
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Background TCP data transfer

with inline network measurement

Tomoaki TSUGAWA†a), Go HASEGAWA††b), and Masayuki MURATA†c), Members

SUMMARY In the present paper, ImTCP-bg, a new back-
ground TCP data transfer mechanism that uses an inline network
measurement technique, is proposed. ImTCP-bg sets the upper
limit of the congestion window size of the sender TCP based on
the results of the inline network measurement, which measures
the available bandwidth of the network path between the sender
and receiver hosts. ImTCP-bg can provide background data
transfer without affecting the foreground traffic, whereas previ-
ous methods cannot avoid network congestion. ImTCP-bg also
employs an enhanced RTT-based mechanism so that ImTCP-bg
can detect and resolve network congestion, even when reliable
measurement results cannot be obtained. The performance of
ImTCP-bg is investigated through simulations, and the effective-
ness of ImTCP-bg in terms of the degree of interference with
foreground traffic and the link bandwidth utilization is also in-
vestigated.
key words: background data transfer, inline network measure-
ment, congestion control, available bandwidth, TCP (Transmis-
sion Control Protocol)

1. Introduction

Due to the rapid development of networking technolo-
gies in both access and core computer networks, as well
as the sudden increase of the Internet population, var-
ious IP-based network services are emerging and cur-
rently co-exist on the Internet. Although these ser-
vices compete for network link bandwidth, Transmis-
sion Control Protocol (TCP) [1] currently plays a ma-
jor and important role for avoiding and solving net-
work congestion collapse by using the congestion con-
trol algorithm [2] between the sender/receiver endhosts.
Thus, TCP provides effective usage and fair sharing of
network resources among competing data transmission
flows.

However, some of the Internet services do not nec-
essarily require fair resource allocation with respect to
other flows and should be operated in the background
through prioritization mechanisms. For example, in
Content Delivery/Distribution Networks (CDNs) [3–
5] such as Akamai [6], Web servers transfer various
types of data (e.g., backup, caching [7], and prefetch-
ing [8, 9]), in addition to the data in response to the
document transfer request from Web clients. In this

†Graduate School of Information Science and Technol-
ogy, Osaka University

††Cybermedia Center, Osaka University
a)E-mail: t-tugawa@ist.osaka-u.ac.jp
b)E-mail: hasegawa@cmc.osaka-u.ac.jp
c) E-mail: murata@ist.osaka-u.ac.jp

case, the user-requested data should be transferred with
the higher priority than the other traffic. Data backup
and synchronization in Storage Area Networks (SAN),
online updating of operating systems (e.g., Microsoft’s
Background Intelligent Transfer Service [10]), and data
caching in peer-to-peer network [11, 12] are other exam-
ples of tasks that should be performed without affecting
the foreground traffic.

In previous studies, such prioritized behaviors were
realized by either IP-based mechanisms or application-
based mechanisms. In IP-based mechanisms, such as
DiffServ [13], the Internet routers are equipped with
prioritization mechanisms and process the incoming
packets according to pre-defined prioritization policies.
For instance, Assured Forwarding [14] in DiffServ has
four classes and three dropping levels at the router
buffer to differentiate the incoming flows. However,
such mechanisms have well-known shortcomings in scal-
ability, because the prioritization mechanisms should
be implemented on all routers between the sender and
receiver endhosts.

In application-based mechanisms found in [15, 16],
the prioritization mechanisms are provided by upper-
level programs, or sometimes by service administra-
tors. For example, cache synchronization and prefetch-
ing in CDNs is performed when there is little user-
requested foreground traffic. Data backup is usually
scheduled to be performed at midnight in order to avoid
degrading the throughput of other higher-prioritized
flows during the daytime. In such cases, the pro-
grams/administrators must monitor the network traffic
to determine the time during which the network is un-
derutilized. However, successfully realizing such mech-
anisms is difficult due to large fluctuations in Internet
traffic. Moreover, since each application deploys a pri-
oritization mechanism according to its service require-
ments, we cannot estimate its performance especially
when multiple applications with different prioritization
mechanisms co-exist in the network.

Therefore, TCP-based approaches such as TCP
Nice [17] and TCP-LP [18], which are herein referred to
as background TCP, have been introduced in order to
handle background (lower-prioritized) data transfer on
the Internet. These approaches observe the Round Trip
Times (RTTs) of the data packets of a TCP connec-
tion and decrease the congestion window size when the
RTTs increase, whereas the original TCP Reno contin-



2
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

ues to increase its congestion window size until packet
loss occurs, regardless of increases in RTTs. Gener-
ally, on the network congestion in the actual networks,
the RTT increases before the packet loss occurs since
the incoming packets to the bottleneck router are first
stored at the buffer, and when the buffer is fully uti-
lized, the incoming packets are discarded. TCP Nice
and TCP-LP utilize this characteristic and detect the
network congestion earlier than the TCP Reno by ob-
serving the change of RTT.

Although both TCP Nice and TCP-LP can realize
data transfer without affecting other higher-prioritized
traffic, these protocols are unable to utilize the available
bandwidth of the network efficiently. This is because
the degree to which the congestion window size can
decrease when the RTTs increase is fixed, and is too
large, regardless of the network condition, similarly to
TCP Reno which halves the window size when packet
loss occurs.

In the present paper, a novel background TCP
mechanism based on bandwidth measurement is pro-
posed, with the goal of achieving both background
transfer and network bandwidth utilization. The pro-
posed background TCP variant uses the inline network
measurement mechanism proposed in [19, 20], which
can measure the available bandwidth of the network
path between sender and receiver endhosts. This inline
network measurement mechanism uses the data and
ACK packets of a TCP connection for the measurement
task, without injecting additional traffic, which is ideal
for background data transfer. The proposed mechanism
sets the maximum value of the congestion window size
of the sender TCP by using the measurement results
of the available bandwidth. In addition, an RTT-based
mechanism that dynamically determines the degree to
which the congestion window size can decrease accord-
ing to the observed RTT value is employed, whereas
TCP Nice and TCP-LP use a constant degree for the
possible decrease.

The remainder of this paper is organized as follows.
Section 2 describes the purpose of background TCP
data transfer and presents a discussion of the problems
of existing mechanisms. In Section 3, ImTCP-bg, a new
background TCP data transfer mechanism that uses an
inline network measurement technique, is proposed and
its characteristics are discussed. In Section 4 presents
simulation results that are used to evaluate the perfor-
mance of ImTCP-bg. Finally, in Section 5, conclusions
are presented and areas for future study are outlined.

2. Background data transfer with TCP

TCP adjusts the data transmission speed by changing
the congestion window size in response to network con-
gestion. The TCP algorithm allows a TCP sender to
continue to increase its congestion window size addi-
tively until network congestion is detected. TCP de-

creases the window size multiplicatively when network
congestion occurs. As an indicator of the network con-
gestion, TCP Reno uses packet losses in the network
(referred to herein as a loss-based mechanism). On the
other hand, TCP Nice and TCP-LP introduce another
congestion indicator, namely the increase of RTTs for
data packets (RTT-based mechanism). These protocols
provide background data transfer without affecting the
foreground traffic based on the following assumption.
Consider an output link of an Internet router equipped
with an output buffer. When the packet incoming rate
of the traffic destined for the output link is larger than
the output link bandwidth, the excess traffic is stored
in the output buffer, which causes some queuing de-
lay, and eventually results in the packet losses when
the buffer becomes full. That is, for a TCP connection,
the RTTs usually increase before packet losses occur
when the network is congested. Therefore, TCP Nice
and TCP-LP connections can detect network conges-
tion earlier than TCP Reno connections.

The present paper considers the following two ob-
jectives for background data transfer:

1. no adverse effect on the foreground traffic
2. full utilization of the network link bandwidth

That is, a perfect background data transfer mecha-
nism can fully utilize the bandwidth that is unused
by the foreground traffic, while not degrading the per-
formance of the foreground traffic. However, realizing
such a complete mechanism is quite difficult because a
trade-off relationship exists between these two objec-
tives. The difficulty in realizing a good background
data transfer mechanism lies in balancing this trade-
off relationship. For example, TCP Nice and TCP-LP
are unable to efficiently utilize the available bandwidth
of the network path, especially when the number of
background TCP connections is small [17, 18]. This is
mainly because these protocols use fixed parameters in
detecting network congestion and decreasing the con-
gestion window size. That is, these two background
TCP variants set the parameters by which to satisfy
objective (1), while sacrificing objective (2). Opposite
to this, when these TCP variants change the controlled
parameters in order to improve the utilization of link
bandwidth, i.e., satisfying the objective (2), it is ob-
vious that the change causes the increase in the de-
gree of interference with other traffic. In addition, the
optimal parameter setting to the trade-off relationship
depends on the network condition strongly. Therefore,
RTT-based mechanisms such as those of TCP Nice and
TCP-LP cannot completely solve this trade-off problem
due to their trial-and-error nature. These mechanisms
continue to increase the window size until the value of
RTT reaches its threshold, that is, until the indication
of network congestion appears, and then decrease the
window size to some degree in order to avoid the con-
gestion.



TSUGAWA et al.: BACKGROUND TCP DATA TRANSFER WITH INLINE NETWORK MEASUREMENT
3

In order to satisfy the above two objectives, an-
other congestion indicator is proposed, i.e., the avail-
able bandwidth of the network path between the sender
and receiver hosts (bandwidth-based mechanism). An
available bandwidth means the residual bandwidth,
that is, the bandwidth which no other connections are
currently using. The available bandwidth is the most
straightforward information by which to describe back-
ground data transfer. If the TCP sender obtains the
available bandwidth information exactly and quickly,
then an ideal background data transfer mechanism, in
terms of both the background nature and link utiliza-
tion can be created.

Many algorithms and tools by which to measure
the available bandwidth of network paths have been
proposed in the literature [21–25]. However, the exist-
ing methods cannot be directly employed for the newly
proposed background TCP because these methods uti-
lize numerous test probe packets and require too much
time to obtain a single measurement result. For in-
stance, PathLoad [23] sends several 100-packet mea-
surement streams for a measurement. PathChirp [25] is
a modification of PathLoad for the purpose of decreas-
ing the number of probe packets. However, the required
number of packets to be sent at one time in PathChirp
is still large. In order to address this problem, a method
referred to as Inline measurement TCP (ImTCP) has
been proposed in [19, 20]. ImTCP does not inject ex-
tra traffic into the network, but rather estimates the
available bandwidth of the network path from data and
ACK packets transmitted by an active TCP connection
in an inline fashion. Since the ImTCP sender obtains
bandwidth information every 1–4 RTTs, ImTCP can
follow the traffic fluctuation of the underlying IP net-
work well. In addition, because the ImTCP mecha-
nism is implemented at the bottom of the TCP layer,
various types of TCP congestion control mechanisms
can include this measurement mechanism. Therefore,
the ImTCP mechanism is integrated into the proposed
background TCP in order to obtain the available band-
width information of the network path.

However, the RTT-based mechanism cannot be
discarded even when the bandwidth-based mechanism
is employed, because ImTCP does not always provide
accurate measurement results for the available band-
width. For example, when the congestion window size
of the ImTCP sender is small, ImTCP cannot mea-
sure the available bandwidth. Furthermore, the mea-
surement accuracy of ImTCP depends on the network
environment, e.g., the RTT, the physical link band-
width, and the number of active connections. When
the measured available bandwidth value is inaccurate,
the background data transfer based on the measured
value may affect the foreground traffic. Therefore, the
RTT-based mechanism should be used in conjunction
with the bandwidth-based mechanism.

In the next section, the mechanism of ImTCP-bg,

a new background TCP data transfer mechanism based
on the available bandwidth measurement technique of
ImTCP is described. The proposed mechanism also em-
ploys an enhanced RTT-based mechanism, which dy-
namically determines the control parameters.

3. ImTCP-bg: ImTCP background mode

Basically, in this paper we do not care which traffic
should be transfered by background TCP mechanism.
That is, we do not introduce a mechanism that auto-
matically selects the transfer mode (normal or back-
ground) for traffic from upper-layer applications. In-
stead, we prepare the interface to select the transfer
mode by socket option. Therefore, each application
should select the transfer mode when it establishes a
new TCP connection.

ImTCP-bg consists of two major mechanisms: a
bandwidth-based mechanism with inline network mea-
surement and an enhanced RTT-based mechanism for
adjusting the window size when the first mechanism
does not work well. In this section, we first introduce
the outline of the inline network measurement tech-
nique, ImTCP, and then describe the detail of each pro-
posed mechanism. The ImTCP algorithm is described
in detail in [19, 20].

3.1 Outline of ImTCP algorithm

ImTCP measures the available bandwidth of the net-
work path between sender and receiver hosts. In TCP
data transfer the sender host transfers a data packet
and the receiver host replies an ACK packet against the
data packet. ImTCP measures the available bandwidth
by using this nature. Concretely speaking, ImTCP ad-
justs the interval of data packets according to the mea-
surement algorithm, and then calculates the available
bandwidth by observing the change of ACK intervals.

During every measurement, ImTCP searches for
the available bandwidth only within a given search
range. The search range is a range of bandwidth
that is expected to include the current available band-
width. By introducing the search range, ImTCP can
avoid sending probe packets at an extremely high rate.
ImTCP can also keep the number of probe packets for
the measurement quite small.

ImTCP has some cases when the measurement re-
sult is unavailable or unreliable. According to [20],
when the current window size is smaller than the num-
ber of packets required for a measurement, ImTCP
does not measure the available bandwidth. In addi-
tion, when the other traffic send data packets burstly,
the intervals of ImTCP data packets are disturbed by
the bursty traffic and it makes the measurement result
inaccurate. Although ImTCP give the measurement
result in this case, the result is not reliable.



4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

3.2 ImTCP-bg mechanisms

3.2.1 Bandwidth-based mechanism

In ImTCP-bg, the congestion window size is con-
trolled using the available bandwidth information of the
network path between the sender and receiver hosts,
as measured by the ImTCP mechanism. ImTCP-bg
smoothes the measurement results of ImTCP using a
simple exponential weighted moving average, as follows:

Ā ← (1 − γ) · Ā + γ · Acur (1)

where Acur denotes the current result of the available
bandwidth measured by ImTCP mechanism, γ is a
smoothing parameter, and Ā is the smoothed avail-
able bandwidth. Note that the appropriate setting of γ
will be described in Section 4. The ImTCP-bg sender
then sets the upper limit of the congestion window size
(maxcwnd) using the following equation:

maxcwnd ← Ā · RTTmin (2)

where RTTmin is the minimum RTT experienced
throughout the lifetime of the connection.

As shown above, the proposed bandwidth-based
mechanism is quite simple: the upper-limit of the con-
gestion window size is simply set as the product of the
measured available bandwidth and the minimum RTT.
In Section 4, this simple mechanism is demonstrated to
be effective for background data transfer.

3.2.2 Enhanced RTT-based mechanism

The effectiveness of the above-described bandwidth-
based mechanism depends largely on the accuracy of
the measurement by ImTCP of the available band-
width. In [20] the authors demonstrated that ImTCP
can give the reasonably accurate measurement results
every 1–4 RTTs. However, ImTCP does not always
provide reliable measurement results, as explained in
Section 3.1, and may result in the congestion of the
bottleneck link. Therefore, the RTT-based mechanism
is employed to quickly detect and resolve the undesir-
able network congestion. The RTT-based mechanism is
enhanced in order to be used with the bandwidth-based
mechanism.

ImTCP-bg detects network congestion using only
the current and minimum values of RTT, whereas TCP
Nice and TCP-LP also use the maximum RTT, which
is difficult to observe in the actual network. When an
increase in RTT is detected, the ImTCP-bg sender de-
creases its congestion window size immediately in order
to resolve the congestion. Next, denote RTT as the
smoothed RTT value that is calculated by the tradi-
tional TCP mechanism and RTTmin as the minimum
RTT. Here, δ (> 1.0) is the threshold parameter to

Fig. 1 Network model

judge whether network congestion occurs. The ImTCP-
bg sender detects the network congestion when the fol-
lowing condition is satisfied:

RTT

RTTmin
> δ (3)

When Equation (3) is satisfied, it means that the queu-
ing delay occurs at the bottleneck router. Since we
treat the increase of queuing delay as the indication
of netowrk congestion, ImTCP-bg decreases its conges-
tion window size according to the following equation in
order not to affect the foreground traffic.

cwnd ← cwnd · RTTmin

RTT
(4)

Here, cwnd is the current congestion window size, RTT
is the smoothed RTT value and RTTmin is the mini-
mum RTT. Equation (4) implies that ImTCP-bg deter-
mines the degree of decrease of the congestion window
size based on the ratio of the current value of RTT
and its minimum value. Thereby, ImTCP-bg avoids
unnecessary the underutilization of the link bandwidth
while maintaining the background-based data transfer.
Note that this modification of the RTT-based mecha-
nism is effective because the bandwidth-based mecha-
nism is used concurrently.

4. Performance evaluations

In this section, simulation results are used to evalu-
ate the performance of ImTCP-bg, as proposed in Sec-
tion 3, and ns-2 [26] is used for the simulations. Tradi-
tional TCP Reno, TCP Nice and TCP-LP were chosen
for performance comparisons. Issues in parameter set-
tings of ImTCP-bg are first described in Subsection 4.1,
and then the performance of ImTCP-bg is compared to
that of TCP Nice and TCP-LP in Subsection 4.2.

The network model used in the simulation is
depicted in Figure 1. This model consists of
sender/receiver hosts, two routers, and links between
the hosts and routers. The bandwidth of the bottle-
neck link is set to 50 Mbps, and the propagation delay
is 10 msec. A DropTail discipline is deployed at the



TSUGAWA et al.: BACKGROUND TCP DATA TRANSFER WITH INLINE NETWORK MEASUREMENT
5

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200

C
o

n
g

es
ti

o
n

 w
in

d
o
w

 s
iz

e 
[p

ac
k
et

]

Time [sec]

CWND
Max CWND

(a) γ = 0.1

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200

C
o

n
g

es
ti

o
n

 w
in

d
o
w

 s
iz

e 
[p

ac
k
et

]

Time [sec]

CWND
Max CWND

(b) γ = 0.9

Fig. 2 Change of congestion window size and its upper limit

router buffer, and the buffer size is set to 1000 packets.
The packet size is 1500 Bytes. Web traffic is assumed to
be foreground traffic. Nweb Web servers transfer Web
documents to 200 Web clients. The bandwidth of the
access link of each Web node is set randomly between
10 and 100 Mbps, and the propagation delay is also a
random value between 10 and 100 msec. The amount
of foreground Web traffic is adjusted by changing Nweb.
In addition, one or more TCP connections are estab-
lished in order to perform background data transfer.
The performance of the background TCP variants are
compared with respect to the following: the transfer
time of the foreground Web traffic, the queue length of
the bottleneck link buffer, the throughput of the back-
ground data transfer, and utilization of the available
bandwidth. The control parameters for TCP Nice and
TCP-LP are configured according to [17, 18].

4.1 Parameter settings

4.1.1 γ setting

First, the effect of the smoothing parameter of the mea-
sured available bandwidth of Equation (2), which is
denoted as γ (0 < γ < 1), is considered. If γ is set to
a larger value, then measurement errors have a greater
influence on ImTCP-bg, and changes in the network en-
vironment can be detected more rapidly. On the other
hand, if γ is set to a smaller value, the ability to detect
changes in the available bandwidth may be degraded,
but the instantaneous measurement error can be fil-
tered out. Therefore, γ should be set in a way such
that these two performance aspects are balanced.

Figure 2 shows the changes in the congestion win-
dow size and its upper limit, tuned by ImTCP-bg, as a
function of time, when γ is set to 0.1 (Figure 2(a)) and

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

A
v

ai
la

b
le

 b
an

d
w

id
th

 u
ti

li
za

ti
o

n

gamma

Fig. 3 Effect of parameter γ

0.9 (Figure 2(b)). Figure 3 shows the average utiliza-
tion of the available bandwidth as a function of γ. Here,
Nweb is set to 20 and δ is set to 1.2. These figures in-
dicate that when the value of γ is large, the congestion
window size tends to be small. ImTCP-bg increases its
congestion window size additively until the congestion
size reaches its upper limit. Opposite to this, when the
congestion window size exceeds its upper limit, ImTCP-
bg decreases the congestion window size to the upper
limit immediately. Therefore ImTCP-bg cannot utilize
the available bandwidth effectively when the value of γ
is large. Based on the above considerations, γ is set to 1

8
in the following simulations. This value is small enough
to utilize the available bandwidth effectively and is typ-
ically used for calculating the smoothing RTT for TCP.
However, we cannot conclude that this value of γ is al-
ways appropriate. In order to evaluate the effect of γ
in detail, we need experiments in actual network envi-



6
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

ronments. We will consider the issue in the parameter
setting as a future research.

4.1.2 RTT threshold δ

Next, the RTT threshold δ (δ ≥ 1.0) of Equation (3)
is considered. In order to determine the appropriate
value, δ was changed to various values and a num-
ber of simulations were conducted. Figure 4 shows the
changes in the available bandwidth utilization and av-
erage queue length at the bottleneck link buffer as func-
tions of δ, where γ is set to 1

8 according to the results
in Subsection 4.1.1, Nweb is set to 20 and the number
of ImTCP-bg connections is set to 1, 2, 5, and 10.

Figure 4 shows that if δ is set to a very small value,
then ImTCP-bg cannot utilize the available bandwidth
effectively, even though the queue length is small. This
is because when ImTCP-bg uses small δ, the instan-
taneous measurement error is sensed and the conges-
tion window size is frequently decreased. Note that
the larger the average queue length, the larger the af-
fect on the foreground traffic. Therefore, δ should be
set so as to balance the degree of interference with the
foreground traffic and the utilization of available band-
width. From the extensive simulation results, including
those shown in Figure 4, δ = 1.2 is determined to be
a good selection in order to balance these two require-
ments.

4.2 Performance comparisons

4.2.1 Case of one connection

First, the simulation results are presented for the case
in which one background data transfer connection is es-
tablished, and the degree of interference with the fore-
ground traffic and the utilization of network bandwidth
are evaluated. The number of Web servers, Nweb, is
changed from 10 to 50. Figure 5 shows the change in the
average download time of foreground Web documents
and the average throughput of the background TCP
connection. The results labeled as “available band-
width” in Figure 5(a) and “no background traffic” in
Figure 5(b) show the results for the case in which no
background data transfer exists.

Figure 5(a) shows that although the TCP Reno
connection achieves the highest throughput, the
throughput exceeds the available bandwidth. Further-
more, Figure 5(b) shows that the average download
time of the foreground Web documents is larger than
for the case in which no background traffic exits. That
is, TCP Reno cannot be used for background data
transfer. On the other hand, for TCP Nice, TCP-
LP and ImTCP-bg, the average download time in Fig-
ure 5(b) is almost identical to the case of no background
traffic. This means that these protocols do not af-
fect the foreground Web traffic, satisfying one of the

objectives of the background data transfer. Further-
more, Figure 5(a) shows that the average throughput
of the ImTCP-bg connection is the closest to the avail-
able bandwidth. Therefore, ImTCP-bg is determined
to have the most ideal characteristics for background
data transfer, which satisfies objectives (1) and (2) in
Section 2.

4.2.2 Case of multiple connections

Finally, the results for the case in which two or more
background data transfer connections are established
are shown, and the effect of multiple background TCP
connections is evaluated. In the first simulation, five
background TCP connections join the network at 0, 50,
100, 150, and 200 seconds, and end data transmissions
at 500, 450, 400, 350, and 300 seconds. This means that
the number of active background TCP connections in
the network is as follows: 1, 2, 3, 4, 5, 4, 3, 2, and 1.
Table 1 shows the average queue length at the output
link buffer of the bottleneck router and Figure 6 shows
the throughput of background data transfer connection
as functions of time. Here, Nweb is set to 20.

TCP Reno shows the worst behavior for the back-
ground data transfer, in terms of large queue length
at the bottleneck link (Table 1) and over-utilization of
the available bandwidth of the network (Figure 6(a)).
Table 1 also shows that the average of queue length
of TCP Nice is the smallest among the four variants,
meaning that TCP Nice is the best choice for satisfy-
ing objective (1), described in Section 2. However, Fig-
ure 6(b) shows that the throughput of the background
data transfer is the lowest among the four variants, es-
pecially when the number of connection is small.

Figure 6(c) shows that when TCP-LP is used for
background data transfer, packet losses occur imme-
diately after a new connection is established. This is
because TCP-LP needs the maximum RTT to control
its congestion window size. TCP Nice and TCP-LP de-
tect network congestion by using the minimum and the
maximum RTT (or one-way packet delay). However,
essentially, monitoring the maximum RTT by back-
ground TCP is difficult because these TCP variants de-
crease the congestion window size at an early stage of
network congestion. Therefore TCP-LP intentionally
continues to increase its congestion window size until
packet losses occur at the initial slow start phase to de-
termine the maximum RTT value. Consequently, the
TCP-LP connection cannot avoid to occur packet losses
in the beginning of the data transfer. Furthermore, in
Figure 6(c) we can see that the throughput of TCP-LP
connections are shown to be quite low for some time
after the packet loss. This is because the fast retrans-
mission and fast recovery mechanism of TCP Reno is
activated.

Figure 6(d) shows that ImTCP-bg connections can
utilize the available bandwidth of network path effec-



TSUGAWA et al.: BACKGROUND TCP DATA TRANSFER WITH INLINE NETWORK MEASUREMENT
7

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

A
v
a
il

a
b

le
 b

a
n
d

w
id

th
 u

ti
li

z
a
ti

o
n

delta

1 connection

2 connections

5 connections

10 connections

(a) Average utilization of available bandwidth

 0

 50

 100

 150

 200

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

Q
u
eu

e 
le

n
g
th

 [
p

ac
k
et

]

delta

1 connection
2 connections
5 connections

10 connections

(b) Average queue length

Fig. 4 Effect of parameter δ

 0

 10

 20

 30

 40

 50

 10  15  20  25  30  35  40  45  50

T
h

ro
u

g
h

p
u

t 
[M

b
p
s]

Number of web server node

Available bandwidth
ImTCP-bg
TCP Nice

TCP-LP
TCP Reno

(a) Average of throughput

 0

 10

 20

 30

 40

 50

 10  15  20  25  30  35  40  45  50

W
eb

 d
o

w
n

lo
ad

 t
im

e 
[s

ec
]

Number of web server node

No background traffic
ImTCP-bg
TCP Nice

TCP-LP
TCP Reno

(b) Average of download time

Fig. 5 Results of one connection case

Table 1 Average of queue length in the case of five connections

TCP Reno TCP Nice TCP-LP ImTCP-bg
Average queue length [packets] 583.34 8.44 64.63 44.11

tively even when only one connection exists. This is
because ImTCP-bg controls its congestion window size
appropriately using the results of inline network mea-
surement. Furthermore, when multiple connections ex-
ist in the network, ImTCP-bg connections can main-
tain high utilization of the available bandwidth and the
change in the throughput of each ImTCP-bg connection
is stable compared with other background TCP vari-
ants. That is because ImTCP-bg dynamically changes
the degree of decrease congestion window size according

to the change in the RTT. From these simulation re-
sults, the bandwidth-based algorithm with inline mea-
surement and the RTT-based algorithm are determined
to co-exist well in ImTCP-bg to realize background
data transfer.

We then check the utilization of the available band-
width in more detail. In the next simulation, K back-
ground TCP connections (C1, C2, ..., CK) exist in the
network. C1 joins the network at 0 second and ends
data transmission at 500 seconds. Ci (i = 2, 3, ...,K)



8
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

 0

 10

 20

 30

 40

 50

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u
g
h

p
u
t 

[M
b

p
s]

Time [sec]

#1 #2 #3 #4 #5

Available bandwidth
All connections

(a) TCP Reno

 0

 10

 20

 30

 40

 50

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u
g
h

p
u
t 

[M
b

p
s]

Time [sec]

#1 #2 #3 #4 #5

Available bandwidth
All connections

(b) TCP Nice

 0

 10

 20

 30

 40

 50

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
[M

b
p
s]

Time [sec]

#1 #2 #3 #4 #5

Available bandwidth
All connections

(c) TCP-LP

 0

 10

 20

 30

 40

 50

0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t 
[M

b
p
s]

Time [sec]

#1 #2 #3 #4 #5

Available bandwidth
All connections

(d) ImTCP-bg

Fig. 6 Change of throughput with five connections

starts at 200
i−1 seconds and ends at 500 − 200

i−1 seconds.
This means that the number of active background TCP
connections in the network changes as time passes sim-
ilarly to the previous simulation (Figure 6). Figure 7
shows the change of the utilization of the available
bandwidth as a function of the available bandwidth
when the number of background TCP connections is
1 (Figure 7(a)), 2 (Figure 7(b)), 5 (Figure 7(c)), and
10 (Figure 7(d)). Here, available bandwidth is changed
by changing the number of servers, Nweb.

Figure 7 shows that the bandwidth utilization of
TCP Reno connections greatly exceeds the available
bandwidth, meaning that it makes severe effect on the
foreground traffic. When using TCP Nice, the less the
available bandwidth is, the less the utilization of avail-
able bandwidth becomes. This is because when the
available bandwidth is small, TCP Nice frequently de-

tects the network congestion and decreases the conges-
tion window size in order not to affect the foreground
traffic. For TCP-LP, the utilization of the available
bandwidth exceeds 1.0 when the available bandwidth
is small. This means that it does not satisfy the pur-
pose of background transfer, that is, TCP-LP affects
the foreground traffic. Furthermore, when the avail-
able bandwidth is large and many background TCP
connections exist, the utilization of the available band-
width becomes small. This is because packet losses oc-
cur after the new TCP-LP connection is established,
as Figure 6(c) shows. On the other hand, ImTCP-
bg shows the best behavior regardless of the available
bandwidth and the number of background TCP con-
nections. Therefore, we conclude that ImTCP-bg can
utilize effectively the available bandwidth in any cases.



TSUGAWA et al.: BACKGROUND TCP DATA TRANSFER WITH INLINE NETWORK MEASUREMENT
9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  15  20  25  30  35  40  45  50

A
v
ai

la
b

le
 b

an
d

w
id

th
 u

ti
li

za
ti

o
n

Available bandwidth [Mbps]

ImTCP-bg
TCP Nice

TCP-LP
TCP Reno

(a) Number of connections: 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  15  20  25  30  35  40  45  50

A
v
ai

la
b

le
 b

an
d

w
id

th
 u

ti
li

za
ti

o
n

Available bandwidth [Mbps]

ImTCP-bg
TCP Nice

TCP-LP
TCP Reno

(b) Number of connections: 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  15  20  25  30  35  40  45  50

A
v

ai
la

b
le

 b
an

d
w

id
th

 u
ti

li
za

ti
o

n

Available bandwidth [Mbps]

ImTCP-bg
TCP Nice

TCP-LP
TCP Reno

(c) Number of connections: 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  15  20  25  30  35  40  45  50

A
v

ai
la

b
le

 b
an

d
w

id
th

 u
ti

li
za

ti
o

n

Available bandwidth [Mbps]

ImTCP-bg
TCP Nice

TCP-LP
TCP Reno

(d) Number of connections: 10

Fig. 7 Utilization of Available bandwidth with multiple connections

5. Conclusions

In the present paper, ImTCP-bg, a new background
TCP data transfer mechanism that uses an inline net-
work measurement technique, was proposed. ImTCP-
bg provides a background data transfer without inter-
fering with the foreground traffic by setting the upper
limit of its congestion window size based on the results
of the inline network measurement. ImTCP-bg also em-
ploys an enhanced RTT-based mechanism, which dy-
namically determines the control parameters. ImTCP-
bg can detect and resolve network congestion even when
reliable measurement results cannot obtained. Through
simulation evaluations, the effectiveness of ImTCP-bg
in terms of the degree of interference with foreground
traffic and utilization of the available bandwidth was
confirmed. In future studies, ImTCP-bg will be imple-

mented and its performance will be evaluated in an ac-
tual network. Besides to this, we will consider about the
parameter settings (smoothing parameter γ and RTT
threshold δ) by using results of actual network experi-
ments.

References

[1] J.B. Postel, “Transmission control protocol,” RFC 793,
Sept. 1981.

[2] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Proto-
cols, Addison-Wesley, 1994.

[3] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and
performance of content distribution networks,” Proceedings
of ACM SIGCOMM 2001 Internet Measurement Workshop,
Nov. 2001.

[4] S. Saroiu, K. Gummadi, R.J. Dunn, S.D. Gribble, and H.M.
Levy, “An analysis of Internet content delivery systems,”
Proceedings of 5th Symposium on Operating Systems De-
sign and Implementation (OSDI 2002), Dec. 2002.



10
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

[5] G. Pierre and M. van Steen, “Design and implementation
of usercentered content delivery network,” Proceedings of
3rd IEEE Workshop on Internet Applications, June 2003.

[6] Akamai Home Page. available at http://www.akamai.com/.
[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,

“Web caching and Zipf-like distributions: Evidence and im-
plications,” Proceedings of IEEE INFOCOM 1999, March
1999.

[8] M. Crovella and P. Barford, “The network effects of
prefetching,” Proceedings of IEEE INFOCOM 1998, March
1998.

[9] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif,
and M. Dahlin, “The potential costs and benefits of long
term prefetching for content distribution,” Computer Com-
munication Journal, vol.25, no.4, pp.367–375, March 2002.

[10] Microsoft Corporation, Background Intelligent Transfer
Service in Windows Server 2003, Sept. 2002. avail-
able at http://www.microsoft.com/windowsserver2003/

techinfo/overview/bits.mspx.
[11] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Sto-

ica, “Wide-area cooperative storage with CFS,” Proceed-
ings of 18th Symposium on Operating Systems Principles
(SOSP 2001), Oct. 2001.

[12] A. Rowstron and P. Druschel, “Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility,” Proceedings of 18th Symposium on Operating
Systems Principles (SOSP 2001), Oct. 2001.

[13] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated services,”
RFC 2475, Dec. 1998.

[14] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “As-
sured forwarding PHB group,” RFC 2597, June 1999.

[15] R. Kokku, P. Yalagandula, A. Venkataramani, and
M. Dahlin, “NPS: A non-interfering deployable web
prefetching system,” Proceedings of 4th USENIX Sympo-
sium on Internet Technologies and Systems, March 2003.

[16] P. Key, L. Massoulie, and B. Wang, “Emulating low-priority
transport at the application layer: A background transfer
service,” ACM SIGMETRICS Performance Evaluation Re-
view, vol.32, pp.118–129, June 2004.

[17] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice:
A mechanism for background transfers,” Proceedings of 5th
Symposium on Operating Systems Design and Implemen-
tation (OSDI 2002), Dec. 2002.

[18] A. Kuzmanovic and E.W. Knihtly, “TCP-LP: A distributed
algorithm for low priority data transfer,” Proceedings of
IEEE INFOCOM 2003, April 2003.

[19] C.L.T. Man, G. Hasegawa, and M. Murata, “A new avail-
able bandwidth measurement technique for service over-
lay networks,” Proceedings of 6th IFIP/IEEE MMNS 2003
E2EMON Workshop, Sept. 2003.

[20] C.L.T. Man, G. Hasegawa, and M. Murata, “Available
bandwidth measurement via TCP connection,” Proceed-
ings of 7th IFIP/IEEE MMNS 2004 E2EMON Workshop,
Oct. 2004.

[21] R.L. Carter and M.E. Crovella, “Measuring bottleneck link
speed in packet-switched networks,” International Journal
on Performance Evaluation, vol.27–28, pp.297–318, Oct.
1996.

[22] B. Melander, M. Bjorkman, and P. Gunningberg, “A new
end-to-end probing and analysis method for estimating
bandwidth bottlenecks,” Proceedings of IEEE GLOBE-
COM 2000, Nov. 2000.

[23] M. Jain and C. Dovrolis, “End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with
TCP throughput,” Proceedings of ACM SIGCOMM 2002,
Aug. 2002.

[24] C. Dovrolis and D. Moore, “What do packet dispersion
techniques measure ?,” Proceedings of IEEE INFOCOM
2001, April 2001.

[25] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cot-
trell, “pathChirp: Efficient available bandwidth estimation
for network paths,” Proceedings of Passive and Active Mea-
surement Workshop (PAM 2003), April 2003.

[26] The VINT Project, “UCB/LBNL/VINT network simulator
- ns (version 2).” available at http://www.isi.edu/nsnam/

ns/.

Tomoaki TSUGAWA is now a M.E.
candidate at Graduate School of Informa-
tion Science and Technology, Osaka Uni-
versity. His research work is in the area
of transport architecture for future high-
speed networks. He is a member of IE-
ICE.

Go HASEGAWA received the M.E.
and D.E. degrees in Information and
Computer Sciences from Osaka Univer-
sity, Osaka, Japan, in 1997 and 2000, re-
spectively. From July 1997 to June 2000,
he was a Research Assistant of Gradu-
ate School of Economics, Osaka Univer-
sity. He is now an Associate Professor
of Cybermedia Center, Osaka University.
His research work is in the area of trans-
port architecture for future high-speed

networks. He is a member of the IEEE and IEICE.

Masayuki MURATA received the
M.E. and D.E. degrees in Information and
Computer Sciences from Osaka Univer-
sity, Japan, in 1984 and 1988, respec-
tively. In April 1984, he joined Tokyo Re-
search Laboratory, IBM Japan, as a Re-
searcher. From September 1987 to Jan-
uary 1989, he was an Assistant Profes-
sor with Computation Center, Osaka Uni-
versity. In February 1989, he moved to
the Department of Information and Com-

puter Sciences, Faculty of Engineering Science, Osaka University.
From 1992 to 1999, he was an Associate Professor in the Graduate
School of Engineering Science, Osaka University, and from April
1999, he has been a Professor of Osaka University. He moved to
Advanced Networked Environment Division, Cybermedia Cen-
ter, Osaka University in 2000, and moved to Graduate School of
Information Science and Technology, Osaka University in April
2004. He has more than two hundred papers of international
and domestic journals and conferences. His research interests in-
clude computer communication networks, performance modeling
and evaluation. He is a member of IEEE, ACM, The Internet
Society, IEICE and IPSJ.


