Virtual Fiber Configuration Method
for Dynamic Lightpath Establishment
in Large-Scaled WDM Networks

Graduate School of Osaka University
Advanced Network Architecture Laboratory
Shinya Ishida
s-isida@ist.osaka-u.ac.jp
Contents

• Growing WDM networks
 – Topology of large-scale WDM networks
 – Influence of the power-law connectivity

• Our solution
 – Quasi-static lightpath
 – Virtual fiber
 – Degree-based virtual fiber configuration

• Evaluations

• Conclusion and future work
Growing WDM networks

• Rapid increase of the Internet’s traffic volume
 – WDM technology

• Growth of WDM networks
 – Interconnections by GMPLS and ASON
 – A large-scale WDM network will be constructed

• Performance of a large-scale WDM network
 – What topology?
 • Random mesh network (used in traditional studies on WDM)
 • Another
Topology of the Internet

- **AS level topology of the Internet**
 - Power-law connectivity
 - Most nodes have a few connections
 - Some nodes have lots of connections (hub nodes)

Power-law connectivity
The probability $p(k)$ that a node is connected to k other nodes is proportional to k^{-r} (r is constant).
Topology of large-scale WDM networks

• BA (Barabási-Albert) model
 – Incremental growth
 • Nodes join a network one by one
 – Preferential attachment
 • High-degree nodes are likely to be connected with new nodes

• Large-scale WDM networks
 – Nodes join incrementally
 – Links are added selfishly
 • No coordinators for the entire networks
 • Limits of costs for equipments

Power-law connectivity
Influence of power-law connectivity

- Unbalanced load
 - Many lightpaths through hub nodes
 - Blocking probability is increased

\[L_e: \text{Number of node pairs whose lightpaths go through a link } e \]

Simulation model:
- Links are bi-directional
- Routing is Shortest hop routing
- No wavelength conversion
Our solution

- Changing topologies logically
 - Enhancement of network equipments is expensive
 - Link state based routings increase overheads

<table>
<thead>
<tr>
<th>Solution</th>
<th>Merits</th>
<th>Demerits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancement of network equipments such as fibers and OXCs</td>
<td>Any other architectures are not required</td>
<td>Costs for installing and managing network equipments become high</td>
</tr>
<tr>
<td>Using a link state based routing</td>
<td>Wavelength resources are highly utilized against dynamic changes of traffic pattern</td>
<td>Overheads for distributing link state information and updating routing tables are increased</td>
</tr>
<tr>
<td>Changing topologies by configuring virtual fibers</td>
<td>Any more resources are not needed and a routing has not to be changed</td>
<td>Flexibility of wavelength utilization is limited</td>
</tr>
</tbody>
</table>
Quasi-static lightpath

- Setup static lightpaths in advance
 - Regard static lightpaths as logical links
 - Reserve and release wavelengths of logical links as wavelengths of physical links

- Moderate the affect of the wavelength continuity constraint
Virtual fiber

- Cut-through operation
 - Setup quasi-static lightpaths for all of the wavelengths

- Degrees of intermediate nodes are reduced
 - Routes of some lightpaths have to be changed
Degree-based virtual fiber configuration

- Reduce degrees of hub nodes by cut-through
 - Some lightpaths are diverted from hub nodes
 - Loads for links around hub nodes are distributed

Outline of degree-based virtual fiber configuration method

Step 1: Set the degree threshold th. Go to Step 2.
Step 2: Find a node n_0 having maximum degree d_{max}. If $d_{max} > th$, go to Step 3. If not, go to Step 5.
Step 3: Select such two adjacent nodes of n_0, n_1 and n_2, that the sum of their degrees is maximum. Go to Step 4.
Step 4: Cut through n_0 from n_1 to n_2. Go to Step 2.
Step 5: Quit configuring virtual fibers.
Evaluations

• Compare blocking probabilities
 – for the cases with and without virtual fiber configurations

 – Simulation model
 • Maximum degree: 88
 • Propagation delay: 0.1 msec (uniform)
 • Processing delay: 0
 • Lightpath setup requests: Poisson arrival
 • Holding times: Exponential distribution (rate 1.0 sec)
Comparison of blocking probability

- Our method reduces more than one order of magnitude of blocking probability
- Optimal threshold depends on arrival rate
 - Main factor for blocking probability changes

![Graphs showing distribution of L_e and blocking probability](image)
Comparison of topological property

- Virtual fiber configuration
 - Average link load is increased
 - Variance of link load is reduced

- Main factor changes according to arrival rate
 - Average link load when the arrival rate is low
 - Maximum link load when the arrival rate is high

Properties of each topology

<table>
<thead>
<tr>
<th>Topology</th>
<th>Power-law</th>
<th>64</th>
<th>48</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average distance</td>
<td>3.99</td>
<td>4.15</td>
<td>4.33</td>
<td>4.47</td>
<td>5.09</td>
<td>5.92</td>
<td>5.06</td>
</tr>
<tr>
<td>Average L_e</td>
<td>998.89</td>
<td>1046.0</td>
<td>1107.1</td>
<td>1166.0</td>
<td>1406.9</td>
<td>1787.1</td>
<td>1222.5</td>
</tr>
<tr>
<td>Maximum L_e</td>
<td>25120</td>
<td>12905</td>
<td>11863</td>
<td>11786</td>
<td>9993.0</td>
<td>8745.0</td>
<td>3442.0</td>
</tr>
<tr>
<td>Minimum L_e</td>
<td>15</td>
<td>48</td>
<td>62</td>
<td>55</td>
<td>117</td>
<td>325</td>
<td>414</td>
</tr>
</tbody>
</table>
Conclusion and future work

• Conclusion
 – Future large-scale WDM networks
 • Power-law connectivity
 • Hub nodes decline the performance of blocking probability
 – Virtual fiber configuration method
 • Investments and complicated routing are not required
 • Balances link load by logically reducing degrees of hub nodes
 • Reduces the blocking probability by more than one order of magnitude

• Future work
 – A way to determine the optimal threshold in advance
Thank you