IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

[PAPER

Performance Analysis and Improvement of HighSpeed
TCP with TailDrop/RED Routers

Zongsheng ZHANG®, Go HASEGAWA ™), and Masayuki MURATAT®), Members

SUMMARY Continuous and explosive growth of the Inter-
net has shown that current TCP mechanisms can obstruct ef-
ficient use of high-speed, long-delay networks. To address this
problem we propose an enhanced transport-layer protocol called
gHSTCP, based on HighSpeed TCP proposed by Sally Floyd. It
uses two modes in the congestion avoidance phase based on the
changing trend of RT'T. Simulation results show gHSTCP can sig-
nificantly improve performance in mixed environments, in terms
of throughput and fairness against the traditional TCP Reno
flows. However, the performance improvement is limited due to
the nature of TailDrop router, and the RED/ARED routers can
not alleviate the problem completely. Therefore, we present a
modified version of Adaptive RED, called gARED, directed at
the problem of simultaneous packet drops by multiple flows in
high speed networks. gARED can eliminate weaknesses found in
Adaptive RED by monitoring the trend in variation of the aver-
age queue length of the router buffer. Our approach, combining
gARED and gHSTCP, is quite effective and fair to competing
traffic than Adaptive RED with HighSpeed TCP.

key words: TCP Reno, HighSpeed TCP, fairness, TailDrop,
RED

1. Introduction

Hosts (server machines) providing services that en-
compass data grids and storage area networks (SANS)
have gigabit-level network interfaces such as gigabit
ethernet. These hosts connect directly to high-speed
networks for terabyte/petabyte-sized data exchange
to move program data, perform backups, synchronize
databases, and so on. Although they require large
amounts of network bandwidth and disk storage, such
services will grow in the future Internet as their costs
are rapidly decreasing. However, the most popular
version of TCP used on the current Internet, TCP
Reno [1], cannot achieve sufficient throughput for this
kind of high-speed data transmission because of the es-
sential nature of the TCP congestion control mecha-
nism.

According to [2], in order for a TCP Reno connec-
tion, with a packet size of 1,500 bytes and RTT (Round
Trip Time) of 100 ms, to fill a 10 Gbps link, a conges-
tion window of 83,333 packets is required. This means
a packet loss rate of less than 2 x 10710, well below
what is possible with present optical fiber and router

fThe author is with Graduate School of Information Sci-
ence and Technology, Osaka University, Japan
a) E-mail: zhang@ist.osaka-u.ac.jp
b) E-mail: hasegawa@Qist.osaka-u.ac.jp
c¢) E-mail: murata@ist.osaka-u.ac.jp

technology. Furthermore, when packets are lost in the
network, 40,000 RTTs (about 4,000 sec) are needed to
recover throughput. As a result, standard TCP can-
not possibly obtain such a large throughput, primarily
because TCP Reno drastically decreases its congestion
window size when packet loss is taking place, increases
it only very slightly when experiencing no packet loss.

HighSpeed TCP (HSTCP) [2] was recently pro-
posed as one way to overcome the problems discussed
above and provide considerably greater throughput
than TCP Reno in such environments. It modifies
the increase/decrease algorithms of the congestion win-
dow size in the congestion avoidance phase of the TCP
mechanism [3]. That is, HSTCP increases its conges-
tion window more quickly, and decreases it more slowly,
than does TCP Reno to keep the congestion window
size large enough to fill a high-speed link.

Although intuitively HSTCP appears to provide
greater throughput than TCP Reno, HSTCP perfor-
mance characteristics have not been fully investigated,
such as the fairness issue when HSTCP and TCP Reno
connections share the same link. Fairness issues are
very important to TCP and have been actively investi-
gated in past literature [4]-[9]. Almost all of these stud-
ies have focused on the fairness among connections for a
certain TCP version used in different environments and
consider such factors as RTT, packet dropping proba-
bility, the number of active connections and the size
of transmitted documents. Fairness among traditional
and new TCP mechanisms, such as HSTCP, is a quite
important issue when we consider the migration paths
of new TCP variants. It is very likely that HSTCP
connections between server hosts, and the many tradi-
tional TCP Reno connections for Web access and e-mail
transmissions, will share high-speed backbone links. It
is therefore important to investigate the fairness char-
acteristics between HSTCP and TCP Reno. It has also
been mentioned in [2] that the relative fairness between
standard TCP and HSTCP worsens as link bandwidth
increases. When HSTCP and TCP Reno compete for a
bandwidth on a bottleneck link, we do not attempt to
provide the same throughput that they are capable of
achieving. But in this case, high throughput by HSTCP
should not occur at great sacrifice by TCP Reno, i.e.,
HSTCP should not pillage too many resources at the
expense of TCP Reno.

To our knowledge, there has been limited research

on this issue [10]-[12]. In [10],[11], only simulations
or results from experimental implementations are as-
sessed. In [12], the author addresses “a serious RTT
unfairness problem.” In this paper we evaluate through-
put and fairness properties when HSTCP and TCP
Reno connections share a network bandwidth. From
the results we observe that HSTCP can achieve high
throughput, but it is accompanied by a large degrada-
tion in TCP Reno throughput. To resolve this prob-
lem, we propose a modification to HSTCP called “gen-
tle HighSpeed TCP” (gHSTCP) that implements two
modes, HSTCP mode and Reno mode, in the con-
gestion avoidance phase to improve fairness yet allow
both gHSTCP and traditional TCP to achieve satis-
factory performance. The simulation results show that
gHSTCP can achieve both higher throughput and bet-
ter fairness than HSTCP.

However, the performance improvement is limited
due to the nature of TailDrop router, which causes
bursty packet losses and the large queueing delay.
Congestion control to alleviate these problems can be
accomplished by end-to-end congestion avoidance to-
gether with an active queue management (AQM) mech-
anism. Traditional TailDrop queue management could
not effectively prevent the occurrence of serious con-
gestion. Furthermore, global synchronization [13] could
occur during the period of congestion, i.e., a large num-
ber of TCP connections could experience packet drops
and reduce their transfer rates at the same time, re-
sulting in under-utilization of the network bandwidth
and large oscillations in queueing delay. Particularly
in high-speed long-delay networks, where routers may
have large buffers, TailDrop can cause long queueing de-
lays. To address these problems, Random Early Detec-
tion (RED) [14] has been recommended for wide deploy-
ment in the Internet as an active queue management
mechanism [15]. However, control parameter settings in
RED have been proven highly sensitive to the network
scenario, and misconfiguring RED can degrade perfor-
mance significantly [16]-[20]. Adaptive RED (ARED)
was therefore proposed as a solution to these subse-
quent problems [21]. ARED can adaptively change the
maximum drop probability in accordance with network
congestion levels. However, in high-speed and less mul-
tiplexed networks, our results indicate some remain-
ing problems with ARED), such as synchronized packet
drops and instability in queue length, leading us to de-
velop a more robust ARED mechanism. This improved
Adaptive RED, which we call gARED, monitors aver-
age queue length and trends in the variation in order
to dynamically adapt the maximum packet drop prob-
ability.

The remainder of this paper is organized as follows.
In Section 2 we give a brief overview of HSTCP and re-
view some related works on TCP variants for high speed
networks. In Section 3, we investigate, through simula-
tions, the throughput and fairness properties of HSTCP

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

when sharing bandwidth with TCP Reno on a bottle-
neck link. We then propose a modification to HSTCP.
In Section 4, we analyze and evaluate ARED, show its
weaknesses, propose an improved version of ARED and
then conduct simulation experiments to evaluate the
proposed mechanisms. Section 5 assesses the packet
loss rate when high-speed flows compete the resource
with web traffic. Finally, Section 6 presents our con-
clusions of this paper.

2. Background
2.1 HSTCP (HighSpeed TCP)

To overcome problems with TCP mentioned in Sec-
tion 1, HSTCP was proposed in [2]. The HSTCP al-
gorithm uses the principle of Additive Increase Mul-
tiplicative Decrease (AIMD) as in standard TCP, but
is more aggressive in its increases and more conserva-
tive in its decreases. HSTCP addresses this by altering
the AIMD algorithm for the congestion window adjust-
ment, making it a function of the congestion window
size rather than a constant as in standard TCP.

In response to a single acknowledgment, HSTCP
increases the number of segments in its congestion win-
dow w as:

a(w)

wW—w +

In response to a congestion event, HSTCP de-
creases the number of segments in its congestion win-
dow as:

w—(1 — b(w))xw
Here, a(w) and b(w) are given by:

2 — b(w)
log(w) — log(Wiow)
1Og(Whigh) - log(Wlmu)

b(w) = (bhigh — 05) + 0.5

(2)
plw) = = Q
where bpigh, Whign and Wi, are parameters of HSTCP.

According to Equations (1) and (2) and a typical
parameter set used in [2] (bnigh, Whign and Wi, are
0.1, 83,000 and 38, respectively), Fig. 1 shows how a(w)
and b(w) vary with the congestion window. We can
see that the “increase” parameter a(w) becomes larger,
and the “decrease” parameter b(w) becomes smaller,
as the congestion widow size increases. In this manner,
HSTCP can sustain a large congestion window and fully
utilize the high-speed long-delay network.

The HSTCP response function® (3) is illustrated

wl-2

fThe TCP response function maps the steady-state
packet drop rate to the TCP average sending rate in packets
per RTT.

ZHANG et al.: PERFORMANCE ANALYSIS AND IMPROVEMENT OF HIGHSPEED TCP WITH TAILDROP/RED ROUTERS

100 T 0.5
aw) ——

80 0.4

1 —

60 03
S _— s
© / o

40 v 0.2

20] O

0 0
0 20000 40000 60000 80000 100000
Congestion Window (pkts)
Fig.1 AIMD Parameters in HSTCP
100000 T
HSTCP ——
TCP Reno
[10000
=
x
2
<
s 1000
%)
[}
T
i 100 AN
o "\, (10°,38)
K 10 HSTCP.S=0.12/p%8%
TCP Reno S=1.22/p%®
1
le-10 1le-09 1e-08 le-07 1e-06 1e-050.0001 0.001 0.01 0.1
Loss Rate p
Fig.2 Response Function of TCP Reno and HSTCP

in Fig. 2. We can observe from this figure that HSTCP
relaxes the constraint between drop probability and
the congestion window. For example, when p = 10~7
is in steady-state, HSTCP can send at the rate of
100,000 packets/RTT while the sending rate of TCP
Reno is around only 4,000 packets/RTT. Consequently,
HSTCP can achieve a large congestion window even
with a high loss rate.

2.2 Related Work

There are other solutions for overcoming the limitations
of standard TCP in high-speed networks.

e Scalable TCP [22]. This is a simple change to the
traditional TCP congestion control algorithm. On
detection of congestion, it reduces the congestion
window in segments by 0.125 x cwnd. For each
acknowledgment received when congestion has not
been detected, it increases the congestion window
in segments to cwnd + 0.01. This increase is ex-
ponential instead of linear. Scalable TCP probing
times are proportional only to the RTT to make
the scheme scalable to high-speed networks. How-
ever, Scalable TCP exhibits unfairness to TCP
Reno greater than that of HSTCP [2].

e FAST TCP [23]. This protocol is based on TCP-
Vegas [24] to provide a stable protocol for high-
speed networks. In addition to packet loss, it
uses queuing delay as the main measure of con-
gestion. Although experimental results show Ve-
gas can achieve better throughput and fewer losses
than standard TCP Reno, there are few theoretical
explanations for it. Any problems with TCP-Vegas
exist possibly within FAST TCP, since its conges-
tion control mechanism is based on that of TCP
Vegas [25].

e XCP [26]. This is a router-assisted protocol. XCP-
enabled routers inform senders concerning the de-
gree of congestion at a bottleneck. XCP introduces
a new concept in which utilization control is de-
coupled from fairness control. It produces excel-
lent fairness and responsiveness as well as a high
degree of utilization. However, it requires the de-
ployment of XCP routers, therefore it cannot be
deployed incrementally.

Protocols aiming at high speed environment are
still on the way of development and is not widely de-
ployed. We think that it is better at present to design a
suitable protocol for high speed network. Thus we focus
on the performance and solve the problem of fairness
by modifying aggressive protocol in the whole network
as the case of gHSTCP in this paper. gHSTCP can uti-
lize the high-speed network while preserving the better
fairness against the traditional TCP Reno. In addition,
it is simply and easy to deploy.

Both FAST TCP and gHSTCP use RTT as a
method to regulate the congestion windows. But
gHSTCP is easy to implement. It only changes the
increasing speed of congestion window based on the in-
creasing RTT trend. Even with inaccurate estimation,
gHSTCP maintains the same increasing speed of con-
gestion window as TCP Reno does.

For using XCP, the mechanism of routers must be
reconstructed for the end hosts to get information from
the routers. In our proposal, gHSTCP can achieve good
performance even without gARED. The performance of
gHSTCP will become better if gARED can be deployed
at routers.

3. gHSTCP: Gentle HighSpeed TCP

In this section we present simulation results to show
problems with HSTCP and propose a simple yet ef-
fective modification, which we call gHSTCP. We take
advantage of HSTCP in terms of its AIMD algorithm
for aggressive increase and conservative decrease of the
congestion window. To gain better fairness with TCP
Reno, we modify the strategy for increasing the conges-
tion window. We then illustrate how gHSTCP outper-
forms HSTCP through simulations.

Rz %,
(10,000pkts) s,
» /QS S 4,,7
©s) %

Fig.3 Simulation Topology

3.1 Simulation with HSTCP

We first present the results of simulation experiments to
clarify HSTCP problems with throughput and fairness.
ns-2 network simulator [27] is used for the simulations.
The network topology is shown in Fig. 3, where S; and
S, represent sender groups consisting of sender hosts,
and D; and Ds represent sink groups consisting of des-
tination hosts. R; and Ry are routers with buffer size
of 10,000 packets. The packet size is 1,500 bytes. The
bandwidth of the bottleneck link is set to 2.5 Gbps,
and the propagation delay of the bottleneck link is set
to 25, 50 and 100 ms, respectively. UDP traffic is used
as background traffic. There are 10 connections be-
tween senders and sinks. S; contains five connections
with an access link bandwidth of 100 Mbps. So con-
tains five connections with an access link bandwidth
of 1 Gbps. For TCP Reno and HSTCP connections,
we show the simulation results with and without the
Selective ACKnowledgement (SACK) option [28]. We
denote HSTCP+SACK (Reno+SACK) and HSTCP
(Reno) in the results, respectively. TailDrop is used
as the queue management mechanism in this section.
We use a greedy FTP source for data transmission.

We consider homogeneous environment in the fol-
lowing simulations although it is necessary to investi-
gate heterogeneous environment, i.e., different delay of
each connection. Homogeneous environment represents
the worst case, which is worthy of special consideration
to evaluate the performance of a new protocol. Future
work will be conducted to find out how much difference
exists between homogeneous and heterogeneous envi-
ronments.

Two metrics for the performance evaluation are
used: aggregate throughput and fairness (Jain’s fair-
ness index). From a viewpoint of protecting a Reno
connection as much as possible, max-min fairness cri-
teria is used in the paper. Other methods such as pro-
portional fairness need to cooperate with other mech-
anisms. We thought it is very difficult to attain pro-
portional fairness only by improvement of TCP in end
hosts. Jain’s fairness index is defined as:

(i =)?
n
ny iy %2

FairnessIndex =

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

Here, n is the total connection number and z; is the nor-
malized throughput for flow ¢ defined as x; = M;/C;,
where M; is the measured throughput and C} is the fair
throughput found by max-min optimality. The fairness
index always lies between 0 and 1. A value of 1 indicates
that all connections are receiving the fairest allocation
of bandwidth.
We first show the results of four simulations.

e Case 1: TCP Reno is used for S; and Ss.

e Case 2: TCP Reno is used for S; and HSTCP is
used for Ss.

e Case 3: TCP Reno is used for S; and
HSTCP+SACK is used for Ss.

e Case 4: TCP Reno+SACK is used for S; and
HSTCP+SACK is used for Ss.

Table 1 shows the simulation results of four cases, and
it presents the average throughput in the latter half of
the simulation time and the fairness index defined by
above equation. In Case 1, TCP Reno flows having
high-bandwidth access links compete with TCP Reno
flows having lower-bandwidth access links. We can see
that S; group fully utilizes its access link bandwidth,
and Sy group, although it achieves higher throughput,
does not utilize the entire available bandwidth. This
confirms that TCP Reno cannot fully utilize the high
link bandwidth, as mentioned in Section 1.

In Case 2, HSTCP is used in Ss group instead
of TCP Reno. Sy group obtains slight benefit from
HSTCP, but performance of S; group is severely dam-
aged and degradation in total throughput occurs. This
is because the congestion window is inflated in So
group, resulting in more frequent buffer overflows and
increasing packet loss in all of the flows. As we know,
TCP Reno lacks a mechanism for recovering from a
multiple packet loss event without incurring a timeout.
Lost packets cause retransmission timeouts (this is a
fundamental mechanism of TCP Reno [29]), and time-
outs place the connection in the slow-start phase, re-
sulting in serious throughput degradation. Note that
HSTCP uses the same algorithm as TCP Reno for
packet retransmission. This is the reason why HSTCP
connections in Case 2 cannot obtain high throughput
compared with the TCP Reno connections in Case 1.

In Case 3, the TCP SACK option is applied
with HSTCP for So group. The TCP SACK mecha-
nism [28], combined with a selective retransmission pol-
icy, can help overcome limitations in recovering from
many packet losses. Table 1 shows that S, group
achieves very high throughput while that of TCP Reno
is severely degraded. Although there are still multiple
packet drops, So group, using the SACK option, infers
the dropped packets and retransmits only the missed
ones. Since this function is not available to S; group,
it receives less link bandwidth compared to Case 2.

In Case 4, we can observe the aggregate through-
put of Sy group is slightly improved comparing with

ZHANG et al.: PERFORMANCE ANALYSIS AND IMPROVEMENT OF HIGHSPEED TCP WITH TAILDROP/RED ROUTERS

Case 3. It is because there is not timeout occurred
to S; group due to the SACK option used. However,
the throughput of S; group is still low. It means that
other mechanisms are necessary to improve the fairness
between S; and Sy group.

It is clear in Case 1 that as propagation delay in-
creases Sy group does not affect S; group. This is be-
cause both groups employ the same mechanism and So
group cannot fully utilize the leftover bandwidth of Sq
group. But in Cases 2-4, the larger the propagation,
the smaller the throughput that can be achieved by S;
group due to the use of different algorithms by the two
groups.

3.2 gHSTCP Description

HSTCP increases the congestion window size based
solely on the current congestion window size. This may
lead to bursty packet losses, because the window size
continues to be rapidly increased even when packets be-
gin queued at the router buffer. In addition, differences
in speed gains among the different TCP variants result
in unfairness. To alleviate this problem, we consider
changing the behavior of HSTCP for speed increases
to account for full or partial utilization of bottleneck
links. We regulate the congestion avoidance phase in
two modes, HSTCP mode and Reno mode, and switch
between modes based on the trend of changing RTT.

Denote the departure time and RTT value of a
transmitted packet ¢ as d; and t;, respectively, the
correlation between d; and t; is tested statistically.
From pairs (d;,t;) to calculate the correlation coefficient
r [30]:

YL (di — d)(t: — D)
VX, - (- 12

where N is the size of congestion window in packet, d,
t are the mean values of d; and ¢;. If d; and t; tend to
increase together, r is positive. If, on the other hand,
one tends to increase as the other tends to decrease,
r is negative. The value of correlation coefficient lies
between -1 and +1.

Because the pairs (d;,t;) are N independent obser-
vations, r can be used to estimate the population corre-
lation p. To make inference about p using r, usually N
is a large number, we require the sampling distribution
of r by calculating the statistic Z:

Z_11n<1+r> N_3

T =

2 1—1r

If Z is larger than a certain value, there is very strong
evidence of statistical significance, i.e. (d;, ;) is positive
correlation, otherwise it is non-positive correlation. Z
of 3.09 is used in the following simulation results. The
parameter Z corresponds to the level of significance.

The larger value of Z shows there is very strong evidence
of correlation. In order to make a right estimation on
the increasing RTT trend, we recommend to select a
larger value for Z.

If a positive correlation is recognized, that is, an
increasing trend in the observed RTT values is present,
then bottleneck congestion is occurring for a sender. If
more and more packets are buffered in the router queue,
then the bottleneck is fully used. The sender should
therefore slow down its increasing speed of the sending
rate to keep the fairness against TCP Reno connections.
The process during this period is referred to as Reno
mode, in which the sender increases its congestion win-
dow linearly as with standard TCP. This will maintain
fairness among TCP Reno and gHSTCP connections.
On the other hand, if there is a non-positive correlation
between d; and t;, it means the network is in an under-
utilized state and the sender should increase the conges-
tion window rapidly to utilize the unused bandwidth.
The process during this period is called HSTCP mode.
The sender increases the window size in the same way
as HSTCP. The algorithm is summarized as follows.

When a new acknowledgment is received, gHSTCP
increases its congestion window in segments as:

a(w)
wW—w + ——
w

where a(w) is given by:

2w?-b(w)-p(w)
2 — b(w)
1 Reno mode

HSTCP mode
a(w) =

Once a retransmission timeout occurs, or dupli-
cated acknowledgments are received, the sender de-
creases the congestion window in the same way as
HSTCP does. When a timeout occurs, the congestion
window size is reset to one packet and the phase is
changed to slow-start. When a packet loss event is de-
tected and retransmitted by fast retransmit algorithm
then sets its congestion window size to (1 — b(w))xw,
b(w) is given by Equation (2) for two modes. If the
sender host is in HSTCP mode, it remains in HSTCP
mode. If a retransmission happens during Reno mode,
the sender switches to HSTCP mode.

3.3 gHSTCP Evaluation with Simulations

In this subsection we compare the performance of
HSTCP and gHSTCP based on simulations. Using
TailDrop as the queue management mechanism, the fol-
lowing simulations are performed:

e Case 5: TCP Reno is used for S; and gHSTCP is
used for Ss.

e Case 6: TCP Reno is used for S; and
gHSTCP+SACK is used for S,.

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

6
Table 1 Performance of HSTCP with DropTail
Case St So Delay | Average throughput of S1/Sy | Confident | Utilization | Fairness
group group (ms) | S, Mbps) BXJS, (Mbps) Interval® (%)
1 Reno Reno 25 113.824 87.361 0.994
50 109.676 75.634 0.976
100 199.217 83.989 0.989
2 Reno HSTCP 25 12.549 70.925 0.887
50 14.005 64.362 0.821
100 49.861 60.923 0.747
3 Reno HSTCP 25 0.947 97.489 0.582
+SACK 50 2.040 97.397 0.581
100 1.084 95.603 0.556
4 Reno HSTCP 25 3.345 97.618 0.652
+SACK | +SACK 50 1.532 97.431 0.629
100 0.981 95.668 0.591

e Case 7: TCP Reno+SACK is used for S; and
gHSTCP+SACK is used for S,.

The results are shown in Table 2. In Case 5, the
throughput is significantly improved for both TCP
Reno and gHSTCP comparing with Case 2. The fair-
ness is also improved. In Case 6, the throughput of
So group is further increased due to the SACK op-
tion used for gHSTCP. However, it results in the fair-
ness decreasing. But it is better than that in Case 3.
In Case 7, when the SACK option is used with both
groups, although total throughput is almost the same
as the case when HSTCP is used, the fairness becomes
better among the different flow types with the help of
gHSTCP. The throughput of S; group is greatly im-
proved comparing with that in Case 4.

Tables 1 and 2 show that the bottleneck is under-
utilized when SACK option isn’t present and TailDrop
is deployed. They also illustrate degraded fairness
among HSTCP/gHSTCP and TCP Reno flows as the
bottleneck link delay become larger. In this situation,
HSTCP/gHSTCP connections are able to obtain larger
throughput while the TCP Reno connections suffer de-
graded throughput. This is caused by the different al-
gorithms used for increasing/decreasing the congestion
window size. TCP Reno resizes its congestion win-
dow in the same way regardless of the current window
size. HSTCP/gHSTCP increases its congestion window
more rapidly and decreases it more slowly when the
window size is larger. Consequently, when the propa-
gation delay of the bottleneck becomes large, that is,
when the bandwidth-delay product of the bottleneck
link becomes large, HSTCP/gHSTCP connections in-
crease the size of their congestion windows quickly.

To improve network performance in terms of link
utilization and system fairness, it has been proposed
that Active Queue Management (AQM) such as RED
be deployed in the Internet [15]. In contrast to

@ Tt is for the total average throughput, the confidence level is 95%.

TailDrop, which drops incoming packets only when the
buffer is fully utilized, the RED algorithm drops arriv-
ing packets probabilistically, with the probability cal-
culated based on changes in queue length of the router
buffer [14]. Here, we replace TailDrop with RED and
investigate the performance of HSTCP and gHSTCP.
Topology and other conditions are the same as for the
previous simulation experiments. According to [31], the
latest router (especially backbone router) tends to have
a buffer of 250 msec, and based on the simulation that
we have conducted, the parameter used for RED is set
as follows to maintain a good performance. The queue
length minimum threshold, min,y, is set to 2,500 pack-
ets. The other RED parameters are set to their default
values in ns-2 (mawxy, = 3 * ming,, wy = 0.002 and
max, = 0.1). The following simulation experiments
are performed:

e Case 8: TCP Reno is used for S; and HSTCP is
used for Se with RED deployed.

e Case 9: TCP Reno is used for S; and
HSTCP+SACK is used for S with RED deployed.

e Case 10: TCP Reno+SACK is used for S; and
HSTCP+SACK is used for Sy with RED deployed.

e Case 11: TCP Reno is used for S; and gHSTCP is
used for Se with RED deployed.

e Case 12: TCP Reno is used for S; and
gHSTCP+SACK is used for S, with RED de-
ployed.

e Case 13: TCP Reno+SACK is used for S; and
gHSTCP+SACK is used for S, with RED de-
ployed.

Comparing the results of Table 3 for Cases 8-13
with Tables 1 and 2, we see that fairness is improved,
but link under-utilization is present and total through-
put is less than that using TailDrop in some cases, es-
pecially in the case when the SACK option is not avail-
able. We expect the fairness is to be improved while

ZHANG et al.: PERFORMANCE ANALYSIS AND IMPROVEMENT OF HIGHSPEED TCP WITH TAILDROP/RED ROUTERS
Table 2 Performance of gHSTCP with DropTail
Case Sq So Delay | Average throughput of S;/Sy | Confident | Utilization | Fairness
group group (ms) | HEES; Mbps) X3S, (Mbps) Interval (%)
5 Reno gHSTCP 25 24.621 87.908 0.997
50 B R] 12.540 78.933 0.925
100 PR] 16.031 72.177 0.849
6 Reno gHSTCP 25 i 1.556 97.405 0.893
+SACK 50 1.808 97.230 0.741
100 1.750 96.034 0.612
7 Reno gHSTCP 25 1.176 97.540 0.986
+SACK | +SACK 50 1.936 97.362 0.897
100 1.209 96.202 0.724
Table 3 Performance of HSTCP/gHSTCP with RED (maz, = 0.1)
Case St So Delay | Average throughput of S;/Sy | Confident | Utilization | Fairness
group group (ms) | IS, Mbps) BX3S,(Mbps) Interval (%)
8 Reno HSTCP 25 [R] 59.000 66.891 0.998
50 [e tesie| | 35.620 57.937 0.920
100 RSB | 80.048 61.054 0.881
9 Reno HSTCP 25 R R 4.097 93.889 0.782
+SACK 50 2.191 90.303 0.666
100 4.882 88.831 0.600
10 Reno | HSTCP 25 R e 1.564 93.920 0.841
+SACK | +SACK 50 ST 1.610 90.356 0.710
100 R 3.842 38.943 0.635
11 Reno gHSTCP 25 SRR] 12.774 81.549 0.998
50 [et] 25.582 69.398 0.993
100 [e] 47.055 64.702 0.885
12 Reno gHSTCP 25 F 2.906 95.065 0.979
+SACK 50 7.477 91.388 0.838
100 4.729 89.124 0.625
13 Reno gHSTCP 25 1.385 95.062 0.993
+SACK | +SACK 50 4.357 91.595 0.906
100 3.568 89.240 0.691

maintaining the high utilization by introducing RED
based on its policy of randomly dropping packets. How-
ever, the under-utilization problem can’t be alleviated.

In this high-speed environment, high-speed flow
has a very large congestion window. Once a packet loss
event occurs, multiple packets are dropped although the
packet drop probability is quite small. This results in
timeouts if the SACK option is not used for high-speed
flow. Fig. 4 shows the change in the congestion window
when HSTCP /gHSTCP is used with RED and the bot-
tleneck link propagation delay is 50 ms. Although RED
is deployed at the routers, global synchronization also
occurs because of the multiple packet losses. This phe-
nomena is present to a smaller extent when gHSTCP
is used but can still happen. If the SACK option is
used for the HSTCP/gHSTCP flows, though the con-
gestion windows will not be reset to 1 packet as shown
in Fig. 5, it still occurs that all flows simultaneously

decrease their congestion window due to the improper
setting of RED. This may result in an under-utilization
of the bottleneck link.

In addition, it is reported [31] that synchroniza-
tion tends to exist with certain condition, such as the
number of coexisting connections is 100 or less regard-
less of the variation in RTT. In the environment where
HSTCP/gHSTCP is used, since it is assumed that the
multiplexed degree is not so high, it is necessary to
develop a mechanism to reduce synchronization occur-
ring.

It is well-known that system performance is quite
sensitive to the RED parameters [16]-[20]. The follow-
ing simulation experiments illustrate this problem, with
correctly tuned RED parameter max,, set to 0.001:

e Case 14: TCP Reno is used for S; and HSTCP is
used for So with RED (maz, = 0.001).

e Case 15: TCP Reno is used for S; and

9000

8000

7000 flow-3 |

6000 8

5000 ; 8
Vi ’ ;

4000 |-
3000

Congestion Window (pkts)

2000 i

1000

0
3 320 340
time (s) (HSTCP, delay=50ms)
(a) HSTCP

6000

5000

4000

2000

Congestion Window (pkts)

1000

300 7 320 340 360 380 400
time (s) (QHSTCP, delay=50ms)
(b) gHSTCP

Fig.4 Congestion Window (HSTCP/gHSTCP with RED)

HSTCP+SACK is used for S; with RED (mazx, =
0.001).

e Case 16: TCP Reno+SACK is used for S; and
HSTCP+SACK is used for Sp with RED (mazx, =
0.001).

e Case 17: TCP Reno is used for S; and gHSTCP is
used for So with RED (maz, = 0.001).

e Case 18: TCP Reno is used for S; and
gHSTCP+SACK is used for So with RED
(max), = 0.001).

e Case 19: TCP Reno+SACK is used for Sy
and gHSTCP+SACK is used for Sy with RED
(max), = 0.001).

The results in Table 4 show that the system can achieve
both higher throughput and better fairness in this sit-
uation. It means that in this situation, max, is an im-
portant parameter to improve the performance of the
RED algorithm. However, there is no complete para-
meter set of the RED mechanism to successfully cope
with the various network conditions, since the RED pa-
rameters are very sensitive to the network factors [16]—
[20]. In the next section, an additional mechanism will
be introduced to address this problem.

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

5500

5000

4500

4000

3500 |:

3000

=

v
2000

300 320 340 360 380 400
time (s) (HSTCP+SACK, delay=50ms)
(a) HSTCP+SACK

Congestion Window (pkts)

7000

6000

5000

4000

3000 |

Congestion Window (pkts)

2000

1000
300 320 340 360 380 400

time (s) (QHSTCP+SACK, delay=50ms)
(b) gHSTCP+SACK

Fig.5 Congestion Window (HSTCP+SACK/gHSTCP+SACK
with RED)

4. gARED: Gentle Adaptive RED

The results in Section 3 are primarily the effects of
the TailDrop and RED mechanisms at the bottleneck
routers. We observed that max, is an important pa-
rameter that significantly affects system performance
when RED is deployed. We need a mechanism that can
adjust the parameters automatically, especially max,,
in response to the network environment. Adaptive
RED (ARED) [21], an improved version of RED, is
such a mechanism, and its application is expected to
improve system performance. We first conduct simula-
tion experiments with ARED and reveal its shortcom-
ings from the results. We then propose a modification
to alleviate these deficiencies, through a process of au-
tomatic parameter setting, but that still preserves the
effectiveness of the ARED mechanism, especially aim-
ing at the absence of the SACK option.

4.1 ARED Mechanism

RED monitors impending congestion by maintaining
an exponential weighted moving average of the queue
length (). However, RED parameter settings have

ZHANG et al.: PERFORMANCE ANALYSIS AND IMPROVEMENT OF HIGHSPEED TCP WITH TAILDROP/RED ROUTERS

9
Table 4 Performance of HSTCP/gHSTCP with RED (max;, = 0.001)
Case Sy So Delay | Average throughput of S1/Ss | Confident | Utilization | Fairness
group group (ms) | HEES, (Mbps) BZ2S,(Mbps) Interval (%)
8 Reno HSTCP 25 AR5 2.643 97.193 0.985
50 SRR 14.792 94.621 0.950
100 [sl 29.052 87.515 0.947
9 Reno HSTCP 25 1.634 97.483 0.981
+SACK 50 2.891 96.377 0.934
100 6.305 93.250 0.829
10 Reno HSTCP 25 0.745 97.481 0.979
+SACK | +SACK 50 1.486 96.463 0.946
100 6.065 93.356 0.848
11 Reno gHSTCP 25 0.849 97.435 1.000
50 2.516 96.615 1.000
100 R 24.977 92.151 0.987
12 Reno gHSTCP 25 0.767 97.455 1.000
+SACK 50 1.738 97.145 0.996
100 3.384 94.022 0.951
13 Reno gHSTCP 25 1.983 97.403 1.000
+SACK | +SACK 50 1.726 97.062 1.000
100 7.117 93.896 0.953

proven to be highly sensitive to network conditions, and
performance can suffer significantly for a misconfigured
RED [16],[17]. The motivation for ARED is to dimin-
ish or eliminate the shortcomings of RED, i.e., remove
the effect of the RED parameters on average queue
length and performance. Following is a brief overview
of the differences between RED and ARED, the details
of which can be reviewed in [21].

e max,: In RED, this value does not change at run-
time. In ARED, maz, is dynamically adapted
to keep the average queue size within the target
queue boundaries according to network conditions.
When the average queue size is larger than the tar-
get queue size, max, is increased. When the av-
erage queue size is less than the target queue size,
mazx, is decreased. One recommended range for
mazx, is (0.01, 0.5).

e maxy,: RED recommends setting maxy, to at
least twice ming,. In ARED, the rule of thumb
is to set maxy, to three times that of ming,. The
target queue is determined by mazy, and ming,
as [ming, + 0.4 * (maxy, — ming,), ming, + 0.6 *
(maxs, —ming)]. The target queue, the objective
for ARED adapting the max, setting, determines
the queuing delay expected at the router. The set-
ting for ming, is determined by the network man-
ager.

e w,: This parameter is used as a low-pass filter
on the instantaneous queue size in order to esti-
mate the long-term queue average. RED sets it
to a fixed value. The fixed value is not suitable
as the bandwidth link increases. ARED sets it

to 1 — exp(—1/C), where C is the link capacity
in packets/second. The intent here is to maintain
the time constant on the order of RTT. Calculat-
ing the average queue size is the basis of the RED
algorithm.

Of the above three changes, the first is a key factor
because it is an adaptation to network conditions. The
other settings are determined at system startup.

4.2 Simulation with ARED

To evaluate the effectiveness of ARED in a high-speed
long-delay network some simulations are conducted un-
der the same conditions as in the previous section but
with ARED deployed at the routers. Setting ming, to
2,500 packets, and setting the other ARED parameters
as described in the previous subsection:

e Case 20: TCP Reno is used for S; and HSTCP is
used for So with ARED deployed.

e Case 21: TCP Reno is used for S; and
HSTCP+SACK is used for Sp; with ARED de-
ployed.

e Case 22: TCP Reno+SACK is used for S; and
HSTCP+SACK is used for Sp; with ARED de-
ployed.

e Case 23: TCP Reno is used for S; and gHSTCP is
used for Se with ARED deployed.

e Case 24: TCP Reno is used for S; and
gHSTCP+SACK is used for So; with ARED de-
ployed.

e Case 25: TCP Reno+SACK is used for S; and
gHSTCP+SACK is used for So; with ARED de-

10
8000 '
HSTCP ——
7000 HSTCP+SACK =sseessss
: |
é {
E]
g H]
g i 1
()
-
[}
=]
[}
3
&) .
.
Ui é
i i

340 360 380 400
time (s) (delay=50ms)

Fig.6 Instantaneous Queue Length
(HSTCP/HSTCP+SACK with ARED)

ployed.

The results are shown in Table 5. System performance
is improved in terms of throughput and fairness com-
pared with that of RED (Table 3). However, the bot-
tleneck link remains under-utilized. Fig. 6 shows the
change in queue length for a propagation delay of 50
ms, and it is apparent that the router buffers are fre-
quently in the idle state. This is why the bottleneck
link bandwidth is not fully utilized due to an improper
setting for the ARED packet drop probability. We now
describe the shortcomings of ARED in detail.

The graph in Fig. 7 shows a sketch map of the aver-
age queue size as it varies over time when using ARED.
The purpose of the changing maz, is to maintain an
average queue size within the target queue range. In
the figure, the x-axis is time, the y-axis is the average
queue length. When the average queue size increases
to greater than the target queue size, ARED will in-
crease max, which in turn causes many of the flows to
reduce their sending rates. This results in a decrease of
the average queue size. When the average queue size
decreases to less than the target queue, mazx, is de-
creased. With a smaller max,, fewer connections suffer
packet losses and the average queue size therefore in-
creases. In this manner, ARED achieves its expected
performance.

A problem with ARED is that it does not consider
the trend in average queue variation. Given ¢t = tq,
mazx, = pi, the average queue size (§) is ¢1. As ¢
increases, max, reaches a local maximum value py at
t = te, ¢ = ¢m. This ps is large enough to ensure an
average queue reduction. At ¢ = t3, ¢ decreases and
max, is still increasing. At ¢ = ¢4, max, reaches its
maximum p,,, py, > p2. The larger max, will converge
the average queue size to the target queue size at a
faster pace, but at the expense of a less stable state.

We can view this process as a feedback control sys-
tem [19] with the TCP senders as the controlled ele-
ment, the drop module as the controlling element and
the drop probability as the feedback signal. The feed-

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

<

(2,qm.p2)
(3:93:P3)
(14,q4,Pm)

(tlsqhQ)

maxm

Tayéet Quépe Ran

Fig.7 Sketch of Average Queue Length (ARED)

<

(t2:qmsP2)
(3.93:p3)

(tl,un) § (14,q4:Pm)

AN A\

\ Tayéet Quepe Rangc|

f X/

miny,

Fig.8 Sketch of Average Queue Length (gARED)

back signal, delayed by about one RTT, causes senders
to decrease their send rates to less than the ideal rate.
Especially, the larger the drop probability, the more
the TCP senders rates will be less than ideal. More-
over, as the propagation delay and queue size increase,
this phenomenon will become more serious.

Another problem with ARED, the same as with
RED, is that the lower bound of parameter maz, is
determined to some extent by the network manager to
ensure ARED performance.

4.3 An Improvement of ARED

To solve these problems inherent to ARED, we pro-
pose a modified version referred to gARED as shown in
Fig. 8. When the average queue becomes larger than
the target queue and there is an increasing trend, max,,
is increased. When the average queue becomes smaller
than the target queue, then only if the average queue
length is larger than ming, and there is a decreasing
trend, max, is decreased. When the average queue
size is within target queue or less than mingy,, there is
no change on mazx,.

Comparing gARED with ARED, if the average
queue size is larger than the target queue size while
t is in the interval (t2,¢4), ARED increases maz, but
gARED does not. The small maz, gives the network
more stability. On the other hand, if the average queue

ZHANG et al.: PERFORMANCE ANALYSIS AND IMPROVEMENT OF HIGHSPEED TCP WITH TAILDROP/RED ROUTERS

11
Table 5 Performance Comparison of HSTCP/gHSTCP with ARED
Case Sy So Delay | Average throughput of S1/Ss | Confident | Utilization | Fairness
group group (ms) | NS, (Mbps) BZJS,(Mbps) Interval (%)
20 Reno HSTCP 25] 10.075 91.465 0.995
50 24.128 81.059 0.992
100 20.574 70.070 0.976
21 Reno HSTCP 25 4.323 95.813 0.970
+SACK 50 7.216 92.558 0.887
100 7.465 89.026 0.778
22 Reno HSTCP 25 4.080 95.690 0.980
+SACK | +SACK 50 7.515 92.707 0.887
100 B8] 16.732 88.473 0.801
23 Reno gHSTCP 25 4.665 96.766 1.000
50 6.549 91.555 1.000
100 27.368 80.035 0.984
24 Reno gHSTCP 25 0.828 96.965 1.000
+SACK 50 8.815 95.294 0.988
100 5.446 91.502 0.897
25 Reno gHSTCP 25 2.842 97.041 1.000
+SACK | +SACK 50 3.232 94.892 0.994
100 15.010 91.522 0.902
size is less than the target queue, max, is larger for e Case 27: TCP Reno is wused for S; and

gARED than one for ARED, So that the average queue
can return to the target queue slowly.

Another difference between gARED and ARED
is that there is no limit on the lower bound of max,
in gARED. It is determined automatically based on
mingp, -

The algorithm of gARED is given as:

Every interval seconds:
if (avg > target and avg > old_avg and
max_p < top)
increase max_p:
max_p = max_p + alpha
if (min_th < avg and avg < target and
avg < old_avg)
decrease max_p:
max_p = max_p * beta
avg: average queue length
old_avg: previous average queue length
top: upper bound of max_p
alpha: increment, min(0.01,max_p/4)
beta: decrease factor, 0.9

4.4 Evaluation of HSTCP/gHSTCP with gARED

Table 6 shows throughput and fairness of simulation
experiments when there are 5 HSTCP/gHSTCP flows
competing with 5 TCP Reno flows, and gARED is used
at the routers:

e Case 26: TCP Reno is used for S; and HSTCP is
used for So with gARED deployed.

HSTCP+SACK is used for Sy with gARED de-
ployed.

e Case 28: TCP Reno+SACK is used for S; and
HSTCP+SACK is used for Sy with gARED de-
ployed.

e Case 29: TCP Reno is used for S; and gHSTCP is
used for So with gARED deployed.

e Case 30: TCP Reno is used for S; and
gHSTCP+SACK is used for Sy with gARED de-
ployed.

e Case 31: TCP Reno+SACK is used for S; and
gHSTCP+SACK is used for So with gARED de-
ployed.

Table 6 shows the utilization is improved under
gARED deployed. However, the fairness with HSTCP
is not good. Especially, as delay is increased. It is
because smaller packet drop rate is set by gARED for
keeping the target queue length. HSTCP increases its
congestion window rapidly without having considera-
tion for other competing TCP Reno flows. In contrast,
gHSTCP based on RTT detection not only can achieve
approving throughput, but also the better fairness can
be obtained.

5. Evaluation with Web-traffic

In previous sections, we evaluated the performance of
HSTCP/gHSTCP in the environments where it com-
petes the system sources with long-lived flows. A re-
cent study [32] shows that short-lived flows such as
Web traffic is one of main class applications in the In-

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

12
Table 6 Performance Comparison of HSTCP/gHSTCP with gARED
Case S1 Sa Delay | Average throughput of S1/Ss | Confident | Utilization | Fairness
group group (ms) | NS, (Mbps) BZJS,(Mbps) Interval (%)
26 Reno HSTCP 25 10.496 96.761 0.976
50 22.905 90.103 0.895
100 185.851 79.353 0.827
27 Reno HSTCP 25 1.591 97.543 0.980
+SACK 50 1.542 97.406 0.844
100 2.875 95.702 0.555
28 Reno HSTCP 25 1.741 97.508 0.975
+SACK | +SACK 50 1.860 97.425 0.789
100 3.914 96.357 0.652
29 Reno gHSTCP 25 10.335 97.277 1.000
50 30.243 95.227 0.995
100 113.194 94.362 0.942
30 Reno gHSTCP 25 2.014 97.511 1.000
+SACK 50 6.657 97.328 0.990
100 12.327 96.307 0.824
31 Reno gHSTCP 25 2.023 97.310 1.000
+SACK | +SACK 50 R R 2.773 97.443 1.000
100 R s 9.237 96.528 0.962

Fig. 9

Topology with Web-traffic

ternet. In this section, we assess the performance of
HSTCP/gHSTCP when they co-exists with Web traf-
fic.

Topology used in simulation is shown in Fig. 9.
The delay of the bottleneck link is 25 ms. TailDrop is
deployed at routers Ry and Ry. S;, D; are HighSpeed
flow senders and receivers, respectively. The access link
bandwidth of each sender/receiver is 1 Gbps. Access-
link of WWW server cluster and WWW client cluster
is also 1 Gbps. In WWW server cluster, there are 200
servers. Each www server access link is 1 Gbps, its link
delay is uniform [10,20] ms. In WWW client cluster,
there are 1000 client with access link bandwidth of uni-
formly distributed in [100,155] Mbps, and the delay is
distributed in [20,50] ms.

We use PagePool/WebTraf, a Web traffic model
of ns-2, to generate synthetic Web traffic between the
Web servers and clients. Probability distributions for
user/session attributes are as follows [33]:

Inter-page time: Pareto, mean=10 s, sharp=2
Objects per page: Pareto, mean=3, sharp=1.5
Inter-Object time: Pareto, mean=0.5 s, sharp=1.5
Object size: Pareto, mean=12 KB, sharp=1.2

The packet loss rate at the router R; is used as a perfor-
mance metric. In the simulations, the most Web traffic
is alive in 50-800 s of the simulation time. The results
are obtained in this period.

There are 4 sets of simulation conducted:

e Case 32: The bottleneck link bandwidth is
1000 Mbps, the router buffer size is 5000 packets.
e Case 33: The bottleneck link bandwidth is
1000 Mbps, the router buffer size is 500 packets.
e Case 34: The bottleneck link bandwidth is
500 Mbps, the router buffer size is 5000 packets.
e Case 35: The bottleneck link bandwidth is
500 Mbps, the router buffer size is 500 packets.

In each case, one of two different protocols — HSTCP
and gHSTCP, is used for the high-speed flows and the
number of high-speed flows is 5, 10 and 20, respec-
tively. The results when the bottleneck link band-
width is 1000 Mbps are illustrated in Fig. 10. Fig. 11
shows the results when the bottleneck link bandwidth
is 500 Mbps.

From the results we observe that as the router
buffer size is decreased, the packet loss rate increases.
It is because that there is no room enough to buffer
the bursty coming packets, especially when HSTCP is
used. If the bottleneck link bandwidth becomes small,
the system has no sufficient ability to forward the com-
ing packets, this leads to a higher packet loss rate.

ZHANG et al.: PERFORMANCE ANALYSIS AND IMPROVEMENT OF HIGHSPEED TCP WITH TAILDROP/RED ROUTERS

0.2 T T
HSTCP(buffer size=500pkts) -+
gHSTCP(buffer size=500pkts) - +
HSTCP(buffer size=5000pkts) —*—
gHSTCP(buffer size=5000pkts) -3 -~
015 -
S
g K
8 o1 3
: /
5
X
a 0.05 £]
o
5
12
0

5 10 20
Num of Highspeed Flows

Fig.10 Packet Loss Rate (Bandwidth=1000 Mbps)

0.4 T T
HSTCP(buffer size=500pkts) -+
gHSTCP(buffer size=500pkts) > +
HSTCP(buffer size=5000pkts) —%—
gHSTCP(buffer size=5000pkts) -4 .~
0.3 yoa
0.2

Packet Loss Rate(%)

. ! /

’/D"

1

)

0
5 10 20
Num of Highspeed Flows
Fig.11 Packet Loss Rate (Bandwidth=500 Mbps)

However, we observe that the system has a lower
packet loss rate in any case when gHSTCP is used for
high-speed flows. These results reveal the merits of
gHSTCP again. gHSTCP adjusts the increase speed of
the congestion window according to the network con-
ditions, and therefore can avoid the buffer overflow oc-
curring frequently.

Web responding time is also checked. Fig. 12 shows
a CDF (Cumulative Distribution Function) graph of
web responding time when the number of high speed
flow is 10, the bottleneck is 1000 Mbps and the router
buffer size is 5000 packets. It is slightly improved under
the circumstance when gHSTCP is used.

6. Conclusion

We have proposed a new approach for improving
HSTCP performance in terms of fairness and through-
put. Our proposal, gHSTCP, achieves this goal by in-
troducing two modes in the congestion avoidance phase:
Reno mode and HSTCP mode. When there is an in-
creasing trend in RTT, gHSTCP uses Reno mode; oth-
erwise, it uses HSTCP mode. In addition, to address
problems with ARED in high-speed long-delay net-
works, we also proposed a modified version of ARED,

13

HSTCP ——
gHSTCP v 4

0.9
e

0.6

0.5 /
0.4
0.3

0.2 /
//
O0.1 1 10 100
Page download time(s) (buffersize=5000pkts, N=10)

CDF

Fig.12 Web Responding Time

called gARED, that adjusts maz, according to the av-
erage queue length and the trend in variation. This
technique avoids the problem of determining an appro-
priate lower bound for maz,. We showed through sim-
ulations that our proposed algorithms outperform the
original algorithms. Future work will include further in-
vestigation of gHSTCP, e.g., how to recover effectively
from simultaneous packet losses, refinement of the tech-
nique for making estimations based on trends.

References

[1] M. Allman, V. Paxson, and W. Stevens, “TCP congestion
control,” RFC 2581, April 1999.

[2] S. Floyd, “HighSpeed TCP for large congestion windows,”
RFC 3649, December 2003.

[3] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Proto-
cols, Addison-Wesley, 1994.

[4] C. Barakat, E. Altman, and W. Dabbous, “On TCP per-
formance in a heterogenous network: A survey,” IEEE
Communications Magazine, vol.38, no.1, pp.40-46, Janu-
ary 2000.

[5] G. Hasegawa and M. Murata, “Survey on fairness issues in
TCP congestion control mechanisms,” IEICE Transactions
on Communications, vol.E84-B, no.6, pp.1461-1472, June
2001.

[6] R. Morris, “T'CP behavior with many flows,” Proceedings
of IEEE International Conference on Network Protocols
(ICNP), pp.205-211, October 1997.

[7] L. Qiu, Y. Zhang, and S. Keshav, “Understanding the per-
formance of many TCP flows,” Computer Networks, vol.37,
no.3-4, pp.277-306, November 2001.

[8] L. Guo and I. Matta, “The war between mice and ele-
phants,” Proceedings of the 9th IEEE International Con-
ference on Network Protocols, November 2001.

[9] K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg, “Dif-
ferentiation between short and long TCP flows: Predictabil-
ity of the response time,” Proceedings of INFOCOM 2004,
March 2004.

[10] E. de Souza and D. Agarwal, “A HighSpeed TCP study:
Characteristics and deployment issues,” Tech. Rep. LBNL—
53215, LBNL, 2003.

[11] H. Bullot and L. Cottrell, “TCP stacks testbed,” 2003.
Available as: http://www-iepm.slac.stanford.edu/bw/
tcp-eval/.

[12] L. Xu, K. Harfoush, and I. Rhe, “Binary increase congestion
control (BIC) for fast long-distance networks,” Proceedings

14

[16]

(17]

18]

(21]

(22]

23]

24]

(25]

of INFOCOM 2004, March 2004.

S. Floyd and V. Jacobson, “Traffic phase effects in packet-
switched gateways,” Journal of Internetworking: Practice
and Experience, vol.3, no.3, pp.115-156, September 1992.
S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” ITEEE/ACM Transactions
on Networking, vol.1, no.4, pp.397-413, August 1993.

B. Braden and et al., “Recommendations on queue man-
agement and congestion avoidance in the Internet,” RFC
2309, April 1998.

W. Feng, D.D. Kandlur, D. Saha, and K.G. Shin, “A
self-configuring RED gateway,” Proceedings of INFOCOM
1999, pp.1320-1328, March 1999.

M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to de-
ploy RED,” Proceedings of 7th. International Workshop on
Quality of Service (IWQo0S’99), London, pp.260-262, June
1999.

V. Misra, W.B. Gong, and D.F. Towsley, “A fluid-based
analysis of a network of AQM routers supporting TCP flows
with an application to RED,” Proceedings of SIGCOMM
2000, pp.151-160, September 2000.

V. Firoiu and M. Borden, “A study of active queue man-
agement for congestion control,” Proceedings of INFOCOM
2000, pp.1435—-1444, March 2000.

M. Christiansen, K. Jaffay, D. Ott, and F.D. Smith, “Tun-
ing RED for web traffic,” Proceedings of SIGCOMM 2000,
pp-139-150, August 2000.

S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED:
An algorithm for increasing the robustness of RED,” 2001.
Available as: http://www.icir.org/floyd/papers/.

T. Kelly, “Scalable TCP: Improving performance in high-
speed wide area networks,” February 2003. Available as:
http://www-lce.eng.cam.ac.uk/~ctk21/scalable/.

C. Jin, D.X. Wei, and S.H. Low, “FAST TCP for high-speed
long-distance networks,” Internet Draft: draft-jwl-tcp-fast-
01.txt, June 2003.

L.S. Brakmo, S.W. O’Malley, and L.L. Peterson, “TCP ve-
gas: New techniques for congestion detection and avoid-
ance,” SIGCOMM, pp.24-35, August 1994.

M. Goutelle and et al.,, “A survey of transport proto-
cols other than standard TCP,” February 2004. Available
as: http://www.gridforum.org/Meetings/ggf10/GGF107%
20Documents/Survey’20DT-RG. pdf.

D. Katabi, M. Handley, and C. Rohrs, “Congestion control
for high bandwidth-delay product networks,” Proceedings
of SIGCOMM 2002, August 2002.

S. McCanne and S. Floyd, “ns Network Simulator,” 2004.
Available as: http://www.isi.edu/nsnam/ns/.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
selective acknowledgment options,” RFC 2018, October
1996.

K. Fall and S. Floyd, “Simulation-based comparisons of
Tahoe, Reno and SACK TCP,” Computer Communication
Review, vol.26, no.3, pp.5-21, July 1996.

Mathematics group, “Faculty of Arts, Computing, Engi-
neering and Sciences Scientific Statistics,” 1998. Available
as: http://maths.sci.shu.ac.uk/distance/stats/index.
html.

G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing
Router Buffers,” Proceedings of SIGCOMM 2004, pp.277—
288, August 2004.

S. Labs, “Packet trace analysis,” 2004. Available as: http:
//ipmon.sprint-labs.com/packstat/packet.php.

A. Feldmann, A. Gilbert, P. Huang, and W. Willinger, “Dy-
namics of IP traffic: A Study of the role of variability and
the impact of control,” Proceedings of SIGCOMM 1999,
pp-301-313, September 1999.

IEICE TRANS. COMMUN., VOL.Exx-B, NO.xx XXXX 200x

Zongsheng ZHANG received the
M.S. degree from Jilin University, China,
in 1993. He is now a doctoral student at
Graduate School of Information Science
and Technology, Osaka University, Japan.

Go HASEGAWA received the ML.E.
and D.E. degrees in Information and
Computer Sciences from Osaka Univer-
sity, Osaka, Japan, in 1997 and 2000, re-
spectively. From July 1997 to June 2000,
he was a Research Assistant of Gradu-
ate School of Economics, Osaka Univer-
sity. He is now an Associate Professor
of Cybermedia Center, Osaka University.

His research work is in the area of trans-

port architecture for future high-speed
networks. He is a member of the IEEE and IEICE.

Masayuki MURATA received the
M.E. and D.E. degrees in Information and
Computer Sciences from Osaka Univer-
sity, Japan, in 1984 and 1988, respec-
tively. In April 1984, he joined Tokyo Re-
search Laboratory, IBM Japan, as a Re-
searcher. From September 1987 to Jan-
uary 1989, he was an Assistant Profes-
sor with Computation Center, Osaka Uni-

versity. In February 1989, he moved to
the Department of Information and Com-
puter Sciences, Faculty of Engineering Science, Osaka University.
From 1992 to 1999, he was an Associate Professor in the Graduate
School of Engineering Science, Osaka University, and from April
1999, he has been a Professor of Osaka University. He moved to
Advanced Networked Environment Division, Cybermedia Cen-
ter, Osaka University in 2000, and moved to Graduate School of
Information Science and Technology, Osaka University in April
2004. He has more than two hundred papers of international
and domestic journals and conferences. His research interests in-
clude computer communication networks, performance modeling
and evaluation. He is a member of IEEE, ACM, The Internet
Society, IEICE and IPSJ.

