Steady state and transient state analyses of TCP and TCP-friendly rate control mechanism using a control theoretic approach

> Hiroyuki Hisamatsu Osaka University, Japan

Outline

- Introduction
 - New transport-layer communication protocols for real-time system applications
- Analytic model
 - TFRC, TCP, RED
- Steady state analysis
 - Derive TFRC goodput, TCP goodput
- Transient state analysis
 - Use a control theoretic approach
- Numerical examples
- Conclusion

Background

 Real-time applications Have been widely deployed – Use either UDP or TCP Internet - Best effort network > All network applications should have a mechanism for adapting to the congestion status of a network

UDP (User Datagram Protocol)

- Simple protocol for datagram transfer
- Doesn't have a congestion control mechanism
- We should implement some congestion control mechanism on application layer

ITCom 2004

TCP (Transmission Control Protocol)

- Has a congestion control mechanism
 Adjust its packet transmission rate
- Designed for data transfer applications
 Can tolerate a certain amount of delays
- AIMD window flow control
- Packet transmission rate fluctuates
 - Serious problem for a real-time applications

New transport-layer communication protocols

• TFRC, RAP, GAIMD

- TCP-Friendly Rate Control
- Rate Adaptation Protocol
- General AIMD Congestion Control
- Have a congestion control mechanism
- Realize a fairness with competing TCP flows
- Change the packet transmission rate smoothly

Related work

- TFRC have been studied variously
- Steady state behavior
 - Fairness between TFRC and TCP
 - Validity of the rate control mechanism
- Transient state behavior
 - Smoothness of the throughput variation
 - Responding speed to the change of the network congestion status
- Most of these researches are based only on simulation experiments.

Objectives

- Model a network with TFRC and TCP connections
 - Multiple TFRC connections
 - Multiple TCP connections
 - Single RED (Random Early Detection) router
- Steady state analysis
 - Derive several performance measures
 - TFRC goodput, TCP goodput, packet loss probability
- Transient state analysis
 - Quantitatively show convergence speed
 - Using a control theoretic approach

Analytic model

Assumption

- All TCP connections operate in their congestion avoidance phase
- Maximum window size of TCP is sufficiently larger than the bandwidthdelay product of a network
- RED routers operate appropriately

 Average queue length of RED router is
 kept between min_{th} and max_{th}

- Destination host
 - measures the loss event rate and feeds this information back to the source host
 - loss event: one or more lost packet from a window of data
- Source host
 - uses feedback messages to measure the roundtrip time
 - Loss event rate and round-trip time are then fed into TFRC's throughput equation
 - adjusts its transmission rate

Overview of model (1)

- Model TFRC, TCP, RED as discrete time systems with a time slot of Δ
- **TFRC**

TFRC round-trip time $p_e(k)$ $R_{C}(k$

Input

- We derive packet loss event rate $p_e(k)$, as a function of packet loss probability and round-trip time

Output

packet loss probability

p(k)

ITCom 2004

transmission

rate T(k+1)

Steady state analysis

- Obtain equilibrium values from models numerically
 - Equilibrium values: values in steady state
 - TCP window size w^* , round-trip time R_r^*
 - TFRC transmission rate T^* , round-trip time R_c^*
 - RED packet loss probability p^{*}
- Derive TFRC & TCP goodput
 - TFRC goodput: $T^{*} \times (1-p^{*})$
 - TCP goodput: $\frac{W}{R_{F}^{*}} \times \left(1 p^{*}\right)$

Transient state analysis (1)

• Define state variables & state vector - State variables: $T(k), \cdots T\left(k - \frac{R_f(k)}{\Delta}\right), w(k), \cdots w\left(k - \frac{R_c(k)}{\Delta}\right),$

 $q(k), \cdots q \left| k - \max\left(\frac{\boldsymbol{R}_{f}(k)}{\Delta}, \frac{\boldsymbol{R}_{c}(k)}{\Delta}\right), \overline{q}(k), \cdots \overline{q} \left| k - \max\left(\frac{\boldsymbol{R}_{f}(k)}{\Delta}, \frac{\boldsymbol{R}_{c}(k)}{\Delta}\right)\right| \right|$

- State vector x(k):

 Differences between each state variables and its equilibrium values

 $x(k) = (T(k) - T^*, \dots, w(k) - w^*, q(k) - q^*, \dots, \bar{q}(k) - \bar{q}^*)$

Transient state analysis (2)

- Assume TFRC notifies its source host of feedback information every M slots
- Linearize models around equilibrium points
- Obtain the transition matrix from slot k to slot k+m, $x(k+M) = AB^{M-1}x(k)$
 - A: state transition matrix when TFRC source receives feedback information
 - B: state transition matrix when TFRC source doesn't receive feedback information

Transient state analysis (3)

- Eigen values of AB^{M-1} determine transient state behavior
 - s :the maximum absolute eigen values
 of AB^{M-1}, maximum modulus
 - smaller s: better transient behavior
 - s < 1: stable
 - -s > 1: unstable

Numerical example setting

- Analysis & simulation
 - TFRC & TCP packet size: 1000 [byte]
 - # of TFRC & TCP connections: 10, 10
 - Two-way propagation delays of TFRC & TCP are set to the equal value: $\tau_{E} = \tau_{C} = \tau$ ms
 - **RED** parameters
 - $min_{th} = 0.25 \mu \tau$
 - $max_p = 0.1$ • $max_{th}^{m} = 1.25 \mu \tau$ — L :RED buffer size [packet]
 - $L = 2.5 \mu \tau$ μ :bottleneck link capacity
 - $w_q = 0.002$

[packet/ms]

- Simulation
 - Simulator: ns-2
 - Simulation time: 300[s]
 - # of simulation: 10

Numerical example

Conclusion

- Analyze the steady state behavior of TFRC & TCP where TFRC & TCP coexist
- Model TFRC, TCP, RED as discrete time systems
- Derive TFRC & TCP goodput in steady state
 - Our analytic results show good agreement with simulation ones
- Analyze the transient state behavior of TFRC & TCP where TFRC & TCP coexist

