Steady state and transient state analyses of TCP and TCP-friendly rate control mechanism using a control theoretic approach

Hiroyuki Hisamatsu
Osaka University, Japan
Outline

• Introduction
 – New transport-layer communication protocols for real-time system applications

• Analytic model
 – TFRC, TCP, RED

• Steady state analysis
 – Derive TFRC goodput, TCP goodput

• Transient state analysis
 – Use a control theoretic approach

• Numerical examples

• Conclusion
Background

• Real-time applications
 – Have been widely deployed
 – Use either UDP or TCP

• Internet
 – Best effort network
 ➢ All network applications should have a mechanism for adapting to the congestion status of a network
UDP (User Datagram Protocol)

- Simple protocol for datagram transfer
- Doesn't have a congestion control mechanism
- We should implement some congestion control mechanism on application layer
TCP (Transmission Control Protocol)

- Has a congestion control mechanism
 - Adjust its packet transmission rate
- Designed for data transfer applications
 - Can tolerate a certain amount of delays
- AIMD window flow control
- Packet transmission rate fluctuates
 - Serious problem for a real-time applications
New transport-layer communication protocols

• TFRC, RAP, GAIMD
 – TCP-Friendly Rate Control
 – Rate Adaptation Protocol
 – General AIMD Congestion Control

• Have a congestion control mechanism

• Realize a fairness with competing TCP flows

• Change the packet transmission rate smoothly
Related work

• TFRC have been studied variously
• Steady state behavior
 – Fairness between TFRC and TCP
 – Validity of the rate control mechanism
• Transient state behavior
 – Smoothness of the throughput variation
 – Responding speed to the change of the network congestion status
• Most of these researches are based only on simulation experiments.
Objectives

- Model a network with TFRC and TCP connections
 - Multiple TFRC connections
 - Multiple TCP connections
 - Single RED (Random Early Detection) router
- Steady state analysis
 - Derive several performance measures
 - TFRC goodput, TCP goodput, packet loss probability
- Transient state analysis
 - Quantitatively show convergence speed
 - Using a control theoretic approach
Analytic model

\[\tau_F [\text{ms}] \]

\[\mu [\text{packet/ms}] \]

BufferSize = \(L [\text{packet}] \)

\[\tau_C [\text{ms}] \]
Assumption

• All TCP connections operate in their congestion avoidance phase
• Maximum window size of TCP is sufficiently larger than the bandwidth-delay product of a network
• RED routers operate appropriately
 – Average queue length of RED router is kept between min_{th} and max_{th}
TFRC

- **Destination host**
 - measures the *loss event rate* and feeds this information back to the source host
 - loss event: one or more lost packet from a window of data

- **Source host**
 - uses feedback messages to measure the round-trip time
 - Loss event rate and round-trip time are then fed into TFRC’s throughput equation
 - adjusts its transmission rate
Overview of model (1)

- Model TFRC, TCP, RED as discrete time systems with a time slot of Δ
- TFRC

We derive packet loss event rate $p_e(k)$, as a function of packet loss probability and round-trip time.
Overview of model (2)

- **TCP**
 - packet loss probability \(p(k) \)
 - round-trip time \(R_C(k) \)

- **RED**
 - TCP window size \(w(k) \)
 - packet loss probability \(p(k+1) \)
 - TFRC transmission rate \(T(k) \)
 - TFRC & TCP round-trip time \(R_C(k+1) & R_F(k+1) \)

\[q(k) \text{: current queue length} \]
\[\bar{q}(k) \text{: average queue length} \]
Steady state analysis

- Obtain equilibrium values from models numerically
 - Equilibrium values: values in steady state
 - TCP window size w^*, round-trip time R_f^*
 - TFRC transmission rate T^*, round-trip time R_c^*
 - RED packet loss probability p^*
- Derive TFRC & TCP goodput
 - TFRC goodput: $T^* \times (1 - p^*)$
 - TCP goodput: $\frac{w^*}{R_f^*} \times (1 - p^*)$
Transient state analysis (1)

• Define state variables & state vector
 – State variables: $T(k), \cdots, T\left(k - \frac{R_f(k)}{\Delta}\right), w(k), \cdots, w\left(k - \frac{R_c(k)}{\Delta}\right), q(k), \cdots, q\left(k - \max\left(\frac{R_f(k)}{\Delta}, \frac{R_c(k)}{\Delta}\right)\right)$
 – State vector $x(k)$:
 • Differences between each state variables and its equilibrium values
 \[x(k) = (T(k) - T^*, \cdots, w(k) - w^*, q(k) - q^*, \cdots, \overline{q}(k) - \overline{q}^*) \]
Transient state analysis (2)

• Assume TFRC notifies its source host of feedback information every M slots
• Linearize models around equilibrium points
• Obtain the transition matrix from slot k to slot $k+m$
 \[x(k + M) = AB^{M-1}x(k) \]
 - A: state transition matrix when TFRC source receives feedback information
 - B: state transition matrix when TFRC source doesn’t receive feedback information
Transient state analysis (3)

- Eigen values of AB^{M-1} determine transient state behavior
 - s: the maximum absolute eigen values of AB^{M-1}, maximum modulus
 - smaller s: better transient behavior
 - $s < 1$: stable
 - $s > 1$: unstable
Numerical example setting

- **Analysis & simulation**
 - TFRC & TCP packet size: 1000 [byte]
 - # of TFRC & TCP connections: 10, 10
 - Two-way propagation delays of TFRC & TCP are set to the equal value: $\tau_F = \tau_C = \tau[ms]$
 - RED parameters
 - $min_{th} = 0.25 \mu \tau$
 - $max_{th} = 1.25 \mu \tau$
 - $L = 2.5 \mu \tau$
 - $w_q = 0.002$
 - $max_p = 0.1$
 - L : RED buffer size [packet]
 - μ : bottleneck link capacity [packet/ms]

- **Simulation**
 - Simulator: ns-2
 - Simulation time: 300 [s]
 - # of simulation: 10
Numerical example

Good agreement

\[\tau = 50[\text{ms}] \text{ (analysis)} \]
\[\tau = 100[\text{ms}] \text{ (analysis)} \]
\[\tau = 50[\text{ms}] \text{ (simulation)} \]
\[\tau = 100[\text{ms}] \text{ (simulation)} \]
Conclusion

- Analyze the steady state behavior of TFRC & TCP where TFRC & TCP coexist
- Model TFRC, TCP, RED as discrete time systems
- Derive TFRC & TCP goodput in steady state
 - Our analytic results show good agreement with simulation ones
- Analyze the transient state behavior of TFRC & TCP where TFRC & TCP coexist