
Master’s Thesis

Title

Detection and Defense Method

against Distributed SYN Flood Attacks

Supervisor

Professor Masayuki Murata

Author

Yuichi Ohsita

February 15th, 2005

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Detection and Defense Method against Distributed SYN Flood Attacks

Yuichi Ohsita

Abstract

Distributed denial-of-service attacks on public servers have recently become a serious prob-

lem. To assure that network services will not be interrupted, we need faster and more effective

defense mechanisms to protect against malicious traffic, especially SYN floods. One problem in

detecting SYN flood traffic is that server nodes or firewalls cannot distinguish the SYN packets

of normal TCP connections from those of a SYN flood attack. Another problem is single-point

deffenses (e.g. firewalls) lack the scalability needed to handle an increase in the attack traffic. In

this research, we have developed a new mechanism to detect and block SYN flood attacks.

First, we introduce a mechanism for detecting SYN flood traffic more accurately by taking

into consideration the time variation of arrival traffic. We investigate the statistics regarding the

arrival rates of both normal TCP SYN packets and SYN flood attack packets. We then describe

a new detection mechanism based on these statistics. Our analytical results show that the arrival

rate of normal TCP SYN packets can be modeled by a normal distribution and that our proposed

mechanism can detect SYN flood traffic quickly and accurately regardless of time variance of the

traffic.

As a post-detection method, we develop a distributed defense mechanism which uses overlay

networks. In this mechanism, alert messages are sent via the overlay networks. Defense nodes

which receive the alert messages can identify legitimate traffic and block malicious traffic by

delegating SYN/ACK packets. Legitimate traffic is protected via the overlay networks.

Our simulation results show that attacker-side defense can protect legitimate packets from

higher-rate attacks than victim-side defense and that our proposed method can effectively block

malicious traffic and protect legitimate traffic.

1

Keywords

Distributed Denial of Service (DDoS)

Statistical Analysis

Traffic Monitoring

SYN flood

Overlay Network

TCP Proxy

2

Contents

1 Introduction 8

2 Defense Mechanism Overview 13

3 Attack Detection Mode 15

3.1 Monitoring and classification of real traffic . 15

3.2 Time-dependent variation of normal traffic and its statistical modeling 16

3.3 Attack detection method based on SYN arrival rate statistics 19

4 Defense Mode 28

4.1 Alerting all defense nodes . 28

4.2 Delegating SYN/ACK packets . 28

4.3 Protecting legitimate packets . 29

4.4 Ending the defense mode . 31

5 Deployment Scenario 34

6 Evaluation 37

6.1 Detection of attacks . 37

6.1.1 Definition of attack traffic . 37

6.1.2 Accuracy of proposed detection method 37

6.1.3 Detectable SYN rate of attack traffic . 38

6.1.4 Effect of parameters in our detection method 38

6.1.5 Comparison of the three distribution functions 39

6.1.6 Setting the threshold . 39

6.1.7 Time needed to detect the attack traffic 40

6.1.8 Resources needed by the detection method 41

6.1.9 Availability on other networks . 41

6.2 Protection of legitimate packets . 47

6.2.1 Probability of dropping legitimate SYN packets vs. attack rate 47

6.2.2 Time dependent variation of probability of dropping legitimate SYN packets 47

3

7 Conclusion and Future Work 53

Acknowledgement 54

References 55

4

List of Figures

1 Overview of a three-way handshake and a SYN Flood attack 9

2 Distributed defense using overlay networks . 14

3 Delegation of SYN/ACK packets . 14

4 Time-dependent variation of SYN arrival rates 21

5 Comparisons between the distributions of SYN rates and the four distributions

(normal traffic) . 22

6 Variation of average of squared differences between the sampled SYN rates and

the three distributions . 22

7 Distribution of SYN packet arrival rate when attacks started 23

8 Outline of the average squared difference calculation 24

9 Variation of average of squared differences between the sampled SYN rates and

the gamma distribution . 25

10 Variation of average of squared differences between the sampled SYN rates and

the normal distribution . 26

11 Variation of average of squared differences between the sampled SYN rates and

the lognormal distribution . 27

12 Steps of alerting . 29

13 Relaying the legitimate packets . 30

14 Data structure to hold normal flows . 31

15 Problem in ending the defense mode . 32

16 Steps to ending the defense mode . 33

17 First stage of deployment . 35

18 Second stage of deployment . 35

19 Final stage of deployment . 36

20 Relation between threshold for average of the squared difference and the proba-

bilities of not detecting an attack (—–) and of erroneously detecting an attack (- -

-). 42

21 Relation between the detectable SYN rate of attack traffic and parameter Xh . . . 43

22 Relation between the detectable SYN rate of attack traffic and parameter N . . . 43

5

23 Relation between the detectable SYN rate of attack traffic and parameter M . . . 44

24
√

D vs. attack rate . 44

25 Attack rates minus
√

D vs. variance of normal traffic 45

26 Average of squared differences versus time after the beginning of attacks with

various SYN rates . 45

27 Time to detect attacks . 46

28 Environment supposed in our simulations . 49

29 Probability of dropping legitimate SYN packets vs. attack rate 50

30 Environment supposed in our simulations . 51

31 Probability of dropping legitimate SYN packets 52

6

List of Tables

1 Classification of flows . 17

2 Data structure used to identify flows . 30

3 Default configuration of backlog queue . 38

7

1 Introduction

The rapid growth and increasing utility of the Internet have made Internet security issues increas-

ingly important. Denial-of-service (DoS) attacks are one of the most serious problems and a means

of preventing such attacks must be devised as soon as possible. These attacks prevent users from

communicating with service providers and have damaged many major web sites all over the world.

The number of attacks is increasing, and the techniques used to attack servers are becoming

more complex. In the distributed denial-of-service (DDoS) attacks often seen recently, multiple

distributed nodes concurrently attack a single server. A malicious user tries to hack remote nodes

by exploiting the vulnerabilities of software running on them, installs an attacking program on

hijacked nodes, and keeps them waiting for an order to attack a victim server. When the malicious

user sends a signal to them, they begin to attack the same server. Even if the rate of attack for each

node is small, the attack traffic can cause serious damage at the victim server when the number of

hijacked nodes is large.

There are many kinds of DDoS attacks such as Smurf attacks [1], UDP floods [2], and SYN

flood attacks [3]. In Smurf and UDP attacks, attackers generate many ICMP or UDP packets to

exhaust the capacity of the victim’s network link. In SYN flood attacks, attackers send so many

connection requests to one victim server that users cannot connect to that server. Because attackers

can easily put servers into a denial-of-service state this way, about 90% of all DDoS attacks are

SYN flood attacks [4].

SYN flood attacks exploit the transmission control protocol (TCP) specification. In the TCP,

a client node communicates with a remote node (i.e., a server) by way of a virtual connection

established through a process called a 3-way handshake. As shown in Figure 1(a), a client first

sends a server a SYN packet requesting establishment of a connection. The server then sends the

client a SYN/ACK packet acknowledging receipt of the SYN packet. When the client receives

the SYN/ACK packet, the client sends the server an ACK packet acknowledging receipt of the

SYN/ACK packet and begins to transfer data.

In the 3-way handshake, the state in the server waiting for the ACK packet from the client is

called the half-open state. A server in the half-open state prepares for communication with the

client by, for example, allocating a buffer. Since a server in the half-open state is using some

of its resources for the client, the number of half-open states should be limited. The number of

8

(a) 3-way handshake

SYN/ACK

SYN

ACK

SYN

SYN/ACK

(b) SYN flood Attack

Client Server Attacker Server Spoofed Host

Figure 1: Overview of a three-way handshake and a SYN Flood attack

connections a server can maintain while it is in the half-open state is controlled in a backlog queue.

SYN packets in excess of the number that can be held in the backlog queue are discarded, and the

server sends RST packets to notify clients whose SYN packets are discarded.

Figure 1(b) shows an overview of a SYN flood attack. Attackers send SYN packets whose

source address fields are spoofed. The server receiving these SYN packets sends the SYN/ACK

packets to the spoofed addresses. If a node having one of the spoofed addresses actually exists, it

sends a RST packet for the SYN/ACK packet because it did not send the SYN packet. If there is

no host having the spoofed address, however, the SYN/ACK packet is discarded by the network

and the server waits in vain for an ACK packet acknowledging it. For losses of SYN/ACK packets,

the server has a timer in the backlog queue, and half-open states exceeding the timer are removed.

When the backlog queue is filled with spoofed SYN packets, however, the server cannot accept

SYN packets from users trying to connect to the server.

Because the packets used in SYN flood attacks do not differ from normal TCP SYN packets

except in the spoofing of the source addresses, it is difficult to distinguish them from normal TCP

SYN packets at the victim server. This is why SYN flood attacks are hard to block. Many methods

to defend servers from these attacks, however, have been proposed.

SYN cache [5] and SYN cookie [6] are mechanisms applied in server nodes. In the SYN cache

mechanism, the server node has a global hash table to keep half-open states of all applications,

while in the original TCP these are stored in the backlog queue provided for each application. As a

result, the node can have a larger number of half-open states and the impact of a SYN flood attack

can be reduced. On the other hand, the SYN cookie mechanism can remove the backlog queue by

9

using a cookie approach. In the original TCP the server node first allocates the server’s resources

and sends a SYN/ACK packet. This is done because there is no way to validate whether the ACK

packet received after sending the SYN/ACK packet is really the acknowledgment of the SYN/ACK

packet (i.e., the final packet of the 3-way handshake). The SYN cookie embeds a magic number

encrypted by the header of the SYN packet (e.g., IP addresses, port numbers) into the sequence

number of the SYN/ACK packet. The server node then verifies the ACK packet of the SYN/ACK

packet by decrypting the sequence number of the ACK packet. The server node then allocates the

server resources only when the ACK packet is valid. This mechanism can remove the backlog

queue.

However, these single-point defense mechanisms have a fundamental problem with respect to

scalability. In DDoS attacks, attack nodes are widely distributed all over the world. Attack traffic

from attack nodes is aggregated into a very high rate attack at the server. At this point, a DDoS

attack is highly scalabile because the amount of attack traffic can increase in proportion to the

number of attacker nodes. On the other hand, single-point defense mechanisms lack scalability

commensurate with the attack traffic increase. That is, high-rate attacks from widely distributed

nodes can overwhelm the firewalls or the servers regardless of the implemented server-side defense

mechanism (e.g. SYN Cache or SYN Cookie) is implemented. For this reason, a distributed

defense mechanism is needed to defend servers from distributed attacks.

Implementing a distributed defense mechanism, such as a cooperation of distributed nodes,

is more difficult than a single-point approach. D-WARD [7] has been proposed as a way to stop

DDoS attacks near their source. In this method, an edge node detects attacks and limits the rate

of traffic addressed to the victim server. However, detecting distributed attack traffic near attacker

nodes is quite difficult when attack nodes are highly distributed and each attacker node generates

a small amount of attack traffic. We believe that it is more practical to detect attacks near a victim

node and alert other nodes deployed near attacker nodes. In pushback [8], a router detecting an

attack requests upstream routers to limit the amount of traffic bounded to the victim node. This

method can set a rate limit near attackers by recursively requesting the limitation from upstream

routers. This is an effective countermeasure to attacks exhausting network links, but a rate limit is

not an effective way to prevent attacks, such as SYN flood attacks, which exhausting the resources

of servers. DefCOM [9] has been proposed as a framework that allows DDoS defense nodes to

communicate with each other; however, the framework was reported without any description of

10

a specific method to detect or block attack traffic. In PacketScore [10], edge nodes compute a

per-packet score which estimates the legitimacy of a packet. Core nodes perform score-based se-

lective packet discarding. This method can effectively mitigate attacks when the characteristics of

attack traffic differ from those of legitimate traffic. However, legitimate traffic may be mistakenly

identified as attacks and blocked by this method. This can seriously impair the communication

between the victim and legitimate clients.

Constant identification of all packets is costly. To defend servers from attacks effectively, we

also need a mechanism for detecting attacks as quickly as possible. Several methods for detecting

attacks have been proposed, and one is to detect the mismatch between bidirectional packets [7].

When a server is not under attack, packet arrival rates for both directions are almost the same or

at least of the same order, because the TCP needs an ACK packet for each packet that is sent. If

the packet arrival rate for one direction is much higher than that for the other direction, the traffic

in the high-rate direction might include attack packets. In this mechanism, however, the router

cannot detect an attack until the server replies with SYN/ACK packets for spoofed SYN packets.

MULTOPS [11] is a similar version which checks for traffic asymmetry in both directions using

the granularity of subnets. Another method [12] is to use the difference between the rates of SYN

packets (i.e., the head of the connection) and FIN/RST packets (i.e., the tail of the connection).

If the rate of SYN packets is much higher than that of FIN or RST packets, the router recognizes

that attacking traffic is mixed in with the current traffic. Attacks can also be detected through the

number of source addresses [13]. If the number of source addresses increases rapidly, the current

traffic might include attack packets.

These methods have several problems, however, one of which is that they cannot detect attacks

until servers are seriously damaged or until most of the connections are closed. Another is that they

may mistake high-rate normal traffic for attack traffic because they do not take into consideration

the normal time-of-day variation of network traffic or they do so using a non-parametric approach

without knowing how normal traffic varies. A non-parametric approach can detect attacks if there

is any variance from normal traffic, but require a long time. Attack traffic should be identified

more accurately and quickly by considering the variance of normal traffic.

Given the above state of affairs, we clearly need a defense mechanism that (1) has enough

scalability accommodate any the increase in the distributed attack traffic, (2) can detect attacks

accurately on the victim sides, and (3) can correctly protect legitimate traffic. For the first issue,

11

blocking attacks at distributed points has higher scalability than defense at a single node. We can

reliably identify legitimate packets by receiving the ACK packets corresponding to SYN/ACK

packets. We use a proxy approach which responds to the acknowledgements of SYN packets

on behalf of the victim node, and passes SYN packets only when the proxy receives the ACKs

of SYN/ACK packets. For the second problem, we propose a method that detects attacks more

quickly and more accurately by taking the time-of-day variance of traffic into consideration [21].

For this purpose, we first collect all packets passing through the gateway of our university, and

analyze the statistical characteristics of both normal and attack traffics. Then, we propose a new

detection algorithm based on the results of our statistical analysis. For the last problem We can pre-

vent attakers from spoofing attack packets as legitimate packets by forwarding legitimate packets

via overlay networks.

The practicality of deployment is also an important issue, because an effective defense against

DDoS attacks is urgently needed. The solution must be easy to deploy and not negatively affect

current IP frameworks.

In this thesis, we propose a new distributed defense system using overlay networks against

distributed SYN flood attacks [15]. In this system, attacks are easily detected by victim-side nodes.

After an attack is detected, alert messages are forwarded to all nodes via the overlay networks. The

edge defense nodes which receive an alert begin to identify and block attack packets. At the same

time, the defense nodes protect legitimate packets by forwarding them via the overlay networks.

This method can be deployed in a phased manner. When only one autonomous system (AS)

deploys this method, attacks are blocked at all edges of the AS. As more ASes deploy this method

it becomes more efficient because attack traffic is blocked at more points. Finally, when all ASes

deploy this method, there will be no attack traffic in core networks because it will be blocked at

the edge nodes.

In Section 2 we give an overview of our defense mechanism. In Section 3 we explain our

new detection method which takes the time-of-day variance of traffic into consideration. In Sec-

tion 4 we explain in detail the operation after an attack is detected. In Section 5, we explain the

deployment scenario for our mechanism. In Section 6, we show simulation results indicating that

our method can effectively detect and block attack traffic while protecting legitimate traffic. In

Section 7 we conclude this thesis.

12

2 Defense Mechanism Overview

Figure 2 shows an overview of our proposed architecture. We place defense nodes at the edge of

a network (we call this network a protected network). Each defense node logically connects to

one or more other defense nodes, and constructs an overlay network among the defense nodes. To

identify legitimate SYN packets, defense nodes act as a SYN proxy which returns a SYN/ACK

packet instead of the victim node doing so. The SYN packet is relayed only when the defense

node receives the ACK packet of the SYN/ACK packet from the client (Figure 3). Once a flow

(i.e., packets having the same (src IP, dest IP, src port, dest port, protocol) fields) is identified as

legitimate traffic, packets of the flow are transferred via the overlay network and protected from

attack traffic.

In the ideal situation, the defense node should handle all arriving packets and pick up le-

gitimate packets from among them. However, this process causes processing overhead, and the

defense node will become a performance bottleneck. To minimize the defense node overhead,

it is desirable to identify only those packets going to the victim node. For this purpose, we use

a mechanism for detecting a SYN flood attack. In the attack detection mode, the defense node

monitors packets outbound from the protected network. If the defense node detects attack traffic,

the defense node alerts other defense nodes of the address of the victim node. Upon receiving

the alert, each defense node moves into the defense mode for the victim’s address. In the defense

mode, the defense node delegates SYN/ACK packets to identify legitimate traffic. The defense

mode is continued until the attack ends.

13

Victim

User

Attacker

Identification of
attack packets

User User

Attacker

User

User

Alert messages

Legitimate packets

Figure 2: Distributed defense using overlay networks

Server
SYN

(seq=a)

SYN/ACK
(seq=b, ack=a+1)

ACK
(seq=a+1, ack=b+1)

Client Defense node

SYN
(seq=c)

SYN/ACK
(seq=d, ack=c+1)

ACK
(seq=c+1, ack=d+1)

DATA
(seq=d+1, ack=c+2)

DATA
(seq=b+1, ack=a+2)

Figure 3: Delegation of SYN/ACK packets

14

3 Attack Detection Mode

In this section, we describe the detection method used in the attack detection mode in our mech-

anism. This mechanism can detect attacks accurately and quickly by taking the time-of-day vari-

ance of traffic into consideration.

First, we describe how we gathered the data used to model normal traffic and how we analyzed

that data. We then describe the algorithm used to detect attack traffic.

3.1 Monitoring and classification of real traffic

We deployed a traffic monitor at the gateway of Osaka University. We used optical-splitters to

split the 1000 Base-SX fiber-optic cables and recorded the headers of all of packets transferred

on this link. That is, we monitored all the packets in both the inbound and outbound directions at

Osaka University.

We use tcpdump [16] to read the headers of packets. Although tcpdump cannot guarantee

to read headers of all packets at wire-speed, we confirmed that the headers of less than 0.01% of

the packets were not recorded and these losses did not affect the results of our statistical analysis.

We first classified monitored packets into flows. We defined a series of packets which have the

same (src IP, src port, dest IP, dest port, protocol) fields as a single flow and we classify these flows

into the following five groups.

Group N Flows that completed the 3-way handshake and were closed normally by an FIN or RST

packet at the end of connections.

Group Rs Flows terminated by a RST packet before a SYN/ACK packet was received from the

destination host. These flows were terminated this way because the destination host was not

available for the service specified in the SYN request.

Group Ra Flows terminated by a RST packet before an ACK packet for the SYN/ACK packet

was received. These flows were terminated this way because the SYN/ACK packets were

sent to a host that was not in the Internet.

Group Ts Flows containing only SYN packets. These flows are not terminated explicitly (i.e.,

by RST/FIN packets) but by the timeout of flows. There would be three reasons that flows

15

could be classified into this group. One was that, the destination node did not respond the

SYN packet. A second was that the source address of the SYN packet was spoofed and

the destination sent the SYN/ACK packet to the spoofed address. The third was that all

of the SYN/ACK packets were discarded by the network (e.g., because of due to network

congestion).

Group Ta Flows containing only SYN and its SYN/ACK packets. Like Group Ts flows, these

flows were terminated by the timeout of flows. In this case, however, it was because all the

ACK packets were dropped.

To identify the traffic of normal flows, we focused on the Group N flows. Hereafter, we refer these

flows as normal traffic and to Groups Rs, Rs, Ts and Ta flows as incomplete traffic.

3.2 Time-dependent variation of normal traffic and its statistical modeling

In the work shown in this thesis, we used the traffic data for 5 days: from 17:55 on March 20, 2003

to 19:45 on March 24, 2003. The average rate of incoming traffic (from the Internet to the campus

network) was about 12.0 Mbps and the average rate of outgoing traffic was about 22.4 Mbps.

During busy hours (09:00 to 17:00) the average incoming and outgoing rates were respectively

37.0 Mbps and 55.0 Mbps. A total of 1,983,116,637 TCP packets were monitored, 21,615,220

of which were SYN packets. The total number of flows that were monitored, however, was only

21,283,114. The difference between the number of SYN packets and the number of flows is due

to the retransmission of SYN packets.

The numbers of flows classified into each of the five groups are listed in Table 1. These values

were obtained using 180 seconds as the timeout. That is, if there are more than 180 seconds after

the last packet in of the flow, we considered the flow to be terminated.

The time-dependent variations of SYN arrival rates of all flows, the flows in normal traffic and

the flows in incomplete traffic are shown in Figures 4. Points where the arrival rate rises sharply

(e.g., 28,000 sec and 57,000 sec) seem to be due to incomplete traffic. These results also show

that we would mistakenly identify many points as attacks if we set a single threshold for the SYN

arrival rates because the arrival rates of the normal traffic change over time. We can also see that

the distribution of SYN arrival rates seems to differ for incomplete traffic compared to that for

normal traffic, especially at the tail.

16

Table 1: Classification of flows

Group number of flows percentage

N 18,147,469 85.1

Rs 622,976 2.9

Ra 75,432 0.3

Ts 2,435,228 11.4

Ta 2,009 0.0

To confirm this impression, we fitted the SYN arrival rates of normal traffic to several distri-

butions. We considered four distributions as candidates.

The equation for the normal distribution F (x) with mean ζ and variance σ2 of the measured

SYN arrival rates is

F (x) =
∫ x

−∞
1√
2πσ

exp[
−(y − ζ)2

2σ2
]dy. (1)

A variable has a lognormal distribution if the natural logarithm of the variable has a normal

distribution. The equation for a lognormal distribution is

F (x) =
∫ x

−∞
1√

2πσy
exp[

−(log y − ζ)2

2σ2
]dy. (2)

In a lognormal distribution, two parameters (ζ ,σ) are calculated from

ζ̂ =
1
n

n∑
i=0

log xi (3)

σ̂2 =
1
n

n∑
i=0

(log xi − ζ̂). (4)

where n is the number of samples.

The equation for a Pareto distribution is

F (x) = 1 − (x
k)α, x ≥ k (5)

Parameters (α,k) in Pareto distribution are obtaioned from [17].

k̂ = min(x1, x2, . . . , xn), (6)

α̂ = n

[
n∑

i=1

log
xi

k̂

]
. (7)

17

The equation for the gamma distribution is

Γ(λ) =
∫ ∞

0
xλ−1e−xdx, (8)

f(x) =

1
Γ(α)βα xα−1e

− x
β , 0 < x < ∞

0, −∞ < x < 0
(9)

We calculate parameters (α,β) in the gamma distribution so that it has the same average E(X)

and same variance V (X) as the sample. The parameters are given by

α =
E(X)2

V (X)
(10)

β =
V (X)
E(X)

. (11)

Figure 5 shows the result of fitting the normal traffic to the four distributions. This figure

compares the cumulative distribution of SYN packet arrival rates with the cumulative distributions

described above. This curve is for data obtained at 10-second intervals. We used 10,000 samples

to obtain the SYN rate distributions. From this figure, we can see that the tail of the SYN rate

distribution of the normal traffic is quite different from the Pareto distribution. Among the other

three distributions, the gamma distribution is the best match for the normal traffic in the region of

the 99th percentile and higher. On the other hand, the normal distribution is most appropriate in

the area of less than the 95th percentile. The lognormal distribution can also be fit to the normal

traffic at the 90th percentile and below.

To verify the appropriateness of the statistical modeling, we calculated the average of the

squared difference. In this experiment, we focused especially on the tail part of the distribution of

the normal traffic. We define Xt(0 ≤ Xt ≤ 1) as the ratio of the tail part of the distribution. In

other words, by setting Xt = 0.9 we obtain the region of the distribution at 90% and higher. Let us

denote the number of samples of SYN rates as n. We sorted the sampled SYN rates in ascending

order and labeled them ri(1 ≤ i ≤ n). F−1(x) is the inverse function of F (x). Denoted as D, the

average of the squared differences from a distribution F (x) is

D =

∑n
i=n−�nX�(F

−1(ri) − ri)2

�nX� − 1
. (12)

We calculated the value of D for each of our measurements of the SYN arrival rate (i.e., every

10 seconds in our experiment). We used 10,000 samples to obtain the SYN rate distributions and

18

the samples were obtained at 10-second intervals. That is, we needed a total of 100,000 seconds

to obtain the entire distribution. We then calculated the average of the squared differences for

each sample by using 10,000 sample histories. Figure 6 shows the time-dependent variation of

the average of the squared difference for normal traffic from the normal, lognormal, and gamma

distributions. From this figure we can see that the lognormal distribution was sometimes quite

different from the sample distribution. D on the gamma distribution is the smallest at almost

any time, and its variation is also small. The variation of D on the normal distribution also does

not vary greatly regardless of time. From this observation, we can conclude that the gamma

distribution is the most appropriate to statistically model normal traffic. The normal distribution is

also useful for modeling, and the lognormal distribution is fairly appropriate.

We next evaluated the fit of statistical distributions with all traffic (i.e., traffic including both

normal and attack traffic). Figure 7 compares the distribution of the SYN arrival rates for all flows

with the three distributions used above. We can see a clear difference from the normal traffic

case (Figure 6). Even for the gamma and normal distributions the actual traffic was far from the

modeling functions. This was because inclusion of the attack traffic strongly affected the statistics,

and was clearly different from human-generated traffic (e.g., it had a constantly high rate for a long

period). The influence of the attack traffic is especially noticeable at the tail part of the distribution.

This is why we focus on the distribution tail for identifying attack traffic.

3.3 Attack detection method based on SYN arrival rate statistics

As described in the previous subsection, the SYN arrival rates of the normal traffic can be modeled

by gamma or normal distributions. Therefore it would be possible to detect the attack traffic by

checking the difference between the sampled SYN rates and the modeled distribution functions

at the tail part of the distribution. Since there is a clear difference between the attack traffic and

the gamma/normal distribution function, we can identify the attack traffic by setting a kind of

threshold about the difference. In this subsection we propose a new detection method based on

this motivation.

SYN arrival rates are calculated every time N SYN packets arrive, and the interval T be-

tween two sets of N SYN packet arrivals is measured. We estimate the arrival rate from N
T . This

method differs from the SYN rate calculation described in the previous subsection for two rea-

sons. First, under heavily loaded conditions, we need to detect an attack more quickly. Hence the

19

sampling interval should be variable according to the network load. Second, for implementation

this counter-based rate calculation is simpler than a timer-based one because an interrupting timer

is not needed. We then collect M SYN rates, calculate the parameters of the modeled distribu-

tion function, and obtain the average squared difference between the sampled distribution and the

modeled distribution function. A total of NM SYN packets are needed to obtain the distribution.

To calculate the average squared difference, we introduce two ratio values Xh and Xt, which

are the ratio of the head and the tail part of the distribution, respectively. Figure 8 shows the

outline of the average squared difference calculation. First, we calculate the parameter of the

model function by using the Xh oldest part of the sampled SYN rates. The reason for using Xh

is as follows. We calculate the value of D for each event of the SYN rate calculation. The oldest

of M SYN rates is identified as the normal traffic in M − 1 times. That is, if no attack traffic was

detected previously, the oldest SYN rate tends to be identified as normal traffic. We then calculate

the squared difference D in the range of the Xt tail part of the distribution. In this thesis, we set

Xt = 1 − Xh for simplicity.

Figures 9(a), 10(a), and 11(a) show the variation of the average squared difference for all flows

and Figures 9(b), 10(b), and 11(b) show the variation for normal traffic. These results show that

the averages of the squared difference for normal traffic were quite small and stable regardless

of time. The averages of the squared difference for all flows, on the other hand, rose rapidly at

several points (we call these spikes throughout this thesis). A comparison of Figure 9(a) with

Figure 9(b) and Figure 10(a) with Figure 10(b) suggests that these spikes were caused by the

incomplete traffic including attack traffic. Therefore, we can detect attacks by setting a threshold

for the average squared difference as a boundary between normal traffic and attack traffic.

20

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000 70000 80000
S

Y
N

 a
rr

iv
al

 r
at

e
[p

ac
ke

ts
/s

ec
]

Time [sec]

(a) all flows

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000 70000 80000

S
Y

N
 a

rr
iv

al
 r

at
e

[p
ac

ke
ts

/s
ec

]

Time [sec]

(b) normal traffic

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000 70000 80000

S
Y

N
 a

rr
iv

al
 r

at
e

[p
ac

ke
ts

/s
ec

]

Time [sec]

(c) incomplete traffic

Figure 4: Time-dependent variation of SYN arrival rates

21

1e-005

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

de
ns

ity

arrival rate [SYNs/sec]

sample
pareto

log normal
normal
gamma

Figure 5: Comparisons between the distributions of SYN rates and the four distributions (normal

traffic)

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

normal
lognormal

gamma

Figure 6: Variation of average of squared differences between the sampled SYN rates and the three

distributions

22

0.01

0.1

1

0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

de
ns

ity

SYN arrival rate [SYNs/sec]

sample
normal

lognormal
gamma

Figure 7: Distribution of SYN packet arrival rate when attacks started

23

Time [sec]

S
Y

N
 a

rr
iv

al
 r

at
e

[p
ac

ke
t/s

ec
]

head part (Xh of all samples) used for parameter

Samples for making distribution

(a) head of distribution

Xt

the tail part

SYN arrival rate

P
ro

ba
bi

lit
y

de
ns

ity

(b) tail of distribution

Figure 8: Outline of the average squared difference calculation

　　

24

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(a) all flows

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(b) normal traffic

Figure 9: Variation of average of squared differences between the sampled SYN rates and the

gamma distribution

25

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(a) all flows

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(b) normal traffic

Figure 10: Variation of average of squared differences between the sampled SYN rates and the

normal distribution

26

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(a) all flows

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000 80000

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time [sec]

(b) normal traffic

Figure 11: Variation of average of squared differences between the sampled SYN rates and the

lognormal distribution

27

4 Defense Mode

In defense mode, the defense node performs the following operations:

1. Alerting all defense nodes

2. Delegation of SYN/ACK packets

3. Protecting legitimate packets

4. Ending the defense mode

In the following sections, we describe these operations in detail.

4.1 Alerting all defense nodes

Figure 12 shows the steps to alert all defense nodes after an attack is detected. Once the attack is

detected, the IP address of the victim node is sent to all defense nodes as alert messages via the

overlay network. The defense nodes that receive the alert then move into the defense mode, and

begin to return SYN/ACK packets for SYN packets whose destination addresses are that of the

victim server.

Note that the propagation of the alert message depends on the topology of the overlay network.

However, the problem of how to construct an effective overlay network is a separate research topic

beyond the scope of this thesis.

4.2 Delegating SYN/ACK packets

In the defense mode, the defense node delegates SYN/ACK packets. When the defense node

receives a SYN packet, it checks whether the destination address of the received packet is the IP

address of the victim node. If the packet is intended for delivery to the victim node, the defense

node returns a SYN/ACK packet to the address specified in the source address of the received

packet. Then, after the defense node receives the acknowledgement for the SYN/ACK packet, it

tries to establish a connection to the victim server. To identify whether the received ACK packets

are acknowledgements of SYN/ACK packets, the defense node uses the data shown in Table 2 for

each flow.

28

Victim

User

Attacker

User User

Attacker

User

User

2. Alerting defense
nodes

1. Detection
of attacks

3. Blocking attack packets

Figure 12: Steps of alerting

However, the defense node must hold a number of structures equal to the number of delegating

SYN/ACK packets in the attack mode. The defense nodes should save their resources such as

memory or CPU load while they hold legitimate connection requests even if they receive a number

of SYN packets.

To save resources we use the same approach as the SYN cache mechanism. The SYN cache

uses a hash table to search the data structures. The hash value is computed from the source and

destination IP addresses and the source and destination port numbers. Entries having the same

hash value are kept on a forward linked list. The length of the list is limited. When the list is

full (i.e., the length of the link is equal to the maximum value) and a new connection request is

received, the oldest (i.e., the head) entry in the list is dropped and a new request is appended at the

tail of the list.

4.3 Protecting legitimate packets

We identify flows which complete the 3-way handshake as legitimate traffic. Once a flow is iden-

tified as legitimate traffic, the defense node relays packets of the flow to the server via the overlay

network. In this thesis, we use the TCP Proxy [18] to relay legitimate traffic.

TCP Proxy is a method which controls transmission quality at the transport layer. TCP Proxies

29

Table 2: Data structure used to identify flows

Source address 32 bit

Destination address 32 bit

Initial sequence number (receiver) 32 bit

Initial sequence number (sender) 32 bit

Source port 16 bit Destination port 16 bit

Timer reserved for future use

Victim

User

TCP
connection

TCP
connection

TCP
connection

Each defense node
connects two TCP flows

Figure 13: Relaying the legitimate packets

construct overlay networks and establish the connections to the next-hop TCP Proxies, which are

determined according to the destination addresses. TCP Proxies relay packets by using hop-by-

hop connections established via the overlay networks.

Figure 13 shows an overview of how legitimate packets are relayed using TCP Proxies. The

defense nodes establish the hop-by-hop connections. Each node relays packets by connecting the

flow from the previous hop and the flow to the next hop.

To connect the flow from the previous hop and the flow to the next hop, each defense node has

to hold flows and search them quickly. The method in [19] can search flows quickly by using a

hash table. To apply this method to our defense nodes, though, we need to adjust it. While [19]

30

Hash table

Hash value

list

src IP
dest IP

src port dest port
Pointer to the
corresponding flow

...

src IP
dest IP

src port dest port
...

Figure 14: Data structure to hold normal flows

uses only (src IP, dest IP, server port) fields to identify flows, the defense nodes need to recognize

flows having different client port numbers as different flows. Additionally, defense nodes need to

know the corresponding flows to the next hop at the same time as they search the flows.

Figure 14 shows the data structure used in a defense node to hold normal flows. Entries having

the same hash value are maintained in linked lists. In an entry, a defense node holds information

needed by the TCP connection and the pointer to the entry of the corresponding flow. Upon

receiving a packet to or from the victim, a defense node searches in the hash table for the flow of

the packet. The defense node then forwards the packet to the corresponding flow.

4.4 Ending the defense mode

Since the resources of the defense node are limited, the defense mode should be terminated as

soon as the attack ends. To enable this, it is necessary to detect the end of an attack at the defense

node.

To detect the end of an attack, the defense node counts the number of connection requests

(i.e., SYN packets) which time out or are dropped. When the number becomes 0, the attack is

considered to have ended. Unlike attack detection, detection of the end of an attack does not have

to be particularly fast since a long defense mode does not disturb legitimate connections.

31

User

Attacker

Defense
node A

Defense
node B Victim

User

Figure 15: Problem in ending the defense mode

A problem arises, though, when all of the defense nodes independently detect the end of an

attack. This situation is shown in Figure 15. In this figure, all of the attack traffic is passed via

defense node DB. If the detection is performed independently, defense node DA first detects the

end of the attack and stops delegating SYN/ACK packets. After finishing the delegation at DA, all

of the SYN packets passing DA are subject to identification at DB . The load on DB thus increases

because the total number of SYN packets increases, and DB may drop some SYN packets because

of the SYN cache limit on DB . This degradation of performance will not occur if DA continues to

delegate SYN/ACK packets until DB detects the end of the attack (i.e., the attack has completely

ended in this case).

Therefore, the defense node should stop delegating SYN/ACK packets only when there are no

attack packets at either the defense node or intermediate defense nodes on the way to the victim

node.

Figure 16 shows the steps to stop delegating SYN/ACK packets. First, the defense node nearest

to the victim node detects the end of the attack. This defense node sends a message indicating the

end of the attack to all adjacent nodes (i.e., those logically connected from the defense node). A

defense node receiving the message still delegates SYN/ACK packets until it detects the end of

the attack. Upon detecting the end of the attack, each defense node ends the defense mode and

forwards the message to the downstream adjacent defense nodes. The defense is completely ended

after all defense nodes have received the message and ended the defense mode.

32

Victim
User

Attacker

User

Attacker

User

User

1. Detection
of the end
of attacks

2. Sending
Message of
the end of
attacks

3. Checking
whether attacks
end.4. Sending

Message of
the end of
attacks

5. Checking
whether attacks
end.

Figure 16: Steps to ending the defense mode

33

5 Deployment Scenario

In this section, we explain how our mechanism can be deployed in the Internet. In our mechanism,

the unit of deployment is the AS. In this thesis, we refer to an AS in which our mechanism is

deployed as a protected AS. All edge routers are defense nodes in a protected AS. Otherwise,

an AS is referred to as unprotected. Figures 17 through 19 show the strategic scenario for the

deployment of our defense mechanism. There are three stages as follows.

1st stage (Fig.17): Only one AS is protected. Others are unprotected.

2nd stage (Fig.18): Several ASes are protected.

final stage (Fig.19): All ASes are protected.

At the first stage, we consider our method to be deployed in only one AS, as shown in Fig-

ure 17. In this figure, AS 1 (the yellow cloud) is protected. Outside AS 1 all attack traffic to the

victim node is first delivered to the victim node. The defense node nearest to the victim node then

detects the attack traffic, and alerts the other defense nodes of the attack. Attack traffic is therefore

blocked at the defense nodes placed at the edge of AS 1. In the case shown in Figure 17, our

method enables AS 1 to block attack packets at three points. This means that our defense mech-

anism can defend against attack traffic up to three times as effectively as a single-point defense

mechanism.

At the second stage of deployment (Figure 18), our method is deployed in several ASes which

cooperate with each other. In the case shown in Figure 18, AS 1, AS 6, and AS 7 are protected.

After an attack alert, the delegation of SYN/ACK packets is performed at the edge of the protected

ASes. As a result, attack traffic generated in AS 6 and AS 7 is blocked at the egress edges of these

ASes. Attacks from AS 2, AS 3, and AS 4 are blocked at the edge of AS 1 (the defense node

for the link to AS 2). Attacks from AS 5 are also blocked at the edge of AS 1. Increasing the

number of protected ASes means that attack traffic is blocked at more defense nodes. Moreover,

the amount of legitimate traffic that our mechanism can protect may increase.

At the final stage of deployment (Figure 19), all ASes are protected. In the case shown in

Figure 19, no attack packets reach AS 1 because all attack packets are blocked inside each AS.

The attack traffic is no longer delivered to the core network when detected.

34

Victim

AS 1

AS 5

AS 2

AS 4

AS 3

AS 6
AS 7

Figure 17: First stage of deployment

Victim

AS 1

AS 5

AS 2

AS 4

AS 3

AS 6

AS 7

Victim

AS 1

AS 5

AS 2

AS 4

AS 3

AS 6

AS 7

Figure 18: Second stage of deployment

35

Victim

AS 1

AS 5

AS 2

AS 4

AS 3

AS 6
AS 7

Figure 19: Final stage of deployment

36

6 Evaluation

6.1 Detection of attacks

6.1.1 Definition of attack traffic

Prior to the evaluation of our detection method, we define the attack traffic that must be detected as

traffic that can put a server into a denial-of-service state. This state occurs when the backlog queue

is full and new SYN packets arrive at the server. The length of the backlog queue is configured

by a kernel parameter in the operating system, and the default parameters of the backlog queue

on some major operating systems are listed in Table 3. The timeout values in this table are the

durations until the half-open connections in the backlog queue are removed. That is, the half-open

connections exceeding the timeout are closed by the server. To put a server into a denial-of-

service state, attackers have to supply a number of SYN packets exceeding the maximum length

of backlog queue within the timeout period. Supposing that target servers are running on Linux

and we define attacks as cases when more than 1024 SYN packets having incompleted the 3-

way handshake are sent within 180 seconds. Scanning our 5-day data, we found total 10 points

satisfying this definition of attack traffic.

6.1.2 Accuracy of proposed detection method

We evaluated our detection algorithm by using a trace-driven simulation based on the traffic data

we measured. We define the probability (P−) of not detecting the attack traffic (i.e., the probability

of the false-negative errors) and the probability (P+) of erroneously detecting an attack (i.e., the

probability of false-positive errors), which are calculated from following:

P− =
� of attacks not detected

� of attacks satisfying the definition
(13)

P+ =
� of points erroneously detected as attacks

� of points detected as attacks

Probabilities of P− and P+ are shown in Figure 10 respectively as a function of the threshold

for the average of squared difference. In this regard, we set N to 100, Xh to 90 and M to 100.

These figures show that both distribution could detect all attacks when we set the threshold to

less than 250. Though probability of detecting erroneously was 5 % when the threshold was

250, these erroneous detections were caused by a single client sending about 20 SYNs/sec. From

37

Table 3: Default configuration of backlog queue

OS max length timeout (sec)

Linux 1,024 180

Solaris 1,024 240

Windows 2000 server 200 40

the viewpoints of fairness and resource managements, this relatively high-rate traffic should be

limited. It can, after all, be regarded such traffic as “attack traffic” directed at the Internet itself

rather than a specific server.

6.1.3 Detectable SYN rate of attack traffic

We also examined the SYN rates of attacks that can be detected without erroneous detection.

Because low-rate attack traffic was not found in our data, we simulated such traffic by injecting

low-rate attack traffic into the traced traffic.

6.1.4 Effect of parameters in our detection method

Figure 21 shows the SYN rates of attacks that can be detected as a function of parameter Xh.

We could better detect lower-rate attacks by setting Xh to 75 rather than to 70. This is because a

smaller Xh means a smaller number of samples are used to estimate the parameters and we cannot

model as accurately. On the other hand, we could better detect lower-rate attacks by setting Xh to

85 rather than to 90. Too small a value of Xt makes the detection too sensitive, though, because

the number of samples compared with the models is small.

Figure 22 shows the SYN rates of attacks that could be detected as a function of parameter N .

In this case, we set X to 90 and M to 100. When N was too small, momentary high rates were

erroneously detected. On the other hand, a larger N made attack detection less sensitive and more

time was needed to detect attacks.

Figure 23 shows the SYN rates of attacks that could be detected as a function of parameter M .

In this case, we set Xh to 90 and N to 100. When we set M to a larger value, we can model more

accurately. However, we can better detect lower-rate attacks by setting M to 200 than by to 250.

This is because a large M lessens the impact of attack traffic on the distribution of SYN arrival

38

rates and makes low-rate attacks difficult to detect. Moreover, a larger M requires more samples

to detect attacks; i.e., more time is needed to detect attacks.

There is a trade-off between accuracy and quickness of detection. To defend servers against

attacks, attacks should be detected quickly enough to prevent the backlog queue of the victim

being filled by the attacks. For this reason, we set the parameters to values based on the maximum

length of the server’s backlog queue.

D becomes largest when the number of samples including attack packets is M(1 − X). The

number of packets arriving before we obtain M(1 − X) samples is MN(1 − X). That is, the

number of attack packets arriving before the attack is detected is less than MN(1−X). Thus, by

setting the parameters to make MN(1 − X) the maximum length of the server ’s backlog queue

we can detect attacks quickly enough.

6.1.5 Comparison of the three distribution functions

Figures 21 through 23 also show that there was no significant observation among the three distri-

bution functions (normal, lognormal, and gamma). Therefore, we could use any of these functions

to detect attack traffic under the conditions of our simulation. Regarding the deployment of our

detection mechanism, though, the calculation complexity is also important. The calculation of the

lognormal distribution is clearly more complex than that of the normal distribution. While the

normal and gamma distributions both require much computational overhead, the calculation of

parameters in the normal distribution is very easy. Also, the calculation of the normal distribution

function can be simplified by using a standard normal distribution table. In summary, the normal

distribution is the most appropriate for detecting attack traffic in terms of both accuracy and ease

of implementation.

6.1.6 Setting the threshold

D is close to the squared difference between the arrival rate of all traffic and that of normal traffic.

That is, D is related to the attack rate. Therefore, we compared the average of the squared differ-

ence with the attack rate. As Figure 24 shows,
√

D was close to but slightly less than the attack

rate. It was less than the attack rate because the rate of normal traffic when an attack occurs is not

always at the tail of the distribution.

39

We generated normal traffic which followed normal distributions with different variances. We

injected attacks whose rates were 100 SYNs/sec, 200 SYNs/sec, and 300 SYNs/sec. We then

calculated D. Figure 25 shows that the attack rate minus
√

D was proportional to the variance

of the distribution of normal traffic. Thus, we could set the threshold value based on the squared

attack rate to be detected and the variance of normal traffic.

6.1.7 Time needed to detect the attack traffic

Figure 26 shows the dynamics of the average squared difference from the beginning of an attack.

The SYN rates of the attacks were 20 SYNs/sec, 24 SYNs/sec, and 28 SYNs/sec, and N was

200, M was 100, and Xh was 90. We used the normal distribution as the model distribution.

This figure shows that the average squared difference increased gradually after the beginning of

an attack. When the threshold was set to 20, which enabled attack detection without detecting

any attacks erroneously, attacks with SYN rates higher than 28 SYNs/sec were detected within 20

seconds. In this case, the number of half-open states caused by an attack would be 560, which is

smaller than the length of a backlog queue in Linux.

To show that our mechanism can detect attacks faster, we compared the time needed to detect

attacks using our method with the time needed with the method proposed in [12]. We will refer to

the latter method as the SYN-FIN method.

Here, we will briefly describe the SYN-FIN method. First, we calculate ∆i which is the

difference between the number of SYN or SYN/ACK packets and the number of RST or FIN

packets. We then obtain the normalized value of ∆i by dividing it by the average number of RST

or FIN packets F ; xi = ∆i/F . We then calculate yi from

yi =

0 (yi−1 + xi−1 − α ≤ 0)

yi−1 + xi−1 − α (otherwise)
(14)

Finally, we determine whether traffic includes an attack by checking if the value of yi exceeds the

threshold T .

In the simulation, we set the values of α and T to 0.15 and 0.37, respectively. These were the

optimized parameters to detect attacks as quickly as possible. In this simulation we used a normal

distribution as the model and set N to 200, M to 100, and Xh to 90. We set the threshold D in

our method to 20, which enabled attack detection without any attacks being detected erroneously.

40

Figure 27 compares the time needed to detect attacks between our method and the SYN-FIN

method. We varied the rate of attacking traffic and measured the time needed to detect the attack-

ing traffic. From this figure, we can see that our method detected attacks much faster than the

SYN-FIN method. One reason for this is that the SYN-FIN method uses a non-parametric ap-

proach to estimate differences between the characteristics of normal traffic and those of attacking

traffic, while our method uses a parametric approach (i.e., we model the SYN rate of normal traffic

as following a normal distribution). Detection with the parametric approach is faster and more ac-

curate than with the non-parametric approach if the model is appropriate. However, the SYN-FIN

method has an advantage in that it can also detect lower rate attacks (e.g., less than 14 SYNs/sec).

Our method cannot detect these because traffic including low rate attacks still follows a normal

distribution.

6.1.8 Resources needed by the detection method

The above results show that our method can work with only 100 samples of the SYN rates. If

we monitor D for each destination address, we need 100 samples for each address. The captured

traffic has 1,000 destination addresses in 1,000 seconds of inbound traffic, and 10,000 destination

addresses in 1,000 seconds of outbound traffic. According to Figure 4(b), the arrival rates were not

so large and we can assume a small range of integer values (i.e., 16 bits) is enough for counting

SYN rates. We then need 200 KBytes for incoming traffic and 2 Mbytes for outgoing traffic.

6.1.9 Availability on other networks

Though our detection method is based on analysis results for packets monitored at Osaka Univer-

sity, our method can be used in other networks. The distribution followed by normal traffic is due

to the access timing of users whose tendencies do not vary with network scale. In any network,

the arrival rates of SYN packets rise rapidly during SYN flood attacks. Our method monitors

this rapid increase. In addition, the parameter setting described above is based on the number of

packets and not affected by the scale of networks.

41

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
P

ro
ba

bi
lit

y
Threshold for average of squared difference

(a) gamma distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

ba
bi

lit
y

Threshold for average of squared difference

(b) normal distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

ba
bi

lit
y

Threshold for average of squared difference

(c) lognormal distribution

Figure 20: Relation between threshold for average of the squared difference and the probabilities

of not detecting an attack (—–) and of erroneously detecting an attack (- - -).
42

0

2

4

6

8

10

12

14

16

18

20

70 75 80 85 90

A
tta

ck
 r

at
e

[S
Y

N
s/

se
c]

Xh

gamma
normal

log normal

Figure 21: Relation between the detectable SYN rate of attack traffic and parameter Xh

0

2

4

6

8

10

12

14

16

18

20

100 150 200 250

A
tta

ck
 r

at
e

[S
Y

N
s/

se
c]

N

gamma
normal

log normal

Figure 22: Relation between the detectable SYN rate of attack traffic and parameter N

43

0

2

4

6

8

10

12

14

16

18

20

100 150 200 250

A
tta

ck
 r

at
e

[S
Y

N
s/

se
c]

M

gamma
normal

log normal

Figure 23: Relation between the detectable SYN rate of attack traffic and parameter M

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

S
qr

t o
f D

Attack rate [SYNs/sec]

10000 sec
20000 sec
30000 sec

Figure 24:
√

D vs. attack rate

44

0

5

10

15

20

25

0 2 4 6 8 10 12 14

A
tta

ck
 r

at
e

m
in

us
 s

qr
t o

f D

variance

100 SYNs/sec
200 SYNs/sec
300 SYNs/sec

Figure 25: Attack rates minus
√

D vs. variance of normal traffic

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

A
ve

ra
ge

 o
f s

qu
ar

ed
 d

iff
er

en
ce

Time from the beginning of attack

20 SYNs/sec
24 SYNs/sec
28 SYNs/sec

Figure 26: Average of squared differences versus time after the beginning of attacks with various

SYN rates

45

10

100

1000

14 16 18 20 22 24 26 28 30

T
im

e
to

 d
et

ec
t [

se
c]

Attack rate [SYNs/sec]

Our method
SYN-FIN method

Figure 27: Time to detect attacks

46

6.2 Protection of legitimate packets

6.2.1 Probability of dropping legitimate SYN packets vs. attack rate

To demonstrate the effectiveness of a distributed defense mechanism, we compared the proba-

bility of dropping legitimate SYN packets when deploying an attacker-side defense mechanism

(Figure 28(b)) with that when deploying a victim-side defense mechanism (Figure 28(a)). We

assumed that the average round-trip time (RTT) between the clients and the victim server was

200 ms, and the average RTT between the clients and the attacker-side defense node was 20 ms.

We also assumed that all attack packets were received by the same defense node. From the result

described in 3, the SYN arrival rates of normal traffic would follow a normal distribution with a

mean of 100 SYNs/sec. We set the SYN Cache parameters to the values used in FreeBSD.

Figure 29 shows the probabilities of legitimate SYN packets being dropped based on the rate

of attack traffic. We have plotted three results: (1) without a defense mechanism, (2) with victim-

side defense, and (3) with attacker-side defense. As shown, the attacker-side defense protected

legitimate packets much better than the victim-side defense. This was because the RTTs between

clients and the attacker-side defense node were much shorter than the RTTs between clients and

the victim-side defense node. The average holding time for each connection request on the SYN

cache was also short, which increased the availability of the SYN cache.

[4] reports observing attacks whose rates exceeded 600,000 SYNs/sec. In the event of such

high-rate attacks, victim-side defense cannot protect legitimate packets and the probability of drop-

ping legitimate SYN packets rises to almost 1. On the other hand, if we deploy attacker-side

defense, the probability of dropping legitimate SYN packets would be less than 0.1. Moreover,

attacker-side defense is much more effective because attackers are distributed and the attack rates

at each defense node are low.

6.2.2 Time dependent variation of probability of dropping legitimate SYN packets

We next consider the effectiveness of the distributed defense mechanism. We consider the three

scenarios shown in Figure 30. Case 1 is a single-point defense mechanism. In Case 2, there are

several defense nodes on the edge of the network, but not all edge nodes are defense nodes. In

Case 3, all edge nodes except one (the ingress node for Client A) are defense nodes.

We injected attack traffic after a certain period of time from the beginning of the simulation.

47

Each attacker sent 200,000 attack packets per second, and the attack began 100 sec from the

simulation start and ended at 200 sec from the simulation start. Each client sent 30 SYNs/sec.

We plotted the time dependent variation of the probability of dropping legitimate SYN packets

at three points for each case. Client A was connected to a non-defense node. Client B had a

attacker node on the same segment. Client C was connected to a defense node in Cases 2 and 3,

and there was no attacker node on the same network.

In Case 1, none of the clients could send legitimate SYN packets to the victim node. On the

other hand, in Case 2, the probability of packet loss for Client B and Client C became very low

soon after the attack started while the probability for Client A remained high. This is because

our method quickly detects attacks and protects legitimate packets. In Case 3, the probabilities

were very low for all clients. This result shows that our method can effectively protect legitimate

packets and block attack packets.

48

Identification
of packets

Client

Attacker

(a) Victim-side defense

Client

Identification
of packets

Attacker

(b) Attacker-side defense

Figure 28: Environment supposed in our simulations

49

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1e+006

P
ro

ba
bi

lit
y

th
at

 a
 le

gi
tim

at
e

S
Y

N
 p

ac
ke

t d
ro

ps

Attack rate [SYNs/sec]

without proxy
victim side

attacker side

Figure 29: Probability of dropping legitimate SYN packets vs. attack rate

50

Victim
Attacker

Identification
of packets

Client A

Attacker

Client B

Attacker

Attacker

Attacker

Client C

(a) Case1: Single-point defense

Victim
Attacker

Identification
of packets

Client A

Attacker

Client B

Attacker

Attacker

Attacker

Client C

Identification of
packets

(b) Case2: Some of ASes including attackers deploy

our method

Victim
Attacker

Client A

Attacker

Client B

Attacker

Attacker

Attacker

Client C

Identification
of packets

(c) Case3: All ASes including attackers deploy our

method

Figure 30: Environment supposed in our simulations

51

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
P

ro
ba

bi
lit

y
th

at
 a

 le
gi

tim
at

e
S

Y
N

 p
ac

ke
t d

ro
ps

Time [sec]

Case 1
Case 2
Case 3

(a) Client A

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

th
at

 a
 le

gi
tim

at
e

S
Y

N
 p

ac
ke

t d
ro

ps

Time [sec]

Case 1
Case 2
Case 3

(b) Client B

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

th
at

 a
 le

gi
tim

at
e

S
Y

N
 p

ac
ke

t d
ro

ps

Time [sec]

Case 1
Case 2
Case 3

(c) Client C

Figure 31: Probability of dropping legitimate SYN packets
52

7 Conclusion and Future Work

We have developed a distributed detection and defense mechanism to protect against distributed

SYN Flood attacks. Our mechanism is based on collaboration among distributed defense nodes

through a constructed overlay network. Such an overlay network is an effective way to provide

attack alerts and protect legitimate traffic.

To detect attacks accurately, we propose a detection method that takes the time-of-day variance

of traffic into consideration. First, we analyzed the traffic at an Internet gateway and the results

showed that we can model the arrival rates of normal TCP SYN packets as a normal distribution.

Based on this result, we described a new attack detection method.

Through simulation, we have shown that our method can detect and block attack packets

quickly and accurately regardless of the time variance of the traffic. We have also shown the

effect of attacker-side defense and the effectiveness of our method.

One example of our future work will be to develop ways of identifying attack packets at the

points where the routes of packets may vary.

53

Acknowledgement

I would like to express my sincere appreciation to Professor Masayuki Murata, who was my su-

pervisor and has given me tremendous advice throughout my studies and in the preparation of this

thesis.

The work described in this thesis would not have been possible without the support of Lecturer

Shingo Ata of Osaka City University. He has always provided me with appropriate guidance and

invaluable advice.

I am also indebted to Associate Prof. Naoki Wakamiya, Hiroyuki Ohsaki, Go Hasegawa, and

Research Associates Shin’ichi Arakawa, Ichinoshin Maki, and Masahiro Sasabe who have given

me helpful advice and support.

Finally, I want to heartily thank my many friends and colleagues in the Department of Infor-

mation Networking of Osaka University for their support.

54

References

[1] “CERT advisory CA-1998-01 smurf IP Denial-of-Service attacks.” available at http://

www.cert.org/advisories/CA-1998-01.html, Jan. 1998.

[2] “CERT advisory CA-1996-01 UDP port Denial-of-Service attack.” available at http://

www.cert.org/advisories/CA-1996-01.html.

[3] “CERT advisory CA-1996-21 TCP SYN flooding and IP spoofing attacks.” available at

http://www.cert.org/advisories/CA-1996-21.html, Sept. 1996.

[4] D. Moore, G. M. Voelker, and S. Savage, “Inferring internet Denial-of-Service activity,” in

Proceedings of the 2001 USENIX Security Symposium, pp. 9–22, Aug. 2001.

[5] J. Lemon, “Resisting SYN flooding DoS attacks with a SYN cache,” in Proceedings of

USENIX BSDCon’2002, pp. 89–98, Feb. 2002.

[6] A. Zuquete, “Improving the functionality of SYN cookies,” in Proceedings of 6th IFIP

Communications and Multimedia Security Conference, pp. 57–77, Sept. 2002.

[7] J. Mirkovic, D-WARD: DDoS network attack recognition and defence. PhD thesis, Computer

Science Department, University of California, Los Angels, June 2003.

[8] S. Floyd, S. M. Bellovin, J. Ioannidis, K. Kompella, R. Manajan, and V. Paxson, “Pushback

messages for controlling aggregates in the network.” draft-floyd-pushback-messages-00.txt,

internet-draft, work in progress, July 2001.

[9] J. Mirkovic, M. Robinson, P. Reiher, and G. Kuenning, “Alliance formation for DDoS de-

fense,” in Proceedings of the New Security Paradigms Workshop, ACM SIGSAC, pp. 11–18,

Aug. 2003.

[10] Y. Kim, W. C. Lau, M. C. Chuah, and H. Chao, “PacketScore: Statistics-based overload

control against distributed denial-of-service attacks,” in Proceedings of IEEE INFOCOM

2004, Mar. 2004.

[11] T. M. Gil and M. Poletto, “MULTOPS: A data-structure for bandwidth attack detecrion,” in

Proceedings of USENIX Security Symposium’ 2001,, pp. 23–38, Aug. 2001.

55

[12] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks,” in Proceedings of

IEEE INFOCOM 2002, vol. 3, pp. 1530–1539, June 2002.

[13] T. Peng, C. Leckie, and K. Ramamohanarao, “Detecting distributed denial of service at-

tacks using source IP address monitoring.” available at http://www.ee.mu.oz.au/

pgrad/taop/research/detection.pdf, Nov. 2002.

[14] Y. Ohsita, S. Ata, and M. Murata, “Detecting distributed Denial-of-Service attacks by ana-

lyzing TCP SYN packets statistically,” in Proceedings of IEEE Globecom 2004, Nov. 2004.

[15] Y. Ohsita, S. Ata, and M. Murata, “Deployable overlay network for defense against dis-

tributed SYN flood attacks,” Technical Reports of IEICE(IN2003-125), pp. 13–18, Dec.

2004.

[16] “Tcpdump public repository.” available at http://www.tcpdump.org/.

[17] V. Brazauskas and R. Serfling, “Robust and efficient estimation of the tail index of a one-

parameter pareto distribution,” North American Actuarial Journal, pp. 12–27, Apr. 2000.

[18] I. Maki, G. hasegawa, M. Murata, and T. Murase, “Throughput analysis of TCP proxy mech-

anism,” in Proceedings of ATNAC 2004, Dec. 2004.

[19] S. Ata, M. Murata, and H. Miyahara, “Efficient cache structures of IP routers to provide

policy-based services,” in Proceedings of IEEE ICC 2001, June 2001.

[20] Y. Ohsita, S. Ata, and M. Murata, “Detecting distributed denial of service attacks by utilizing

statistical analysis of TCP SYN packets,” Technical Reports of IEICE(IN2003-201), pp. 23–

28, Feb. 2004.

[21] Y. Ohsita, S. Ata, and M. Murata, “Detecting distributed Denial-of-Service attacks by analyz-

ing TCP SYN packets statistically,” submitted to IEICE Transactions on Communications,

Nov. 2004.

56

