
Master’s Thesis

Title

Achieving Scalability and Self-Adaptivity

to Network Bandwidth and Delay

for Measurement-based TCP Congestion Control

Supervisor

Professor Masayuki Murata

Author

Tomohito Iguchi

February 15th, 2005

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Achieving Scalability and Self-Adaptivity to Network Bandwidth and Delay

for Measurement-based TCP Congestion Control

Tomohito Iguchi

Abstract

The heterogeneity and complexity of the Internet are increasing with the rapid development

of such networking technology as wireless and DSL/FTTH access network links, gigabit/terabit-

level high-speed backbone network links, and the explosive growth ofthe Internet population. As

network link bandwidth increases, server and client machines directly connect to higher-speed

networks to deliver gigabyte/terabyte data to other hosts. When TCP Reno,which is the de facto

standard transport layer protocol in the current Internet, is used forsuch high-speed data trans-

mission, it cannot achieve sufficient throughput because of the natureof its essential congestion

control mechanism. The main reason is that TCP Reno does not utilize the bandwidth information

of the network path, one of the most important factors for congestion control in the Internet. The

variants of TCP Reno previously proposed for large bandwidth and longdelay networks have the

same shortcomings.

In this thesis, we propose a new congestion control mechanism based on the measurement of

the network bandwidth information. We adopt inline network measurement since it can measure

physical and available bandwidths from data/ACK packets transmitted by active TCP connections

in an inline fashion. Our proposed mechanism directly obtains bandwidth information by using the

inline network measurement technique and adjusts congestion window size byusing an algorithm

based on a logistic growth model and a Lotka-Volterra competition model from biophysics.

Through mathmatical analysis, we compare the proposed mechanism with traditional TCP

Reno and its variants, and exhibit its effectiveness for scalability to the network bandwidth and

delay, convergence time, fairness among competing connections, and stability. Furthermore, we

confirm that the proposed mechanism has the above characteristics through extensive simulation

experiments.

1

Keywords

Transmission Control Protocol (TCP), Congestion Control, Inline Network Measurement, Physi-

cal Bandwidth, Available Bandwidth, Logistic Growth Model, Lotka-VolterraCompetition Model

2

Contents

1 Introduction 5

2 Research Background 9

2.1 Mathematical Models . 9

2.1.1 Logistic Model . 9

2.1.2 Lotka-Volterra Competition Model . 9

2.2 Inline Network Measurement . 11

3 Proposed Mechanism Design 13

3.1 Application to Window Size Control Algorithm 13

3.2 Implementation Issues . 14

4 Characteristics of Proposed Mechanism 16

4.1 Scalability and Convergence Time . 16

4.2 Parameter Settings . 17

4.2.1 γ Setting . 17

4.2.2 ǫ Setting . 19

4.3 Competition with TCP Reno . 20

5 Simulation Results 26

5.1 Simulation Settings . 26

5.2 Fundamental Behavior . 26

5.3 Scalability to Network Bandwidth and Delay 27

5.4 Adaptability and Fairness . 29

5.5 Effect of Heterogeneity in Physical Bandwidth 34

6 Conclusion 36

Acknowledgement 37

References 40

3

List of Figures

1 Changes in population of species with Logistic growth model10

2 Changes in population of only two species with Lotka-Volterra competition model 11

3 Changes in population of 10 species with Lotka-Volterra competition model . .. 12

4 Pseudocode of proposed mechanism algorithm 15

5 Model for fairness analysis .20

6 Changes in the window sizes of TCP Reno and the proposed mechanism 21

7 Ratio of throughput for various buffer sizes 24

8 Ratio of throughput for various physical bandwidths 24

9 Network topology in simulation experiments . 27

10 Changes in window size (BW=100 [Mbps]) . 28

11 Change in window size (BW=1 [Gbps]) . 28

12 Changes in convergence time against bottleneck link bandwidths 30

13 Changes in convergence time against bottleneck link delays 30

14 Effect of changes in number of connections 32

15 Adaptability to change in available bandwidth (throughput) 33

16 Adaptability to change in available bandwidth (queue size) 33

17 Effect of different access link bandwidths 35

4

1 Introduction

Transmission Control Protocol (TCP) [1] is the de facto standard transport layer protocol of the

current Internet first designed in the 1970s: the first Request for Comments (RFC) on TCP was

released in 1981 [2]. TCP has also been frequently modified and enhanced to accommodate the

development of the Internet [3-5].

TCP has various functions to realize reliable and efficient data transmissionon the network.

The congestion control mechanism [1] is one of the most important. Its main purpose is to

avoid and resolve network congestion and to distribute network bandwidth fairly among competing

connections. To do that, TCP employs a window-based congestion controlmechanism that adjusts

data transmission speed by changing congestion window size. A congestionwindow indicates the

maximum amount of data that can be sent out on a connection without being acknowledged.

TCP Reno is the most popular version of TCP in current operating systems.Its window size

control algorithm allows a TCP sender to continue to additively increase its congestion window

size until it detects a packet loss (or losses), decreasing it multiplicatively when a packet loss

occurs. This is called an Additive Increase Multiplicative Decrease (AIMD) policy. In [6], the

authors argue that an AIMD policy is suitable for efficient and fair bandwidth usage in a distributed

environment, if congestion indication signals are simultaneously distributed to allconnections.

However, with increases in the heterogeneity and the complexity of the Internet, many prob-

lems have emerged in TCP Reno’s congestion control mechanism ([7-11] for example). The main

reasons are that the congestion signals are only indicated by packet lossand TCP Reno uses

fixed AIMD parameter values in increasing and decreasing window size, whereas they should be

changed according to the network environment.

For example, a previous paper [10] maintained that the throughput of TCP connections de-

creases when it traverses wireless links, since TCP cannot distinguish congestion-oriented packet

loss caused by network congestion, and wireless-oriented packet losscaused by link loss and/or

handoff. Some solutions can be found in [12-14]. Another problem is thelow throughput of TCP

connections in large bandwidth and long delay networks. In [11], the authors argued that a TCP

Reno connection cannot fully utilize the link bandwidth of such networks, since the increasing

parameter, which is one packet per a Round Trip Time (RTT), is too small andthe decreasing

parameter, which halves the window size when a packet loss occurs, is toolarge for networks

5

with a large bandwidth-delay product. Although there are many solutions to theproblem [11, 15,

16], almost all of them inherit the fundamental congestion control mechanism of TCP Reno: the

AIMD mechanism triggered by the detection of packet losses in the network.The mechanisms

improve the throughput by adjusting the increasing and decreasing parameters statically and/or

dynamically. However, most previous papers focused on changing the AIMD parameters for ac-

commodating particular network environments. That is, since those methods mayemploy ad hoc

modifications for a certain network situation, their performance is not clear when applied to other

network environments. Therefore, we believe they have not essentially solved the problem.

Because window size indicates the maximum amount of packets that TCP can transmit for one

Round Trip Time (RTT), adequate window size for a TCP connection is equal to the product of

the available bandwidth and the propagation delay between the sender and receiver hosts. TCP

Reno measures the RTTs of the network path between sender and receiver hosts by checking

the departure times of the data packets and the arrival times of the corresponding ACK packets.

However, it does not have an effective mechanism to recognize the available bandwidth. This is

the essential explanation of the problem: it cannot adjust window size to an adequate value under

various network environments. In a sense, the traditional TCP Reno can be considered a tool that

measures available bandwidth because of its ability to adjust the congestion window size to achieve

a transmission rate appropriate to the available bandwidth. However, it is ineffective since it only

increases window size until a packet loss occurs. In other words, it induces packet losses to obtain

information about the available bandwidth(-delay product) of the network.That is, even when

the congestion control mechanism of TCP works completely, the TCP senderexperiences packet

losses in the network at some intervals. Since all modified versions of TCP using AIMD policy

contain this essential problem, they cannot avoid periodic packet losses.We believe, therefore, if a

TCP sender recognizes the bandwidth information quickly and adequately,we can create a better

mechanism for congestion control in TCP.

Fortunately, many measurement tools have been proposed in the literature [17-22] that mea-

sure the physical and available bandwidths of network paths. However,we cannot directly employ

those existing methods into TCP mechanisms since they utilize a lot of test probe packets; they

also require too much time to obtain one measurement result. We have proposeda method called

Inline measurement TCP (ImTCP) that avoids these problems in [23-25]. Itdoes not inject extra

traffic into the network, and instead it estimates the physical/available bandwidths of the network

6

path from data/ACK packets transmitted by an active TCP connection in an inlinefashion. Fur-

thermore, since the ImTCP sender obtains bandwidth information every 1–4 RTTs, it can follow

the traffic fluctuation of the underlying IP network well. Furthermore, because it is implemented

at the bottom of the TCP layer, all kinds of TCP’s congestion control mechanisms can include this

measurement mechanism.

In this thesis, we propose a new congestion control mechanism of TCP thatutilizes the in-

formation of physical and available bandwidths obtained from an inline measurement technique.

The proposed mechanism does not use ad hoc algorithms such as TCP Vegas [26]: instead it em-

ploys algorithms that have a mathematical background that enable us to mathematically discuss

and guarantee their behavior even though posing a simplification of the target system. More im-

portantly, it becomes possible to give a reasonable background of our control parameter selections

within TCP, instead of conducting intensive computer simulations and/or choosing parameters

in an ad hoc fashion. We designed a window size control algorithm that aims toquickly adjust

window size to an adequate value by using bandwidth information to fairly distribute bandwidth

among competing connections. Therefore, we borrowed algorithms from biophysics: the logis-

tic growth model and the Lotka-Volterra competition model [27], which describe changes in the

population of species, are applied to the window updating algorithm of the proposed TCP. This

application can be done by considering the population of a species as a window size of a TCP

connection, the carrying capacity of the environment as physical bandwidth, and interspecific

competition among species as bandwidth share among competing TCP connections. We present

in detail how to apply the logistic growth and Lotka-Volterra competition models to thecongestion

control algorithm of our TCP as well as analytic investigations of the proposed algorithm. Then,

we can utilize the existing discussions and results on various characteristicsof the mathematical

models, including scalability, convergence, fairness and stability. Giving those characteristics to

TCP is the main objective of this thesis. We also present extensive simulation results to evalu-

ate the proposed mechanism and show that, compared with traditional TCP Reno and other TCP

variants, it utilizes network bandwidth effectively, quickly, and fairly.

The rest of this thesis is organized as follows. In Section 2, we introduce mathematical models

in biophysics and inline network measurement we utilize in our proposed mechanism. In Section 3,

we design the proposed TCP mechanism. In Section 4, we analyze and discuss the characteristics

of the proposed mechanism. In Section 5, we present its effectiveness and performance through

7

various simulation experiments. We finally conclude this thesis and offer future work in Section

6.

8

2 Research Background

In this section, we briefly introduce the mathematical models in biophysics that are applied to the

proposed mechanism in the next section, and the inline network measurementmechanism.

2.1 Mathematical Models

2.1.1 Logistic Model

The logistic equation is a formula that represents the evolution of the populationof a single species

over time. Generally, the per capita birth rate of a species increases as the population of the

species becomes larger. However, since there are various restrictions on living environments,

the carrying capacity of the environment exists, which is usually determined by the available

sustaining resources. The logistic equation describes such changes in the population of the species

as follows [27]:

d

dt
N = ǫ

(

1−
N

K

)

N (1)

wheret is time,N is the population of the species,K is the carrying capacity of the environment,

andǫ is the intrinsic growth rate of the species (0< ǫ).

Figure 1 shows changes in the population of the species (N) as a function of time where

K = 100 andǫ changes to 1.0, 2.0, 4.0 and 8.0. Looking at the lines, we can observe the following

characteristics of the logistic equation: whenN is much smaller thanK, the increasing speed of

N becomes larger asN increases. On the other hand, whenN becomes close toK, the increasing

rate decreases, andN converges toK. As ǫ increases, convergence time becomes smaller.

2.1.2 Lotka-Volterra Competition Model

The Lotka-Volterra competition model is famous for the population growth of twoor more species

including interspecific competition among them. In the model, Equation (1) is modifiedto include

the effects of interspecific competition as well as intraspecific competition. Thebasic two-species

Lotka-Volterra competition model with each speciesN1 and N2 having logistic growth in the

9

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12

N
um

be
r

of
 S

pe
ci

es

Time [sec]

ε = 1.0
ε = 2.0
ε = 4.0
ε = 8.0

Figure 1: Changes in population of species with Logistic growth model

absence of the other is comprised of the following equations [27]:

d

dt
N1 = ǫ1

(

1−
N1 + γ12 ·N2

K1

)

N1 (2)

d

dt
N2 = ǫ2

(

1−
N2 + γ21 ·N1

K2

)

N2 (3)

whereNi, Ki, andǫi are the population of the species, the carrying capacity of the environment,

and the intrinsic growth rate of the speciesi, respectively. γij is the ratio of the competition

coefficient of speciesi on speciesj.

In this model, the population of species 1 and 2 does not always convergeto a value larger than

0, and in some cases one of them becomes extinct. It depends on the value of γ12 andγ21. It is a

common characteristic that when the following conditions are satisfied, two species can survive in

the environment [27]:

γ12 <
K1

K2
, γ21 <

K2

K1
(4)

Assuming that the two species have the same characteristics, they have the same valuesK = K1 = K2,

ǫ = ǫ1 = ǫ2, andγ = γ1 = γ2. Then, Equations (2) and (3) can be written as follows:

d

dt
N1 = ǫ

(

1−
N1 + γ ·N2

K

)

N1 (5)

d

dt
N2 = ǫ

(

1−
N2 + γ ·N1

K

)

N2 (6)

10

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

N
um

be
r

of
 S

pe
ci

es

Time [sec]

Species #1
Species #2

Figure 2: Changes in population of only two species with Lotka-Volterra competition model

Besides, Equation (4) can be written asγ < 1. Figure 2 shows the population changes in the two

species by using Equations (5) and (6), whereK = 100,ǫ = 1.95 andγ = 0.90, and species 2 join

the environment 10 seconds after species 1. We can observe from this figure that the population of

the two species converges quickly at the same value.

We can easily extend Equations (5) and (6) forn species as follows:

d

dt
Ni = ǫ

(

1−
Ni + γ ·

∑n
j=1,i6=j Nj

K

)

Ni (7)

Figure 3 shows population changes in the ten species by using Equation (7), whereK = 100,

ǫ = 1.95 andγ = 0.90, and new species join the environment one after another. We can observe that

ten species converge as two species do in Figure 2. Note that survival and convergence conditions

are identical: that is,γ < 1. Even when two or more species exist, each independently utilizes

Equation (7) for obtainingNi, and the population of the species can converge to the value equally

shared among competing species. Of course, this model can be directly applied to the congestion

control algorithm of TCP because it has to obtainNj . We discuss it in Subsection 3.1.

2.2 Inline Network Measurement

In [23-25], the authors proposed ImTCP, which is an inline network measurement technique for the

physical and available bandwidths of network paths between TCP senderand receiver hosts. It can

11

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

N
um

be
r

of
 S

pe
ci

es

Time [sec]

Species #1
Species #2
Species #3
Species #4
Species #5
Species #6
Species #7
Species #8
Species #9

Species #10

Figure 3: Changes in population of 10 species with Lotka-Volterra competitionmodel

continuously measure bandwidths by using data and ACK packets of a TCP connection under data

transmission. That is, the TCP sender transmits data packets at intervals determined by an inline

measurement algorithm and checks the arrival interval times of the corresponding ACK packets

to estimate bandwidth. Since it performs the measurement without transmitting additional probe

packets into the network, it negligibly affects other network traffic. It canalso quickly update the

latest changes in bandwidths by frequently performing measurements (oneresult per 1–4 RTTs) as

long as TCP transmits data packets. The authors have also proposed an implementation design of

ImTCP, where the measurement program is located at the bottom of the TCP layer. It maintains the

transmission/arrival intervals of TCP data/ACK packets by introducing a FIFO buffer between the

TCP and IP layers. Note that the measurement algorithm does not affect TCP’s congestion control

algorithm, but only refers to the window size of the TCP sender. This means that the measurement

algorithm can be applied to any TCP variants having a different congestioncontrol algorithm.

12

3 Proposed Mechanism Design

3.1 Application to Window Size Control Algorithm

We consider that the changing population trends of species depicted in Figures 2 and 3 are ideal

to control the transmission speed of TCP. That is, by using Equation (7) for the congestion control

algorithm of TCP, rapid and stable link utilization can be realized.

To convert Equation (7) to a transmission rate control algorithm, we consider Ni as the trans-

mission rate of a TCP senderi andK as the physical bandwidth of the bottleneck link. Fur-

thermore, when applying Equation (7) to the congestion control algorithm for connectioni, it is

necessary for connectioni to know the data transmission rates of all other connections that share

the same bottleneck link. This assumption is quite unrealistic in the current Internet. Therefore,

we approximate the sum of the data transmission rates of all of other connections by using the

physical and available bandwidths as follows:
n
∑

j=1,i6=j

Nj = K −Ai

Thus, Equation (7) becomes:

d

dt
Ni = ǫ

(

1−
Ni + γ · (K −Ai)

K

)

Ni (8)

whereAi is the available bandwidth for connectionsi. We assume that all connections share the

same bottleneck linkK.

A TCP sender controls its data transmission rate by changing its window size. To retain the

essential characteristics of TCP and decrease the implementation overhead, we employ window-

based congestion control in our proposed TCP by converting Equation (8) to obtain an increasing

algorithm of window size in TCP. The window size of connectioni, wi, is calculated fromNi, the

transmission rate, by the following simple equation:

wi = Niτi

whereτi is the minimum value of the RTTs of connectioni, which is assumed to equal the prop-

agation delay without a queueing delay in the intermediate routers between sender and receiver

hosts. Now Equation (8) can be rewritten as follows:

d

dt
wi = ǫ

(

1−
wi + γ(K −Ai)τi

Kτi

)

wi (9)

13

Finally, we integrate Equation (9) as follows:

wi(t) =
wi(0)e

ǫt
n

1−γ
“

1−
Ai

K

”o

{K − γ (K −Ai)} τi

wi(0)

(

e
ǫt

n

1−γ
“

1−
Ai

K

”o

− 1

)

+ {K − γ (K −Ai)} τi

(10)

In Equation (10), when we set the initial value of the window size (wi(0)) and the current time to

0 (t = 0), we can directly obtain window sizewi(t) at any timet. We use the above equation for

the control algorithm of the window size of TCP connections.

The proposed congestion control algorithm is based on the traditional TCPReno, and we

integrate the inline network measurement technique in ImTCP [23-25]. Equation (10) requires the

measurements of the physical and available bandwidths of a network path. Therefore, we use the

same algorithm as TCP Reno for the window updating algorithm until measurement results are

obtained through inline network measurements. In cases of packet loss (or losses), window size is

decreased in an identical way to TCP Reno in both cases of timeout and fastretransmit [1].

When bandwidth information is obtained, the congestion control algorithm adjusts its window

size using Equation (10). That is, Whenj-th ACK packet is received at sender TCP, we use

Equation (10) to obtain the new value of the congestion window size of the TCPconnection by

the following calculation: setwi(0) to the current window size andt to the time duration from the

arrival time of the (j-1)-th ACK packet to that of thej-th ACK packet. In Figure 4, we show the

pseudocode of the congestion control algorithm of our proposed mechanism.

3.2 Implementation Issues

Equation (10) has theex calculation. Generally, exponentiation cannot be operated in the system

kernel because of the lack of library and processing overhead. Therefore, we give the Taylor

polynomial of degree 4 aroundx = a for functionex as follows,

ex ∼ ea
4
∑

k=0

1

k!
(x− a)k

wherea is an integer part ofx (ex. a = 0 when 0≤ x < 1). By preparingea on a memory table

for the limited range ofa, we can calculateex with minimal processing overhead. In determining

14

// on event of receiving one ack
onEventACK()
{
IF BW_measured = 1 THEN // Bandwidth is measured?
w_0 = cwnd_ // set current window size
t_j = now()
t = t_j - t_j1 // time duration
cwnd_ = getCurrentCwnd(w_0, t) // use Equation (10)
t_j1 = t_j

ELSE
cwnd_ = cwnd_ + getRenoCwnd() // use TCP Reno algorithm

ENDIF
}

Figure 4: Pseudocode of proposed mechanism algorithm

the maximum value ofa in our proposed mechanism, we consider the following equation:

x = ǫt

{

1− γ

(

1−
Ai

K

)}

≤ ǫt

That is, when we assume that the maximum RTT of TCP connection is 10 [sec],we can determine

the maximum value ofa to ⌊ 10 ǫ⌋.

15

4 Characteristics of Proposed Mechanism

In this section, we analyze the various characteristics of the proposed mechanism such as scal-

ability, convergence, stability, and so on. This analysis illustrates that the proposed mechanism

essentially solves TCP Reno’s problems.

4.1 Scalability and Convergence Time

Assuming physical bandwidthK and available bandwidthA are constant, the window size con-

verges to a certain value in the proposed mechanism. The converged window size, which is de-

noted asw∗, can be obtained by settingdw/dt = 0 in Equation (9):

w∗ = {(1− γ)K + γA}τ (11)

We obtain timeTproposed, which is required to increase window size fromw0 to ρw∗ (0 < ρ < 1,

w0 < ρw∗), by using Equation (10) as follows:

Tproposed =
1

ǫ
{

1− γ
(

1− A
K

)} ln

(

ρ

1− ρ

w∗ − w0

w0

)

≤
1

ǫ(1− γ)
ln

(

ρ

1− ρ

w∗ − w0

w0

)

(12)

where 0≤ A ≤ K is satisfied. In the case of TCP Reno, we can easily calculate timeTreno, the

time necessary to increase window size fromw0 to w∗, as follows:

Treno = (w∗ − w0)τ̄ = [{(1− γ)K + γA}τ − w0]τ̄ (13)

whereτ̄ is the average value of the RTTs of the TCP connection. Here, we ignore the effect of

delayed ACK option [1] and focus only on the congestion avoidance phase of TCP Reno. In the

case of HighSpeed TCP (HSTCP) [11], which is denoted byThstcp, is given by:

Thstcp ≥
w∗ − w0

amax
τ̄ =
{(1− γ)K + γA}τ − w0

amax
τ̄ (14)

whereamax is a parameter of HSTCP that indicates the maximum amount of window size in-

creased in one RTT (equivalent toa(W) in [11]). In a Scalable TCP (STCP), we calculate time

Tstcp as follows:

Tstcp =
1

a

(

ln
w∗

w0

)

τ̄ =
1

a

(

ln
{(1− γ)K + γA}τ

w0

)

τ̄ (15)

16

wherea is a STCP parameter, which is the amount the window size increased in receiving 1 ACK

packet. In [15],a = 0.01 [packet] is the default value.

From Equations (13) and (14), it is observed that the time it takes to increase its window

size is proportional to physical bandwidthK and propagation delayτ . It illustrates that the time

it takes to utilize the bandwidth-delay product of the network path fully is proportional to the

bandwidth-delay product. HSTCP proposed in [11] was designed as a new congestion control

mechanism to resolve the problem in TCP Reno for high-speed and long delay networks. However,

since the window size control algorithm of HSTCP is essentially based on the AIMD policy, it

suffers from bad scalability to the bandwidth-delay product. STCP has a window size control

algorithm based on Multiplicative Increase Multiplicative Decrease (MIMD)policy and describes

logarithmic increases of time against increases of link bandwidth, as shown inEquation (15).

Hence, it has good scalability to bandwidth. However, Equation (15) clearly shows bad scalability

to propagation delay. On the other hand, the proposed mechanism increases logarithmically time

against increases of link bandwidth and propagation delay in Equation (12).

4.2 Parameter Settings

The congestion control algorithm of the proposed mechanism has two parameters,γ andǫ. In this

subsection, we discuss the effect of those parameters and show some guidelines to configureγ and

ǫ.

4.2.1 γ Setting

γ indicates the degree of the influence of the other competing connections thatshare the same

bottleneck link. To converge window size to a positive value despite the physical bandwidthKi

of each connection, it is necessary to satisfy condition 0< γ < 1. From Equations (11) and (12),

furthermore, we need to consider the trade-off between convergencespeed and the final amount

of packets accumulated within the buffer at the bottleneck link. That is, although smallerγ leads

to faster convergence speed, it increases the queue size of the bottleneck router buffer when the

window size is converged. By using Equation (11) we can easily obtain the sum of the window

17

size ofn TCP connections as follows:

n
∑

i=1

wi =
n

1 + (n− 1)γ
Kτ (16)

where we assume that physical bandwidthK and the delayτ of each connection are identical.

From Equation (16) queue sizeQ at the bottleneck link is given by:

Q =
(n− 1)(1− γ)

1 + (n− 1)γ
Kτ (17)

This equation shows thatQ increases asn becomes larger. However, asn goes to infinity, we can

obtain the following equation:

lim
n→∞

Q =
1− γ

γ
Kτ (18)

That is, there exists an upper bound of the queue size against an increase of the number of con-

current TCP connections. Therefore, if the bottleneck link has a large enough buffer, the proposed

mechanism will induce no packet losses regardless of the number of TCP connections. TCP Reno,

HSTCP, and STCP, on the other hand, increase their window size until theyfully utilize the buffer

at the bottleneck link. As a result, they cannot avoid periodic packet losses. In the case of FAST

TCP, we can estimate the total window size ofn connections that share the bottleneck link. Just

before the FAST TCP connection converges its window size, it updates window size according to

the following equation [16]:

wi ← (1− p)wi + p
(τ

τ̄
wi + α

)

(19)

whereα is a constant to determine the increment degree of the window size andp (0 < p < 1)

is a smoothing coefficient parameter. From Equation (19), we obtain the following equation on

converged window size:

wi =
ατ̄

τ̄ − τ
(20)

Sincewi for each connection is independently calculated, the sum of the converged window size

of n TCP connections is then calculated as follows:

n
∑

i=1

wi = n
ατ̄

τ̄ − τ
(21)

18

We observe from Equation (21) that the sum of the window size is proportional to the number of

TCP connections. So, to avoid packet losses, it is necessary to prepare a bottleneck link buffer

based on the number of connections. We therefore conclude that FAST TCP cannot provide scal-

ability to the number of concurrent TCP connections in the network.

4.2.2 ǫ Setting

ǫ determines convergence speed, as shown in Equation (9) and Figure 1.Generally, when we

convert Equation (1) into the discrete equation, the population of the species does not converge

with ǫ ≥ 2 [27]. In contrast, the window size updating algorithm proposed in Subsection 3.1

converts Equation (10) into a discrete equation in such a way that does notcause oscillation.

Therefore, in the proposed algorithm, there is no limitation inǫ, which means that asǫ becomes

larger, the window size converges faster. However, a value ofǫ too large makes the TCP sender

transmit many packets in bursty fashion that may degrade the network performance.

Furthermore, there is another issue to be considered to setǫ. In the logistic growth model

(Equation (1)), on which the proposed mechanism is based, per capita birth rate is determined ac-

cording to the current population of the species. In the proposed mechanism, the increase degree

of window size is determined by using the bandwidth information obtained by ImTCP’s inline

measurement. Since the measurement algorithm in ImTCP utilizes the arrival time ofACK pack-

ets corresponding to the data packets transmitted by the sender host, the obtained measurement

results experience some delay. Here, we consider the logistic growth model with delayed feedback

described in the following equation:

d

dt
N(t) = ǫ

(

1−
N(t− τd)

K

)

N(t) (22)

whereτd is the delay of the feedback information. When the population of the species changes

with Equation (22), the population does not converge to a certain value even in a continuous-time

model, if the following condition is satisfied [27]:

τd >
π

2ǫ

That is, in Equation (22), it is necessary to satisfyǫ ≤ π/2τd to converge the population. A similar

limitation of ǫ exists in the proposed mechanism. This means that with a delay of the bandwidth

information, changing window size too drastically causes oscillation of the window size.

19

the Proposed Mechanism

TCP Reno

Physical Bandwidth = K [Mbps]
Minimum Round-trip Propagation Delay = τ[msec]

Size of the Output Buffer of the Bottleneck Link = B [packets]

Figure 5: Model for fairness analysis

The delay in the proposed mechanism corresponds to the time it takes for the data (ACK)

packets to traverse from the bottleneck link to the sender hosts. Since ImTCPneeds 1–4 RTTs to

measure the bandwidth information, we believe that the delay becomes about 1–2 RTTs. That is,

the length of the delay depends on the RTT value of a TCP connection. In other words, by setting

ǫ according to the RTT for each TCP connection, the proposed mechanism can avoid window size

oscillation. However, using differentǫ brings different convergence speeds as shown in Figure 1,

short-term unfairness among connections with different RTTs might happen. We conclude that we

should take this trade-off into consideration when configuringǫ in the proposed mechanism.

4.3 Competition with TCP Reno

In this subsection, we investigate the fairness property of the proposed mechanism against com-

peting TCP Reno connections. For that objective, we compare the throughput of two TCP connec-

tions, which deploy TCP Reno and the proposed mechanism share a bottleneck link, by analyzing

changes in congestion window sizes. Figure 5 depicts the network model foranalysis, whereK is

the physical bandwidth,τ is the minimum round-trip propagation delay except the queueing delay,

andB is the size of the output buffer adopting a TailDrop scheme, of the bottlenecklink.

As explained above, the proposed mechanism converges its window size to acertain value

while TCP Reno continues increasing its window size until a packet loss occurs. Hence, even

20

Window Size

Time

BK +τ

T

τρK

2
τρK

() BK +− τρ1

()
2

1 BK +− τρ

1 cycle

Window size of TCP Reno

Window size of the proposed mechanism

Sum of the window size of
TCP Reno and the proposed mechanism

Figure 6: Changes in the window sizes of TCP Reno and the proposed mechanism

when both TCP connections compete at the bottleneck link bandwidth, periodic packet losses

occur at the buffer. We, therefore, assume that both TCP connectionsexperience a packet loss

when the buffer becomes fully utilized. Therefore, the window size of the two TCP connections

changes cyclically, triggered by packet losses. Figure 6 describes such changes in the window

size. Here we define one cycle as a period between two packet losses and denote the length of the

cycle asT . We assume that the received socket buffer of each TCP connection islarge enough not

to limit the congestion window size evolution.

The proposed mechanism obtains the physical and available bandwidths with an inline network

measurement. In this analysis, we assume that the sender of the proposed mechanism can obtain

precise physical bandwidth information. On the other hand, when several TCP and/or ImTCP

connections share bottleneck link bandwidth, the ImTCP sender cannot obtain the available band-

width as expected, and so the obtained value becomes almost equal to the available bandwidth for

all TCP connections sharing the bottleneck link [24]. This is because a TCPconnection tends

to transmit bursty data packets [28], and then packets from each TCP connection traverses the

bottleneck link in a back to back fashion. Therefore, we suppose in this analysis that the measured

available bandwidthA is equivalent to physical bandwidthK. Note that by this assumption we

estimate that the available bandwidth for the proposed mechanism are at maximum,meaning that

21

the analysis gives the upper bound throughput of the proposed mechanism.

From Figure 6, by usingρ (0< ρ < 1), the window size of the proposed mechanism just before

packet losses occur is represented asρKτ . Since the sum of the window size of both connections

is Kτ +B when the buffer becomes full, the window size of TCP Reno connection at that time can

be described as(1− ρ)Kτ + B. Then, the window size of the proposed mechanism immediately

after packet losses occur becomes decreased toρKτ/2, and that of TCP Reno becomes((1 −

ρ)Kτ + B)/2. Since TCP Reno increases its window size by one packet every RTT,T , which is

the time duration of one cycle, can be calculated as follows:

T =
(1− ρ)Kτ + B

2
τ̄ (23)

whereτ̄ is the average value of the RTTs of the TCP connection. On the other hand,the window

size of the proposed mechanism can be obtained from Equation (10) by substitutingK for A as

follows:

w(t) =
w(0)eǫtKτ

w(0)(eǫt − 1) + Kτ
(24)

From Equations (12) and (24), we can calculateT , which equals the time it takes for the window

size to increase fromρKτ/2 to ρKτ , as follows:

T =
1

ǫ
ln

(

ρ

1− ρ

Kτ − ρKτ/2

ρKτ/2

)

=
1

ǫ
ln

(

2− ρ

1− ρ

)

(25)

From Equations (23) and (25), we obtain the following equation:

(1− ρ)Kτ + B

2
τ̄ =

1

ǫ
ln

(

2− ρ

1− ρ

)

(26)

Note that the ratio of the throughput of the TCP Reno connection to that of theproposed mecha-

nism is equal to the ratio of the areas enclosed in the x axis and each line indicating changes in the

window size, as depicted in Figure 6. The area for TCP Reno,Sreno, is given by:

Sreno =
3

4
{(1− ρ) Kτ + B}2 τ̄

On the other hand, the area for the proposed mechanism, which is denoted as Sproposed, is calcu-

lated as follows:

Sproposed =

∫ T

0
w(t)dt =

Kτ

ǫ
ln

2− ρ

2(1− ρ)

22

Finally, the average ratio of the throughput of TCP Reno to the proposal mechanism is given by:

λ =
Sreno

Sproposed
=

3
4 {(1− ρ)Kτ + B}2

Kτ
ǫ

ln 2−ρ
2(1−ρ)

(27)

From Equations (26) and (27), we can understand the relationship between the variables (ǫ, K

andB) and the ratio of throughputλ. We show some numerical examples of the throughput ratio.

Here we ignore the queueing delay and assumeτ̄ = τ . Figure 7 shows changes in the throughput

ratio againstǫ, where we setK = 10 [Mbps] andτ = 50 [msec]. The five lines represent the

results when the buffer sizeB is 1/4, 1/2, 1, 2, and 4 times the bandwidth-delay product (BDP)

of the bottleneck link, respectively. In Figure 8, we show the results whenwe setτ = 50 [msec]

andB to 41 [packets] (equal to BDP whenK = 10 [Mbps]), where the five lines describe the

results whenK = 10, 50, 100, 500, and 1000 [Mbps]. These results show thatǫ, which realizes

fairness between TCP Reno and the proposed mechanism, drastically changes when we modify

K and/orB. Furthermore, in some situations, especially when the buffer size is large compared

with bandwidth-delay product, fairness cannot be realized by configuring ǫ. One reason is that the

proposed mechanism converges its window size toKτ , whereas TCP Reno continues increasing

its window size until the buffer has been fully used. The congestion control algorithm of the

proposed mechanism is essentially more conservative than TCP Reno. In contrast, TCP Reno has

an aggressive window size control algorithm. Therefore, we cannot avoid situations where the

throughput of the proposed mechanism is less than TCP Reno when they co-exist in the network.

A similar discussion can also be found in the literature regarding TCP Vegas [29], and we believe

it is the main reason that TCP Vegas was not successfully deployed in the Internet. In the case

of TCP Reno and its variants using AIMD/MIMD policies, window size just after packet losses

occur is dependent on the bottleneck link buffer size. That is, the throughput of those connections

is improved as buffer size increases. However, as buffer size becomes larger, the packets within

the buffer also become larger, which means that the queueing delay is also increased.

Furthermore, due to the difference between the technology evolution in memory and in link

bandwidth, we are unable to prepare enough buffer for TCP connections to retain the utilization

of high-speed network links in the near future [30]. That is, AIMD/MIMD-based congestion

control mechanisms will fail to provide enough performance for transport layer protocols in the

future Internet, and more conservative mechanisms will be needed in suchsituations. We believe

that the proposed mechanism in this thesis is the most feasible solution. FAST TCP, originating

23

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
R

a
ti
o

ε

Buffer : 1/4 BDP
Buffer : 1/2 BDP

Buffer : 1 BDP
Buffer : 2 BDP
Buffer : 4 BDP

Ratio = 1

Figure 7: Ratio of throughput for various buffer sizes

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
R

a
ti
o

ε

Physical Bandwidth : 10 [Mbps]
Physical Bandwidth : 50 [Mbps]

Physical Bandwidth : 100 [Mbps]
Physical Bandwidth : 500 [Mbps]

Physical Bandwidth : 1000 [Mbps]
Ratio = 1

Figure 8: Ratio of throughput for various physical bandwidths

24

from TCP Vegas, is also a possible answer since it has a more conservative congestion control

mechanism than TCP Reno. However, as described in Subsection 4.1, FAST TCP cannot provide

good scalability to the number of connections sharing the bottleneck link.

25

5 Simulation Results

In this section, we present simulation results to evaluate the performance of the congestion control

mechanism proposed in Section 3.

5.1 Simulation Settings

We use ns-2 [31] for the simulation experiments. A traditional TCP Reno, HighSpeed TCP

(HSTCP) [11], Scalable TCP (STCP) [15], and FAST TCP [16] are chosen for performance com-

parison. In the proposed mechanism, available bandwidth information is obtained by the current

ImTCP if only one connection exists. However, we directly give available bandwidth information

when two or more connections exist. We also directly give the physical bandwidth information

to the TCP sender. We setǫ = 1.95 andγ = 0.9 for the proposed mechanism. The parameters

in HSTCP and STCP are set to the value described in [11] and [15], respectively, and SACK op-

tion [32] is set enabled for both protocols. FAST TCP has parameterα, which should be changed

according to the link bandwidth. According to the guidelines in [33] we setα = 10, 20, 50, 100,

200, 500, and 1000 for link bandwidthsK = 10, 20, 50, 100, 200, 500, and 1000 [Mbps], respec-

tively.

The network model used in the simulation is depicted in Figure 9. It consists of sender/receiver

hosts, two routers, and links between the hosts and routers.Ntcp TCP connections are established

between TCP senderi and TCP receiveri. For creating background traffic, we injected UDP pack-

ets at a rate ofrudp into the network, where packet size distribution follows the traffic observation

results in the Internet [34]. That is,Ntcp TCP connections and an UDP flow share a bottleneck link

between the two routers. The bandwidth of the bottleneck link is denoted asBW , and the prop-

agation delay isτ . The bandwidth and the propagation delay of the access link for TCP sender i

arebwi andτi, respectively. We deployed the TailDrop scheme at the router buffer, and the buffer

size is set equivalent to the bandwidth-delay product between sender and receiver hosts.

5.2 Fundamental Behavior

First, we confirm the fundamental behavior of the proposed mechanism withone TCP connec-

tion. Figure 10 shows the changes in the window size of TCP Reno, HSTCP,STCP, FAST TCP,

and the proposed mechanism, where we setNtcp = 1，BW = 100 [Mbps]，τ = 25 [msec],

26

UDP Traffic

TCP Traffic

[Mbps]

tcpN

udpr

[Mbps]
[msec]

BW
τ[Mbps]

[msec]ibw
iτ

[Mbps]
5 [msec]ibw

Figure 9: Network topology in simulation experiments

bw1 = 200 [Mbps], andτ1 = 5 [msec]. In this case, we don’t inject UDP traffic into the net-

work. This result shows that TCP Reno, HSTCP, and STCP connectionsexperience periodic

packet losses due to buffer overflow, since they continue increasing the window size until packet

loss occurs. On the other hand, since the window size of FAST TCP and theproposed mechanism

quickly converges to an ideal value, no packet loss occurs. Their increasing speed is much larger

than HSTCP and STCP, meaning that they can more effectively utilize the link bandwidth. Further-

more, we show Figure 11, which describes the results in the case of 10 times the bandwidth of the

bottleneck and access links. From these results, we observe that TCP Reno and HSTCP increase

their window size slowly. But, the increasing speed of the window size of the other mechanisms

remains fast regardless of the link bandwidth. Note also that HSTCP and STCP rapidly increase

their window size, they cause more packet losses than in TCP Reno. In the case of Figure 10,

the SACK mechanism works well, and the sender host avoids timeouts. However, in the case of

Figure 11, many retransmission timeouts happen since the SACK mechanism cannot recover all

of the lost packets.

5.3 Scalability to Network Bandwidth and Delay

We next investigate the scalability to the link bandwidth of the proposed mechanism by checking

convergence time, defined as the time it takes for the TCP connection to utilize 99% of the link

bandwidth. We setNtcp = 1, τ1 = 5 [msec],τ = 25 [msec], andτu = 5 [msec]. Figure 12 shows

27

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

TCP Reno
HSTCP

STCP
FAST TCP

Proposed Mechanism

Figure 10: Changes in window size (BW=100 [Mbps])

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 20 40 60 80 100

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

TCP Reno
HSTCP

STCP
FAST TCP

Proposed mechanism

Figure 11: Change in window size (BW=1 [Gbps])

28

changes in the convergence time when we changeBW from 10 [Mbps] to 1 [Gbps], whererudp is

set to (0.2BW) [Mbps] andbw1 is set equal toBW . In the figure, the average values and the 95%

confidence intervals for 10 simulations experiments are shown. From this figure, we can see that

the TCP Reno connection requires a large amount of time to fully utilize the link bandwidth since

the increasing speed of the window size is fixed at a small value regardlessof the link bandwidth.

HSTCP dramatically reduces convergence time, but the larger the link bandwidth becomes, the

more convergence time is required to fill the bottleneck link bandwidth. This means that HSTCP

is fundamentally unable to resolve the scalability problem of TCP Reno. In the case of STCP and

FAST TCP, the convergence time remains constant regardless of the link bandwidth, which is also

confirmed in [15] and [16]. The proposed mechanism retains almost a constant convergence time

regardless of the link bandwidth, which shows good scalability to network bandwidth.

Moreover, we investigate the scalability to the propagation delay of the proposed mechanism.

We setNtcp = 1, BW = 100 [Mbps],bw1 = 200 [Mbps],τ1 = 5 [msec], andrudp = 20 [Mbps].

Figure 13 shows the changes in the convergence time when we changeτ from 10 [msec] to

500 [msec]. This figure shows that the TCP Reno connection requires quite a large amount of

time to fully utilize the link bandwidth since it only increases its window size by one packet per

RTT. The convergence time of HSTCP and FAST TCP is less than TCP Reno.However, the more

increases in propagation delay, the larger convergence time becomes. Although STCP has good

scalability to link bandwidth as described in Figure 12, the convergence time increases when delay

becomes larger because HSTCP, STCP, and FAST TCP increase their window size when receiv-

ing ACK packets, which depends on RTT. The proposed mechanism keeps the best scalability

to the network delay. This is because, as shown in Subsection 4.1, convergence time becomes

logarithmically larger against increases in delay and bandwidth.

5.4 Adaptability and Fairness

We also investigate the adaptability and fairness of the proposed mechanism by checking the effect

of changes in the number of TCP connections. We setNtcp = 5,BW = 100 [Mbps],τ = 25 [msec],

bwi = 100 [Mbps] (1≤ i ≤ 5), andτi = 5 [msec]. We don’t inject UDP traffic into the network.

TCP connections 1–5 join the network at 0, 100, 300, 500, and 700 [sec] and stop sending data

packets at 900, 950, 1000, 1050, and 1100 [sec], respectively. Figure 14 shows changes in window

size for the five TCP connections against the time in TCP Reno, HSTCP，STCP，FAST TCP, and

29

1

10

100

1000

10 20 50 100 200 500 1000

C
on

ve
rg

en
ce

 T
im

e
[s

ec
]

Bottleneck Link Bandwidth [Mbps]

TCP Reno
HSTCP

STCP
FAST TCP

Proposed Mechanism

Figure 12: Changes in convergence time against bottleneck link bandwidths

0.1

1

10

100

1000

10000

10 20 50 100 200 500

C
on

ve
rg

en
ce

 T
im

e
[s

ec
]

Shared Link Delay [msec]

TCP Reno
HSTCP

STCP
FAST TCP

Proposed Mechanism

Figure 13: Changes in convergence time against bottleneck link delays

30

the proposed mechanism.

Figures 14(a) and 14(b) show that TCP Reno and HSTCP control their window size with the

AIMD policy and realize fairness among connections by inducing periodic packet losses. From

Figure 14(c), we can see that STCP cannot realize fairness among connections because it has a

window size control algorithm based on MIMD policy. In Figure 14(d), wecan capture the nature

of FAST TCP as follows. Since it utilizes queueing delay as a congestion signal, it can adjust its

window size without inducing any packet losses when a new TCP connection joins the network.

However, it cannot achieve fairness among existing connections and a new connection. Although

FAST TCP needs RTT information to control the window size, the new connection cannot suc-

cessfully measure the minimum RTT due to the queueing delay caused by the existing connection.

When a connection stops a transmission and exits from the network, the remaining connections

enjoy equality throughput because the buffer becomes temporarily empty, and the existing con-

nections can measure the precise values for minimum RTT. On the other hand,Figure 14(e) shows

that the proposed mechanism converges the window sizes very quickly, and so no packet loss oc-

curs when a new connection joins the network. Furthermore, when the TCPconnection leaves the

network, the proposed mechanism connections quickly fill the unused bandwidth.

Adaptability to changes in the available bandwidth is also an important characteristic of the

transport layer protocol. To confirm, we setNtcp = 1, BW = 100 [Mbps], τ = 25 [msec],

bw1 = 100 [Mbps],τ1 = 5 [msec], and changerudp so that the available bandwidth of the bot-

tleneck link is 80 [Mbps] at 0–50 [sec], 65 [Mbps] at 50–100 [sec], 50 [Mbps] at 100–150 [sec],

and 80 [Mbps] at 150–200 [sec]. Figures 15 and 16 present the changes in the throughput of a

TCP connection and the queue size of the bottleneck link buffer in the casesof TCP Reno, HSTCP,

STCP, and the proposed mechanism. The results obviously show the effectiveness of the proposed

mechanism, which gives good adaptability to the changes in the available bandwidth. Further-

more, no packet loss occurs even when the available bandwidth suddenlydecreases. On the other

hand, TCP Reno connections experience packet losses during simulationtime, and link utilization

is much lower than 100%. Although HSTCP and STCP can retain their link utilizationbecause of

the sufficient buffer, they have largely fluctuated RTTs caused by queueing delays. FAST TCP and

the proposed mechanism experience no packet losses and retain their linkutilization with small

RTTs, but the proposed mechanism gives the smaller queue size than FASTTCP. This is one of

the advantages of the proposed mechanism that uses an inline measurementtechnique.

31

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

1st flow
2nd flow
3rd flow
4th flow
5th flow

(a) TCP Reno

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

1st flow
2nd flow
3rd flow
4th flow
5th flow

(b) HSTCP

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

1st flow
2nd flow
3rd flow
4th flow
5th flow

(c) STCP

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

1st flow
2nd flow
3rd flow
4th flow
5th flow

(d) FAST TCP

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

1st flow
2nd flow
3rd flow
4th flow
5th flow

(e) Proposed Mechanism

Figure 14: Effect of changes in number of connections

32

0

20

40

60

80

100

120

0 50 100 150 200

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

TCP Reno
HSTCP

STCP
FAST TCP

Proposed Mechanism

Figure 15: Adaptability to change in available bandwidth (throughput)

0

200

400

600

800

1000

0 50 100 150 200

Q
ue

ue
 S

iz
e

[p
ac

ke
ts

]

Time [sec]

TCP Reno
HSTCP

STCP
FAST TCP

Proposed Mechanism

Figure 16: Adaptability to change in available bandwidth (queue size)

33

5.5 Effect of Heterogeneity in Physical Bandwidth

Finally, we investigate the effects of the heterogeneity of access networkssuch as the difference

of access link bandwidth. We setNtcp = 2, τ = 40 [msec],bw1 = 10 [Mbps],bw2 = 20 [Mbps],

τ1 = τ2 = 5 [msec], and we changeBW from 5 [Mbps] to 30 [Mbps]. We don’t inject UDP traffic

into the network. Figure 17 shows the changes in the throughput of the two TCP connections

in TCP Reno and the proposed mechanism againstBW . We observe from the figure that TCP

Reno fairly shares the bottleneck link bandwidth regardless of the value ofBW . On the other

hand, the proposed mechanism shows an interesting characteristic. WhenBW < bw1, the two

TCP connections fairly share bottleneck link bandwidth. Whenbw1 < BW < bw2, however, the

bottleneck link bandwidth is distributed proportionally to the ratio ofbw1 andbw2. This property

can be explained from the equation utilized by the proposed mechanism. By using Equation (8),

the converged transmission rate for connectioni, denoted byN̂i, which has different physical link

bandwidth (Ki), can be calculated as follows:

N̂i =
Ki

∑n
i=1 Ki

·BW (28)

It is satisfied under conditions ofγ < 1. That is, bottleneck link bandwidth is shared proportionally

to the physical bandwidth of each TCP connection. Since a physical bandwidth of the network

path is defined as a bandwidth of the tightest link between TCP hosts (a sender and a receiver),

the simulation results in Figure 17 match Equation (28). We argue that this characteristic is ideal

for a congestion control strategy on the Internet; in the history of the Internet, the ratio of the

bandwidth of access networks to backbone networks has been changing over time [35]. Compared

with access networks, the amount of the resources of backbone networks are sometimes scarce and

sometimes plentiful. We believe that when backbone resources are small, theyshould be shared

fairly between users regardless of their access link bandwidth. When they are sufficient, on the

other hand, they should be shared according to the access link bandwidth.The characteristics of

the proposed mechanism found in Figure 17 and Equation (28) realize such a resource sharing

strategy.

34

0

5

10

15

20

25

30

5 10 15 20 25 30

T
hr

ou
gh

pu
t [

M
bp

s]

Bottleneck Link Bandwidth [Mbps]

10 [Mbps] access link
20 [Mbps] access link

(a) TCP Reno

0

5

10

15

20

25

30

5 10 15 20 25 30

T
hr

ou
gh

pu
t [

M
bp

s]

Bottleneck Link Bandwidth [Mbps]

10 [Mbps] access link
20 [Mbps] access link

(b) Proposed Mechanism

Figure 17: Effect of different access link bandwidths

35

6 Conclusion

In this thesis, we proposed a new congestion control mechanism of TCP based on the inline net-

work measurement. The proposed mechanism obtains the information of physical and available

bandwidths from the inline network measurement, ImTCP. By using bandwidth information, the

proposed mechanism adjusts its window size with an algorithm based on mathematical models

in biophysics. Consequently, the proposed mechanism can converge its window size to an ideal

value and avoid periodic packet losses experienced by TCP Reno.

Through mathematical analysis, we confirmed that the proposed mechanism has good scala-

bility to not only link bandwidth but also propagation delay between the senderand receiver hosts;

other transport layer protocols such as TCP Reno, HighSpeed TCP, Scalable TCP, and FAST TCP

cannot provide such scalability. Furthermore, from the mathematical analysis results about compe-

tition between TCP Reno and the proposed mechanism, we observed, even though the realization

of fairness between them is difficult, the proposed mechanism is the only solution for transport

layer protocols for future high-speed networks. Furthermore, through extensive simulations, we

determined that the proposed mechanism exhibits the characteristics confirmed by the analysis.

Therefore, we believe that our proposed mechanism is effective regardless of network bandwidth

and delay and can solve the many problems in TCP Reno and its variants.

For future work, we will confirm additional characteristics of the proposed mechanism, which

include fairness among connections with different RTTs and the effect of measurement errors on

the physical and available bandwidths. Implementation experiments are also important research

tasks.

36

Acknowledgement

I am very grateful for the advice and support of my advisor, Professor Masayuki Murata of Osaka

University, for his continuous feedback and for keeping me focused inmy research.

All works of this thesis would not been possible without the support of Associate Professor

Go Hasegawa of Osaka University. He has always given me appropriate guidance and invaluable

direct advice.

I am also indebted to Associate Professor Naoki Wakamiya and Hiroyuki Ohsaki and Research

Assistant Shin’ichi Arakawa, Ichinoshin Maki, and Masahiro Sasabe of Osaka University, who

gave me helpful comments and feedback.

Finally, I want to say thanks to my many friends and colleagues in the Department of In-

formation Networking of the Graduate School of Information Science and Technology of Osaka

University for their support. Our conversations and work together have greatly influenced this

thesis.

37

References

[1] W. R. Stevens,TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts:

Addison-Wesley, 1994.

[2] J. B. Postel, “Transmission control protocol,”Request for Comments 793, Sept. 1981.

[3] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high performance,”Request

for Comments 1323, May 1992.

[4] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s loss recovery using limited

transmit,”Request for Comments 3042, Jan. 2001.

[5] E. Blanton, M. Allman, K. Fall, and L. Wang, “A conservative selective acknowledgment

(SACK)-based loss recovery algorithm for TCP,”Request for Comments 3517, Apr. 2003.

[6] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks,”Journal of Computer Networks and ISDN Systems, pp. 1–

14, June 1989.

[7] S. Shenker, L. Zhang, and D. D. Clark, “Some observations on thedynamics of a congestion

control algorithm,”ACM Computer Communication Review, vol. 20, pp. 30–39, Oct. 1990.

[8] J. C. Hoe, “Improving the start-up behavior of a congestion controlscheme of TCP,”ACM

SIGCOMM Computer Communication Review, vol. 26, pp. 270–280, Oct. 1996.

[9] L. Guo and I. Matta, “The War Between Mice and Elephants,”Technical Report BU-CS-

2001-005, May 2001.

[10] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “Theimpact of multihop wireless

channel on TCP throughput and loss,” inProceedings of IEEE INFOCOM 2003, Apr. 2003.

[11] S. Floyd, “HighSpeed TCP for large congestion windows,”Request for Comments 3649,

Dec. 2003.

[12] C. Casetti, M. Gerla, S. Mascolo, M.Y.Sanadidi, and R. Wang, “TCP Westwood: End-to-end

congestion control for wired/wireless networks,”Wireless Networks Journal, vol. 8, pp. 467–

479, 2002.

38

[13] K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communications,”IEEE Journal

on Selected Areas in Communications, vol. 22, pp. 747–756, May 2004.

[14] E. H.-K. Wu and M.-Z. Chen, “JTCP: Jitter-based TCP for heterogeneous wireless net-

works,” IEEE Journal on Selected Areas in Communications, vol. 22, pp. 757–766, May

2004.

[15] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area networks,” inpro-

ceedings of PFLDnet ’03: workshop for the purposes of discussion, Feb. 2003.

[16] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation, architecture, algorithms, perfor-

mance,” inProceedings of IEEE INFOCOM 2004, Mar. 2004.

[17] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end probing and analysis

method for estimating bandwidth bottlenecks,” inProceedings of IEEE GLOBECOM 2000,

Nov. 2000.

[18] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement methodology, dy-

namics, and relation with TCP throughput,” inProceedings of ACM SIGCOMM 2002, Aug.

2002.

[19] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “pathChirp: Efficient available

bandwidth estimation for network paths,” inProceedings of NLANR PAM2003, Apr. 2003.

[20] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed inpacket-switched net-

works,” Tech. Rep. BU-CS-96-006, Boston University Computer Science Department, Mar.

1996.

[21] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion techniques mea-

sure?,” inProceedings of IEEE INFOCOM 2001, Apr. 2001.

[22] V. Jacobson, “Pathchar - a tool to infer characteristics of internet paths.” available from

http://www.caida.org/tools/utilities/others/pathchar/, Apr. 1997.

[23] M. L. T. Cao, “A study on inline network measurement mechanism for service overlay net-

works,” Master’s thesis, Graduate School of Information Science andTechnology, Osaka

University, Feb. 2004.

39

[24] M. L. T. Cao, G. Hasegawa, and M. Murata, “Available bandwidth measurement via TCP

connection,” inProceedings of IFIP/IEEE MMNS 2004, Oct. 2004.

[25] M. L. T. Cao, G. Hasegawa, and M. Murata, “A merged inline measurement method for

capacity and available bandwidth,” to be presented atNLANR PAM 2005, Mar. 2005.

[26] L. S. Brakmo, S. W.O’Malley, and L. L. Peterson, “TCP Vegas: New techniques for con-

gestion detection and avoidance,” inProceedings of ACM SIGCOMM’94, pp. 24–35, Oct.

1994.

[27] J. D. Murray,Mathematical Biology I: An Introduction. Springer Verlag Published, 2002.

[28] E. Blanton and M. Allman, “On making TCP more robust to packet reordering,” ACM Com-

puter Communication Review, vol. 32, pp. 20–30, Jan. 2002.

[29] K. Kurata, G. Hasegawa, and M. Murata, “Fairness comparisonsbetween TCP Reno and

TCP Vegas for future deployment of TCP Vegas,” inProceedings of IEEE INET 2000, July

2000.

[30] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in Proceedings of

ACM SIGCOMM 2004, Aug. 2004.

[31] The VINT Project, “UCB/LBNL/VINT network simulator - ns (version 2).” available from

http://www.isi.edu/nsnam/ns/.

[32] M. Mathis, “TCP selective acknowledgement options,”Request for Comments 2018, Oct.

1996.

[33] C. Jin, D. X. Wei, and S. H. Low, “Internet draft: FAST TCP for high-speed long-distance

networks,”Internet draft draft-jwl-tcp-fast-01.txt, June 2003.

[34] A. Technologies, “Mixed packet size throughput.” available fromhttp://advanced.

comms.agilent.com/n2x/docs/journal/JTC_003.html.

[35] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield,“QoS’s downfall: At the

bottom, or not at all!,” inProceedings of ACM SIGCOMM 2003 Workshop on Revisiting IP

QoS (RIPQOS), Aug. 2003.

40

