Inline Network Measurement: TCP with a Built-in Measurement Technique

Osaka University
Cao, Le Thanh Man
mlt-cao@ist.osaka-u.ac.jp

Bandwidth-related metrics (end-to-end path)

- **Capacity**
 - Maximum possible bandwidth
- **Available bandwidth**
 - Maximum unused bandwidth
 - Capacity minus utilized bandwidth
- **Bulk-Transfer-Capacity (BTC)**
 - Achievable throughput of one TCP connection
Available bandwidth

- Data transmission control
- Service overlay networks: routing, server selection
- Network topology design
- Network trouble shooting
- ...

Measuring available bandwidth

- Observing traffic at routers
 - Good for network administrators
- Passively observing traffic at end hosts
 - No effect on other traffic
 - Low accuracy
 - Require time
- Actively injecting probe traffic to the network
 - High accuracy
 - Probe traffic is required
 - Affect other traffic
Our approach

- Active measurement
- Adding no extra traffic to the network

Inline measurement
 - Using data packets in a TCP connection as probe packets

Research purpose

We introduce ImTCP (Inline Measurement TCP)

- Measurement at the TCP sender
- Available bandwidth of the network path between TCP sender and receiver
Measurement algorithm for TCP

1. Small number of probe packets
 - Deployed in TCP
2. Small effect to other traffic
3. Continuously and quickly yielding measurement results

- Choosing a suitable algorithm from existing ones
- Adding adaptation
- Our proposed measurement algorithm
PathLoad

Available bandwidth = 50 Mbps

streams of probe packets

Principle:
- Increasing trend in arrival intervals → transmission rate > available bandwidth
- Binary searching in the range 0 bps ~ Link Capacity

Why not being applied to TCP:
- many probe packets required
- long time required

New features in the proposed algorithm

- Varying transmission rate in a stream
 - Reducing the number of packets in a stream
- Limiting the search range of a measurement
 - Deploying statistic information of previous measurement results
 - Reducing the number of streams in each measurement
 - Fast measurement
 - Avoiding sending streams in very high rate
 - No affect to other traffic

The proposed algorithm is suitable for inline measurement

Reference:
Inline measurement TCP

- Adjusting the transmission intervals of some data packets
- Measuring the available bandwidth from arrival intervals of ACK packets

Related research: TCP Westwood
Passive measurement basing on ACK arrival rate

Network

ImTCP receiver

We suppose no ACK delay in the receiver

Transmission intervals decided by measurement algorithm

ImTCP sender

Adjusting packet transmission time

Sender

Application

TCP processing

TCP

ImTCP buffer

Recording arrival time

Measuring available bandwidth

MAC

Ack packet arrival

End of waiting time or Window size < N

Finish

Number of stored packet = m

Last stream of a measurement transmitted

A stream transmitted

Send STREAM

ImTCP buffer control Unit

ImTCP buffer is utilized for adjusting packet transmission time
Parameter setting

Shortening the packet storing time

- **N**: Number of packets in a packet stream
- We start the transmission of a stream when **m** packets are available (**m<=N**)
- The left part (**N-m** packets) are supposed to arrive during the transmission of the **m** packets

Dynamic setting of m

- Set **m = N** initially. **2<=m<=N**
- If **F** successive measurements are completed successfully, then decrement **m** by 1. We set **F=2**.
- If a stream creation fails, then increment **m** by 1 and create the stream again.

Measurement results for ImTCP

We oscillate the available bandwidth by changing the transmission rate of UDP traffic

The measurement results of ImTCP reflect well the change of available bandwidth than that of TCP Westwood (Passive measurement)
Effect on traffic in the same network

We investigate the effect of ImTCP/RenoTCP on Web page download time of the Web traffic:

- ImTCP/RenoTCP have the same effect on the Web traffic
 - ImTCP does not cause extra effect
- ImTCP/RenoTCP have almost the same throughput

Bandwidth utilization and fairness

TCP connections share a 50 Mbps bottleneck link:

- ImTCP and Reno TCP have the same link utilization
- There is fairness between ImTCP connections
Conclusion

- We introduced ImTCP, a TCP of which the sender can measure the available bandwidth

Future works
- Implementation of ImTCP
- Receiver-based ImTCP
- Capacity measurement