse¢he case of FAST
TCP, we can estimate the total window sizenofonnections that share the bottleneck link. Just
before the FAST TCP connection converges its window size, it update®wisize according to

the following equation [16]:
w; — (1 —p)w; +p <£wz + 04) (19)

wherea is a constant to determine the increment degree of the window sizg @he p < 1)
is a smoothing coefficient parameter. From Equation (19), we obtain theviojoequation on

converged window size:

(20)

Sincew; for each connection is independently calculated, the sum of the coadveigdow size

of n TCP connections is then calculated as follows:

Z w; =N ar (21)
i=1

T—T

18

We observe from Equation (21) that the sum of the window size is propaitto the number of
TCP connections. So, to avoid packet losses, it is necessary to @refattleneck link buffer
based on the number of connections. We therefore conclude that FEBTcannot provide scal-

ability to the number of concurrent TCP connections in the network.

4.2.2 € Setting

e determines convergence speed, as shown in Equation (9) and Fig@erierally, when we
convert Equation (1) into the discrete equation, the population of the speécés not converge
with ¢ > 2 [27]. In contrast, the window size updating algorithm proposed in Stibse3.1
converts Equation (10) into a discrete equation in such a way that doesanse¢ oscillation.
Therefore, in the proposed algorithm, there is no limitatios, iwhich means that asbecomes
larger, the window size converges faster. However, a valuetod large makes the TCP sender
transmit many packets in bursty fashion that may degrade the networkmarfoe.

Furthermore, there is another issue to be considered ta det the logistic growth model
(Equation (1)), on which the proposed mechanism is based, per caplitadtée is determined ac-
cording to the current population of the species. In the proposed misohahe increase degree
of window size is determined by using the bandwidth information obtained by Per@line
measurement. Since the measurement algorithm in ImTCP utilizes the arrival tlhh@Kagback-
ets corresponding to the data packets transmitted by the sender host, ihedbhtaasurement
results experience some delay. Here, we consider the logistic growth mitidelelayed feedback
described in the following equation:

) = e (1- 22 22

where, is the delay of the feedback information. When the population of the speuiesyes
with Equation (22), the population does not converge to a certain valuei®e@econtinuous-time
model, if the following condition is satisfied [27]:

>7T
T £
d 2¢

Thatis, in Equation (22), itis necessary to satisty =/27,; to converge the population. A similar
limitation of e exists in the proposed mechanism. This means that with a delay of the bandwidth

information, changing window size too drastically causes oscillation of theomirsize.

19

Physical Bandwidth = K [Mbps]
Minimum Round-trip Propagation Delay = 7 [msec]
Size of the Output Buffer of the Bottleneck Link = B [packets]

Figure 5: Model for fairness analysis

The delay in the proposed mechanism corresponds to the time it takes foatth¢ACK)
packets to traverse from the bottleneck link to the sender hosts. Since Imd&eR 1-4 RTTs to
measure the bandwidth information, we believe that the delay becomes al2o0RTTs. That is,
the length of the delay depends on the RTT value of a TCP connection.dnwthds, by setting
e according to the RTT for each TCP connection, the proposed mechaaisavoid window size
oscillation. However, using differemtbrings different convergence speeds as shown in Figure 1,
short-term unfairness among connections with different RTTs mightdrapffe conclude that we

should take this trade-off into consideration when configutimgthe proposed mechanism.

4.3 Competition with TCP Reno

In this subsection, we investigate the fairness property of the proposgltaniem against com-
peting TCP Reno connections. For that objective, we compare the thpougihtwo TCP connec-
tions, which deploy TCP Reno and the proposed mechanism share a litiiekeby analyzing
changes in congestion window sizes. Figure 5 depicts the network moaeildtysis, wheré is
the physical bandwidth; is the minimum round-trip propagation delay except the queueing delay,
andB is the size of the output buffer adopting a TailDrop scheme, of the bottldiméck

As explained above, the proposed mechanism converges its window sizeettaa value

while TCP Reno continues increasing its window size until a packet losgcéience, even

20

Window Size 1 cycle

»
>

\

Sum of the window size of
TCP Reno and the proposed mechanism

I

Kr+B-- e E T
|
: .
! Window size of TCP Reno
|

Time

Figure 6: Changes in the window sizes of TCP Reno and the proposednigth

when both TCP connections compete at the bottleneck link bandwidth, periadietplosses

occur at the buffer. We, therefore, assume that both TCP conneetipesience a packet loss
when the buffer becomes fully utilized. Therefore, the window size of tleeT@P connections

changes cyclically, triggered by packet losses. Figure 6 descrilmbschianges in the window
size. Here we define one cycle as a period between two packet losksdsrate the length of the
cycle asI'. We assume that the received socket buffer of each TCP conneckawgassnough not

to limit the congestion window size evolution.

The proposed mechanism obtains the physical and available bandwidthsitima network
measurement. In this analysis, we assume that the sender of the propa$ethisia can obtain
precise physical bandwidth information. On the other hand, when $e€R and/or INTCP
connections share bottleneck link bandwidth, the ImMTCP sender cantai the available band-
width as expected, and so the obtained value becomes almost equal toildid@bandwidth for
all TCP connections sharing the bottleneck link [24]. This is because acb@Rection tends
to transmit bursty data packets [28], and then packets from each TGfea@n traverses the
bottleneck link in a back to back fashion. Therefore, we suppose in talgsas that the measured
available bandwidth is equivalent to physical bandwidti. Note that by this assumption we

estimate that the available bandwidth for the proposed mechanism are at maxiraaning that

21

the analysis gives the upper bound throughput of the proposed nigchan

From Figure 6, by using (0 < p < 1), the window size of the proposed mechanism just before
packet losses occur is representeg 3. Since the sum of the window size of both connections
is KT+ B when the buffer becomes full, the window size of TCP Reno connectioatirtine can
be described asl — p) KT + B. Then, the window size of the proposed mechanism immediately
after packet losses occur becomes decreasedsto/2, and that of TCP Reno becoméd —
p)KT + B)/2. Since TCP Reno increases its window size by one packet everyRTilhich is
the time duration of one cycle, can be calculated as follows:

1—
T:(p)é(T—i—B%

(23)
whereT is the average value of the RTTs of the TCP connection. On the other thanaindow
size of the proposed mechanism can be obtained from Equation (10pbyitsting K for A as
follows:

w(0)e KT

W) = et — 1) T K7

(24)

From Equations (12) and (24), we can calcul&tevhich equals the time it takes for the window

size to increase fromKr /2 to pK'r, as follows:

1 Kr—pKt1/2 1 2 —
7=ty (KT pET2N L (2= (25)
€ 1—p pK7/2 € 1—p

From Equations (23) and (25), we obtain the following equation:

(1-—p)Kt+ B 1 <2—p>

= — 2]
T n 1—p

26
5 p (26)
Note that the ratio of the throughput of the TCP Reno connection to that @irtp®sed mecha-
nism is equal to the ratio of the areas enclosed in the x axis and each line irglicainges in the

window size, as depicted in Figure 6. The area for TCP R&8RQ,, is given by:
3 9 _
Sreno = 2 {1—-p)KT+B}"7T

On the other hand, the area for the proposed mechanism, which is deaditgd, 3.4, is calcu-

lated as follows:

T
Kr 2—p
S = t)ydt = —
proposed A w() B TL2(1 — P)

22

Finally, the average ratio of the throughput of TCP Reno to the proposdianesm is given by:

N\ = Streno _ %{(1—p)KT+B}2 (27)
S N Krjp, 2=p
proposed c n2(1_p)

From Equations (26) and (27), we can understand the relationshipdrethe variables:(K

and B) and the ratio of throughput. We show some numerical examples of the throughput ratio.
Here we ignore the queueing delay and ass@mer. Figure 7 shows changes in the throughput
ratio against, where we set = 10 [Mbps] andr = 50 [msec]. The five lines represent the
results when the buffer sizB is 1/4, 1/2, 1, 2, and 4 times the bandwidth-delay product (BDP)
of the bottleneck link, respectively. In Figure 8, we show the results wieesetr = 50 [msec]
and B to 41 [packets] (equal to BDP wheld = 10 [Mbps]), where the five lines describe the
results whenk = 10, 50, 100, 500, and 1000 [Mbps]. These results showethahich realizes
fairness between TCP Reno and the proposed mechanism, drastical@jeshainen we modify
K and/orB. Furthermore, in some situations, especially when the buffer size is langeaced
with bandwidth-delay product, fairness cannot be realized by coirigier One reason is that the
proposed mechanism converges its window siz&tq whereas TCP Reno continues increasing
its window size until the buffer has been fully used. The congestion doaligorithm of the
proposed mechanism is essentially more conservative than TCP Remmtiast, TCP Reno has
an aggressive window size control algorithm. Therefore, we canrmd situations where the
throughput of the proposed mechanism is less than TCP Reno when tegisti the network.
A similar discussion can also be found in the literature regarding TCP Ve§asgnd we believe
it is the main reason that TCP Vegas was not successfully deployed intdradt In the case
of TCP Reno and its variants using AIMD/MIMD policies, window size just raftacket losses
occur is dependent on the bottleneck link buffer size. That is, the thmugf those connections
is improved as buffer size increases. However, as buffer size basdanger, the packets within
the buffer also become larger, which means that the queueing delay is@isased.

Furthermore, due to the difference between the technology evolution in memndrin link
bandwidth, we are unable to prepare enough buffer for TCP connedtioretain the utilization
of high-speed network links in the near future [30]. That is, AIMD/MIMiased congestion
control mechanisms will fail to provide enough performance for traridpger protocols in the
future Internet, and more conservative mechanisms will be needed irsguations. We believe

that the proposed mechanism in this thesis is the most feasible solution. FAgTofidinating

23

10

T T
| Buffer : 1/4 BDP
v Buffer : 1/2BDP -
| Buffer:1BDP -
8 - oo Buffer : 2 BDP —
':!\ Buffer: 4 BDP -~
a Ratio=1 - - -~

Throughput Ratio

10 -

T T T T

g Physical Bandwidth : 10 [Mbps]

v Physical Bandwidth : 50 [Mbps] -------
hoo Physical Bandwidth : 100 [Mbps] --------

8 | Physical Bandwidth : 500 [Mbps] -

. Physical Bandwidth : 1000 [Mbps] -~

° | Ratio=1 -~
T ebl |]
b o

\
3 b
= L
s 4 1
< 1
= i

Figure 8: Ratio of throughput for various physical bandwidths

24

from TCP Vegas, is also a possible answer since it has a more congematigestion control
mechanism than TCP Reno. However, as described in Subsection 4.1, Tké¥Scannot provide

good scalability to the number of connections sharing the bottleneck link.

25

5 Simulation Results

In this section, we present simulation results to evaluate the performaneeariestion control

mechanism proposed in Section 3.

5.1 Simulation Settings

We use ns-2 [31] for the simulation experiments. A traditional TCP Reno, $ighd TCP
(HSTCP) [11], Scalable TCP (STCP) [15], and FAST TCP [16] aseln for performance com-
parison. In the proposed mechanism, available bandwidth information is etitaynthe current
ImTCP if only one connection exists. However, we directly give availabialiaédth information
when two or more connections exist. We also directly give the physicaiMadtidinformation

to the TCP sender. We set= 1.95 andy = 0.9 for the proposed mechanism. The parameters
in HSTCP and STCP are set to the value described in [11] and [15katregly, and SACK op-
tion [32] is set enabled for both protocols. FAST TCP has paramaetehich should be changed
according to the link bandwidth. According to the guidelines in [33] wenset10, 20, 50, 100,
200, 500, and 1000 for link bandwidtlé = 10, 20, 50, 100, 200, 500, and 1000 [Mbps], respec-
tively.

The network model used in the simulation is depicted in Figure 9. It consisesdég/receiver
hosts, two routers, and links between the hosts and routgrs TCP connections are established
between TCP sendéand TCP receiver. For creating background traffic, we injected UDP pack-
ets at a rate of,q;, into the network, where packet size distribution follows the traffic obsenva
results in the Internet [34]. That i8/;., TCP connections and an UDP flow share a bottleneck link
between the two routers. The bandwidth of the bottleneck link is denoté&diasand the prop-
agation delay is. The bandwidth and the propagation delay of the access link for TCRsend
arebw; andr;, respectively. We deployed the TailDrop scheme at the router buiférhee buffer

size is set equivalent to the bandwidth-delay product between semdieeeeiver hosts.

5.2 Fundamental Behavior

First, we confirm the fundamental behavior of the proposed mechanismon&i CP connec-
tion. Figure 10 shows the changes in the window size of TCP Reno, HETGHP, FAST TCP,
and the proposed mechanism, where we/8g, = 1, BW = 100 [Mbps] 7 = 25 [msec],

26

UDP Traffic

Tudp [Mbps

BW [Mbps]
7 [msec]

) bw,[Mbps]

5 [msec]

|

TCP Traffic

Figure 9: Network topology in simulation experiments

bwy, = 200 [Mbps], andr; = 5 [msec]. In this case, we don't inject UDP traffic into the net-
work. This result shows that TCP Reno, HSTCP, and STCP connedaiqrerience periodic
packet losses due to buffer overflow, since they continue increasngitfdow size until packet
loss occurs. On the other hand, since the window size of FAST TCP aptdpesed mechanism
quickly converges to an ideal value, no packet loss occurs. Thegadsitrg speed is much larger
than HSTCP and STCP, meaning that they can more effectively utilize the lntkbdth. Further-
more, we show Figure 11, which describes the results in the case of 10 tienesrttiwidth of the
bottleneck and access links. From these results, we observe that TORR® HSTCP increase
their window size slowly. But, the increasing speed of the window size of tther onechanisms
remains fast regardless of the link bandwidth. Note also that HSTCP a@& &pidly increase
their window size, they cause more packet losses than in TCP Reno. lagheot Figure 10,
the SACK mechanism works well, and the sender host avoids timeouts. ldowevthe case of
Figure 11, many retransmission timeouts happen since the SACK mechanisot oacover all

of the lost packets.

5.3 Scalability to Network Bandwidth and Delay

We next investigate the scalability to the link bandwidth of the proposed meohdyishecking
convergence time, defined as the time it takes for the TCP connection to utifzeBthe link

bandwidth. We selV;., = 1, 71 = 5 [msec],7 = 25 [msec], and, = 5 [msec]. Figure 12 shows

27

Window Size [packets]

Window Size [packets]

1800
1600
1400
1200
1000
800
600
400
200

' TCP Reno

STCP --------
FAST TCP -~
Proposed Mechanism -----

20 40 60 80 100
Time [sec]

Figure 10: Changes in window siz87/=100 [Mbps])

18000
16000
14000
12000
10000
8000
6000
4000
2000
0

T T
TCP Reno

STCP -~
FAST TCP -
Proposed mechanism --—--

I i — r——]
|

0 20 40 60 80 100

Time [sec]

Figure 11: Change in window siz&{}'=1 [Gbps])

28

changes in the convergence time when we chagéfrom 10 [Mbps] to 1 [Gbps], where,q,, is
setto (0.2BW) [Mbps] andbw; is set equal td3W . In the figure, the average values and the 95%
confidence intervals for 10 simulations experiments are shown. From thie fige can see that
the TCP Reno connection requires a large amount of time to fully utilize the lindviddth since
the increasing speed of the window size is fixed at a small value regaddigeslink bandwidth.
HSTCP dramatically reduces convergence time, but the larger the link ldthdvecomes, the
more convergence time is required to fill the bottleneck link bandwidth. This srbat HSTCP
is fundamentally unable to resolve the scalability problem of TCP Reno. In #eeafs&5TCP and
FAST TCP, the convergence time remains constant regardless of the fidwiakih, which is also
confirmed in [15] and [16]. The proposed mechanism retains almoststardrconvergence time
regardless of the link bandwidth, which shows good scalability to netwarkveilth.

Moreover, we investigate the scalability to the propagation delay of the pedpmechanism.
We setNi., = 1, BW = 100 [Mbps],bw; = 200 [Mbps],7; = 5 [msec], and-,q, = 20 [Mbps].
Figure 13 shows the changes in the convergence time when we chafigm 10 [msec] to
500 [msec]. This figure shows that the TCP Reno connection requires ajlarge amount of
time to fully utilize the link bandwidth since it only increases its window size by on&egigmer
RTT. The convergence time of HSTCP and FAST TCP is less than TCP Riemever, the more
increases in propagation delay, the larger convergence time becomesugkitB TCP has good
scalability to link bandwidth as described in Figure 12, the convergence timeases when delay
becomes larger because HSTCP, STCP, and FAST TCP increase thdmwsize when receiv-
ing ACK packets, which depends on RTT. The proposed mechanisns kkegbest scalability
to the network delay. This is because, as shown in Subsection 4.1, gengertime becomes

logarithmically larger against increases in delay and bandwidth.

5.4 Adaptability and Fairness

We also investigate the adaptability and fairness of the proposed mechanisradking the effect
of changes in the number of TCP connections. We\sgt = 5, BIW =100 [Mbps],™ = 25 [msec],
bw; =100 [Mbps] (1< i < 5), andr; = 5 [msec]. We don’t inject UDP traffic into the network.
TCP connections 1-5 join the network at 0, 100, 300, 500, and 70pdse€cstop sending data
packets at 900, 950, 1000, 1050, and 1100 [sec], respectivglyeFL4 shows changes in window
size for the five TCP connections against the time in TCP Reno, HSTRIER FAST TCP, and

29

1000 ¢

100 ¢

Convergence Time [sec]

HSTCP ——

STCP e

FASTTCP --------

Proposed Mechanism =—=---

Figure 12: Changes in convergence time against bottleneck link bandwidths

20 50 100 200 500
Bottleneck Link Bandwidth [Mbps]

1000

10000 F T T T T T T TTT T T T
i HSTCP ———
STCP- e
g 1000 FASTTCP -]
9, Proposed Mechanism ----_%
o 3 —eq
S ' i
£ 100 F]
Q -u
Q i]
S 10%
3]
> .
c L B
(e}
®] 1k 5 .
ER-
Ol | | | 111111 | | |
10 20 50 100 200 500

Figure 13: Changes in convergence time against bottleneck link delays

Shared Link Delay [msec]

30

the proposed mechanism.

Figures 14(a) and 14(b) show that TCP Reno and HSTCP control tiiow size with the
AIMD policy and realize fairness among connections by inducing periodoket losses. From
Figure 14(c), we can see that STCP cannot realize fairness amongatmms because it has a
window size control algorithm based on MIMD policy. In Figure 14(d),ca@ capture the nature
of FAST TCP as follows. Since it utilizes queueing delay as a congestioalsignan adjust its
window size without inducing any packet losses when a new TCP conngotits the network.
However, it cannot achieve fairness among existing connections aem aannection. Although
FAST TCP needs RTT information to control the window size, the new cdimmecannot suc-
cessfully measure the minimum RTT due to the queueing delay caused by tiveges@mnection.
When a connection stops a transmission and exits from the network, the regneamnections
enjoy equality throughput because the buffer becomes temporarily enmptyha existing con-
nections can measure the precise values for minimum RTT. On the otheFhgunet 14(e) shows
that the proposed mechanism converges the window sizes very quictllgoano packet loss oc-
curs when a new connection joins the network. Furthermore, when thedi@ction leaves the
network, the proposed mechanism connections quickly fill the unuseshiMadin.

Adaptability to changes in the available bandwidth is also an important chastictef the
transport layer protocol. To confirm, we s&t., = 1, BW = 100 [Mbps], 7 = 25 [msec],
bwy = 100 [Mbps],7 =5 [msec], and change,q,, so that the available bandwidth of the bot-
tleneck link is 80 [Mbps] at 0-50 [sec], 65 [Mbps] at 50-100 [se€][@Bbps] at 100-150 [sec],
and 80 [Mbps] at 150-200 [sec]. Figures 15 and 16 present thegekan the throughput of a
TCP connection and the queue size of the bottleneck link buffer in the cE$€$ Reno, HSTCP,
STCP, and the proposed mechanism. The results obviously show thtivefiess of the proposed
mechanism, which gives good adaptability to the changes in the available iodmdWwurther-
more, no packet loss occurs even when the available bandwidth sudienbases. On the other
hand, TCP Reno connections experience packet losses during simtitaggand link utilization
is much lower than 100%. Although HSTCP and STCP can retain their link utilizagoause of
the sufficient buffer, they have largely fluctuated RTTs caused byajng delays. FAST TCP and
the proposed mechanism experience no packet losses and retain theitiliration with small
RTTs, but the proposed mechanism gives the smaller queue size thanTRAS T his is one of

the advantages of the proposed mechanism that uses an inline measuesmeique.

31

Window Size [packets]

Window Size [packets]

1600
1400
1200
1000
800
600
400
200

1600
1400
1200
1000
800
600
400
200

4th flow

I 1st ﬂolvv L
2nd flow ------
3rd flow ---

Time [sec]

(@) TCP Reno

T T T
1st flow ——

2nd flow ------ T

3rd flow ---

4th flow

400 600 800
Time [sec]

(c) STCP

1600

Window Size [packets]

Window Size [packets]

1600 . . .
1400 - 2nd flow ------ .
1200
1000
800
600
400
200

1600 T T
1400 ~ 2nd flow ------ 7
1200 b
1000 B
800 |- —
600
400
200

1st ﬂolvv

3rd flow --------
4th flow

0 200 400 600 800
Time [sec]

(b) HSTCP

T T T
1st flow ——

3rd flow -------
4th flow

200 400 600
Time [sec]

(d) FAST TCP

1400
1200
1000
800 -
600

Window Size [packets]

400 [\\""*\»_.ﬁ_\H~‘_A\‘ ﬁJ—fJ_
200 ; : B B
[R A T ! L

T T T
1st flow ——
2nd flow ------
3rd flow --------
4th flow

0
0

200

600
Time [sec]

800 1000

(e) Proposed Mechanism

Figure 14: Effect of changes in number of connections

TCP Reno

HSTCP -------

STCP -
FASTTCP -

Proposed Mechanism -—--

120

100 |

[sdqin] indybnoay L

150 200

00
Time [sec]

1

50

Figure 15: Adaptability to change in available bandwidth (throughput)

TCP Reno

STCP -
FASTTCP -

HSTCP ---—--—--
Proposed Mechanism ----

1000

800 -

[s19x0ed] 8215 Bnand

200

0

10
Time [sec]

50

Figure 16: Adaptability to change in available bandwidth (queue size)

33

5.5 Effect of Heterogeneity in Physical Bandwidth

Finally, we investigate the effects of the heterogeneity of access netswcksas the difference
of access link bandwidth. We séf,, = 2, 7 = 40 [msec],bw; = 10 [Mbps],bw, = 20 [Mbps],
71 =79 = 5 [msec], and we changel from 5 [Mbps] to 30 [Mbps]. We don'’t inject UDP traffic
into the network. Figure 17 shows the changes in the throughput of the @ cbnnections
in TCP Reno and the proposed mechanism aga¥igt. We observe from the figure that TCP
Reno fairly shares the bottleneck link bandwidth regardless of the valigi6f On the other
hand, the proposed mechanism shows an interesting characteristic. AWier bwq, the two
TCP connections fairly share bottleneck link bandwidth. When < BW < bws, however, the
bottleneck link bandwidth is distributed proportionally to the rati@e@i andbws. This property
can be explained from the equation utilized by the proposed mechanism.irBykuation (8),
the converged transmission rate for connectiatenoted byV;, which has different physical link
bandwidth {;), can be calculated as follows:

. K;

A v

Itis satisfied under conditions gf< 1. That s, bottleneck link bandwidth is shared proportionally

BW (28)

to the physical bandwidth of each TCP connection. Since a physicaiMidthdof the network
path is defined as a bandwidth of the tightest link between TCP hosts (ar senttla receiver),
the simulation results in Figure 17 match Equation (28). We argue that thisctéréstc is ideal
for a congestion control strategy on the Internet; in the history of therietethe ratio of the
bandwidth of access networks to backbone networks has been changintime [35]. Compared
with access networks, the amount of the resources of backbone kstaversometimes scarce and
sometimes plentiful. We believe that when backbone resources are smakhihyg be shared
fairly between users regardless of their access link bandwidth. Whgrathesufficient, on the
other hand, they should be shared according to the access link banddtttharacteristics of
the proposed mechanism found in Figure 17 and Equation (28) realiheastesource sharing

strategy.

34

Throughput [Mbps]

Throughput [Mbps]

Bottleneck Link Bandwidth [Mbps]

(b) Proposed Mechanism

30 T T T T
10 [Mbps] access link ——
25 - .
20 .
15 —
10 I~ ;/{///_,E
/V/JL

5F % _

;//
0 1 1 1 1

5 10 15 20 25 30

Bottleneck Link Bandwidth [Mbps]
(@) TCP Reno
30 T T T
10 [Mbps] access link ———

25 .
20 =
15 .
10 ///
S n
0 | | | |

5 10 15 20 25 30

Figure 17: Effect of different access link bandwidths

35

6 Conclusion

In this thesis, we proposed a new congestion control mechanism of T$&# ba the inline net-
work measurement. The proposed mechanism obtains the information aégdreysd available
bandwidths from the inline network measurement, IMTCP. By using bandwiftthmation, the
proposed mechanism adjusts its window size with an algorithm based on matlanmatdels
in biophysics. Consequently, the proposed mechanism can convergad@mwsize to an ideal
value and avoid periodic packet losses experienced by TCP Reno.

Through mathematical analysis, we confirmed that the proposed mechaassgodd scala-
bility to not only link bandwidth but also propagation delay between the seardkreceiver hosts;
other transport layer protocols such as TCP Reno, HighSpeed TaARp&CTCP, and FAST TCP
cannot provide such scalability. Furthermore, from the mathematical &nedgsilts about compe-
tition between TCP Reno and the proposed mechanism, we observed, @rgh the realization
of fairness between them is difficult, the proposed mechanism is the onliyosofar transport
layer protocols for future high-speed networks. Furthermore, thr@xtensive simulations, we
determined that the proposed mechanism exhibits the characteristics cdnifiyniee analysis.
Therefore, we believe that our proposed mechanism is effectivedlega of network bandwidth
and delay and can solve the many problems in TCP Reno and its variants.

For future work, we will confirm additional characteristics of the pragbsmechanism, which
include fairness among connections with different RTTs and the effenkasurement errors on
the physical and available bandwidths. Implementation experiments are alsdantgesearch

tasks.

36

Acknowledgement

| am very grateful for the advice and support of my advisor, ProieBmsayuki Murata of Osaka
University, for his continuous feedback and for keeping me focusetyinesearch.

All works of this thesis would not been possible without the support obéisge Professor
Go Hasegawa of Osaka University. He has always given me apppgtiadance and invaluable
direct advice.

| am also indebted to Associate Professor Naoki Wakamiya and Hiroynd@kd and Research
Assistant Shin’ichi Arakawa, Ichinoshin Maki, and Masahiro Sasdl@saka University, who
gave me helpful comments and feedback.

Finally, 1 want to say thanks to my many friends and colleagues in the Depdrtrhém
formation Networking of the Graduate School of Information Science authffology of Osaka
University for their support. Our conversations and work togethee lgaeatly influenced this

thesis.

37

References

[1] W. R. Stevens,TCP/IP lIllustrated, Volume 1: The Protocols. Reading, Massachusetts:
Addison-Wesley, 1994.

[2] J. B. Postel, “Transmission control protocdRéquest for Comments 793, Sept. 1981.

[3] V. Jacobson, R. Braden, and D. Borman, “TCP extensions fdr pgrformance, Request
for Comments 1323, May 1992.

[4] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s lossokery using limited
transmit,”Request for Comments 3042, Jan. 2001.

[5] E. Blanton, M. Allman, K. Fall, and L. Wang, “A conservative seleet@cknowledgment

(SACK)-based loss recovery algorithm for TCRgquest for Comments 3517, Apr. 2003.

[6] D.-M. Chiu and R. Jain, “Analysis of the increase and decreaseittigts for congestion
avoidance in computer networksggurnal of Computer Networks and ISDN Systems, pp. 1—

14, June 1989.

[7] S. Shenker, L. Zhang, and D. D. Clark, “Some observations odyhamics of a congestion

control algorithm,”ACM Computer Communication Review, vol. 20, pp. 30—39, Oct. 1990.

[8] J. C. Hoe, “Improving the start-up behavior of a congestion corsttheme of TCP,ACM
S GCOMM Computer Communication Review, vol. 26, pp. 270-280, Oct. 1996.

[9] L. Guo and I. Matta, “The War Between Mice and Elephani&thnical Report BU-CS
2001-005, May 2001.

[10] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “Tigact of multihop wireless
channel on TCP throughput and loss, Rroceedings of IEEE INFOCOM 2003, Apr. 2003.

[11] S. Floyd, “HighSpeed TCP for large congestion windowRefuest for Comments 3649,
Dec. 2003.

[12] C. Casetti, M. Gerla, S. Mascolo, M.Y.Sanadidi, and R. Wang, “TGR3tWood: End-to-end
congestion control for wired/wireless networkéfreless Networks Journal, vol. 8, pp. 467—

479, 2002.

38

[13] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP conmcations,”| EEE Journal

on Selected Areasin Communications, vol. 22, pp. 747-756, May 2004.

[14] E. H.-K. Wu and M.-Z. Chen, “JTCP: Jitter-based TCP for hetermpus wireless net-
works,” I[EEE Journal on Selected Areas in Communications, vol. 22, pp. 757-766, May
2004.

[15] T. Kelly, “Scalable TCP: Improving performance in highspeed widmanetworks,” irpro-
ceedings of PFLDnet ’ 03: workshop for the purposes of discussion, Feb. 2003.

[16] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation, architeetualgorithms, perfor-
mance,” inProceedings of IEEE INFOCOM 2004, Mar. 2004.

[17] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end+#d-@robing and analysis
method for estimating bandwidth bottlenecks, Hroceedings of IEEE GLOBECOM 2000,
Nov. 2000.

[18] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Meament methodology, dy-
namics, and relation with TCP throughput,”’fnoceedings of ACM SSGCOMM 2002, Aug.
2002.

[19] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “path®: Efficient available
bandwidth estimation for network paths,” Rmoceedings of NLANR PAM2003, Apr. 2003.

[20] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speepdadnket-switched net-
works,” Tech. Rep. BU-CS-96-006, Boston University Computerr8meDepartment, Mar.
1996.

[21] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packetedgpn techniqgues mea-

sure?,” inProceedings of IEEE INFOCOM 2001, Apr. 2001.

[22] V. Jacobson, “Pathchar - a tool to infer characteristics of intepa¢hs.” available from

http://ww. cai da.org/tool s/utilities/others/pathchar/, Apr. 1997.

[23] M. L. T. Cao, “A study on inline network measurement mechanismdovise overlay net-
works,” Master’s thesis, Graduate School of Information ScienceTantinology, Osaka

University, Feb. 2004.

39

[24] M. L. T. Cao, G. Hasegawa, and M. Murata, “Available bandwidth sneament via TCP
connection,” inProceedings of |FIP/IEEE MMNS 2004, Oct. 2004.

[25] M. L. T. Cao, G. Hasegawa, and M. Murata, “A merged inline meam@nt method for

capacity and available bandwidth,” to be presentddla8NR PAM 2005, Mar. 2005.

[26] L. S. Brakmo, S. W.O'Malley, and L. L. Peterson, “TCP VegaswNechniques for con-
gestion detection and avoidance,” fnoceedings of ACM SSGCOMM'’ 94, pp. 24-35, Oct.
1994.

[27] J. D. Murray,Mathematical Biology I: An Introduction. Springer Verlag Published, 2002.

[28] E. Blanton and M. Allman, “On making TCP more robust to packet reong,” ACM Com-
puter Communication Review, vol. 32, pp. 20-30, Jan. 2002.

[29] K. Kurata, G. Hasegawa, and M. Murata, “Fairness comparibetseen TCP Reno and
TCP Vegas for future deployment of TCP Vegas, Froceedings of IEEE INET 2000, July
2000.

[30] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing routefféns,” in Proceedings of
ACM SIGCOMM 2004, Aug. 2004.

[31] The VINT Project, “UCB/LBNL/VINT network simulator - ns (versior).2available from

http://ww.isi.edu/ nsnam ns/.

[32] M. Mathis, “TCP selective acknowledgement optioriRéquest for Comments 2018, Oct.
1996.

[33] C. Jin, D. X. Wei, and S. H. Low, “Internet draft: FAST TCP fagh-speed long-distance
networks,”Internet draft draft-jwl-tcp-fast-Ol1.txt, June 2003.

[34] A. Technologies, “Mixed packet size throughput.” available frotrt p: / / advanced.
coms. agi | ent. com n2x/ docs/journal /JTC _003. htmi .

[35] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. WarfiéldpS’s downfall: At the
bottom, or not at all!,” inProceedings of ACM SSIGCOMM 2003 Workshop on Revisiting IP
QoS (RIPQOS), Aug. 2003.

40

