
Master’s Thesis

Title

Performance Evaluation of TCP Congestion Control Mechanism

based on Inline Network Measurement

Supervisor

Professor Masayuki Murata

Author

Yousuke Matsuura

February 15th, 2006

Department of Information Networking

Graduate School of Infomation Science and Technology

Osaka University

Master’s Thesis

Perfomance Evaluation of TCP Congestion Control Mechanism based on Inline Network

Measurement

Yousuke Matsuura

Abstract

TCP Reno is the most widely deployed variant of Transmission Control Protocol (TCP), mean-

ing that almost all TCP implementations in the current OSs are based on that version of TCP.

However, TCP has the problem that the performance deteriorates especially in large-bandwidth

and long-delay networks. To solve the problem, our research group has proposed a congestion

control mechanism as an alternative to the traditional TCP Reno. Our proposed mechanism uses

the information of the physical and currently available bandwidth of the network path between

sender and receiver hosts for congestion control. One of the novel idea of the proposed mechanism

is that we deploy an algorithm based on a logistic growth model and a Lotka-Volterra competi-

tion model from biophysics in regulating the congestion window size of a TCP connection. The

physical/available bandwidth information are obtained through an inline network measurement

technique we has already proposed, which measures the bandwidth by using data/ACK packets

belonging to the TCP connection, without using additional probing packets. Our research group

has also proposed the Interrupt Coalescence-aware Inline Measurement (ICIM) for measuring

bandwidth over 1 Gbps, which can not be obtained by existing measurement algorithms/tools.

However, we have not evaluated the proposed congestion control mechanism with ICIM in high-

speed and long-delay networks, whereas the proposed mechanism is intended to be deployed to

such network environment.

In this thesis, through extensive simulation experiments, we evaluate the performance of our

mechanism in high-speed and long-delay networks. We evaluate the performance of our mecha-

nism in terms of throughput, the change in the congestion window size and queue length of the

bottleneck link. Also, we compare the performance of our mechanism with those of other existing

TCP variants, and present that our mechanism achieves good performance. It achieves almost

1

100 % of link utilization while keeping the queue length of the bottleneck link small, regardless

of the change in available bandwidth of the network path.

Keywords

Transmission Control Protocol (TCP), Congestion Control, Simulation, Performance Evaluation

2

Contents

1 Introduction 7

2 Congestion Control Mechanism based on Inline Network Measurement 10

2.1 Congestion Control Mechanism based on Bandwidth Informatioin 10

2.1.1 Logistic Model . 10

2.1.2 Lotka-Volterra Competition Model . 11

2.1.3 Application to Window Size Control Algorithm 13

2.2 Measurement Mechanism of Physical/Available Bandwidth in High-speed Networks 15

2.2.1 Measuring in High-speed Networks . 15

2.2.2 Packet Burst-based Bandwidth Measurement Algorithm 16

2.2.3 TCP with Interrupt Coalescence-aware Inline Measurement (ICIM) . . . 17

2.2.4 Measurement Algorithm for Physical Bandwidth 19

3 Simulation Settings 21

3.1 Network Model and Parameters . 21

3.2 TCP Variants for Comparative Evaluation . 22

3.2.1 TCP Reno . 22

3.2.2 HighSpeed TCP . 22

3.2.3 Scalable TCP . 23

3.2.4 FAST TCP . 23

3.2.5 BIC TCP . 24

4 Performance comparison with other TCP 25

4.1 Fundamental behavior . 25

4.2 Effect of Parameter Setting . 27

4.2.1 γ Setting . 28

4.2.2 ε Setting . 29

5 Conclusion 31

Acknowledgement 32

3

References 35

4

List of Figures

1 Changes in population of two species with the Lotka-Volterra competition model 12

2 Changes in population of 10 species with the Lotka-Volterra competition model . 12

3 Packet burst-based available-bandwidth measurement principle 17

4 Probing a search range in ICIM . 18

5 Network topology in simulation experiments . 21

6 Behavior of TCP variants without background traffic 26

7 Behavior of TCP variants with background traffic 27

8 Changes in congestion window size with various γ values 29

9 Changes in queue length of bottleneck link with various γ values 30

10 Changes in window size with various ε values 31

11 Changes in queue length of the bottleneck link with various ε values 32

5

List of Tables

1 Performanc comparison . 28

6

1 Introduction

With increases in the heterogeneity and the complexity of the Internet, many problems have

emerged in TCP Reno’s congestion control mechanism ([1-5] for example). The primary reasons

for these problems are that the congestion signals are only indicated by packet loss and that TCP

Reno uses fixed Additive-Increase-Multiplicative-Decrease (AIMD) parameter values to increase

and decrease window size, whereas the window size should be changed according to the network

environment. Although many solutions have been proposed for there problems [5-8], most of

them inherit the fundamental congestion control mechanism of TCP Reno: the AIMD mechanism

triggered by the detection of packet losses in the network. The congestion control mechanism

improves the throughput by adjusting the increasing and decreasing parameters statically and/or

dynamically. However, most previous studies have focused on changing the AIMD parameters to

accommodate particular network environments. Since these methods employ ad hoc modifications

for a certain network situation, their performance when applied to other network environments is

unclear.

Because window size indicates the maximum amount of packets that TCP can transmit for one

Round Trip Time (RTT), an adequate window size for a TCP connection is equal to the product

of the available bandwidth and the round-trip propagation delay between the sender and receiver

hosts. TCP Reno measures the RTTs of the network path between sender and receiver hosts by

checking the departure times of the data packets and the arrival times of the corresponding ACK

packets. However, TCP Reno does not have an effective mechanism to recognize the available

bandwidth. This is an explanation of the fundamental problem: TCP Reno cannot adjust window

size to an adequate value under various network environments. In a sense, traditional TCP Reno

can be considered to be a tool that measures available bandwidth because of its ability to adjust

the congestion window size to achieve a transmission rate appropriate to the available bandwidth.

However, it is ineffective because it only increases the window size until packet loss occurs. In

other words, TCP Reno induces packet loss in order to obtain information about the available

bandwidth(-delay product) of the network. That is, even when the congestion control mechanism

of TCP works perfectly, the TCP sender experiences packet losses in the network at some intervals.

Since all modified versions of TCP using AIMD policy contain this essential problem, they cannot

avoid periodic packet losses.

7

There are some TCP variants, including TCP Vegas [9] and FAST TCP [7], that utilize the RTT

values for the congestion indication, based on the fact that, the RTTs for a TCP connection usually

increase before packet losses occur when the network is congested. However, such RTT-based

approaches cannot be applied to high-speed networks due to an inherent problem, i.e., changes in

RTT values of the end-to-end network path becomes invisible as the network bandwidth becomes

large.

Our research group has proposed a novel congestion control mechanism of TCP that utilizes

the information of physical and available bandwidths obtained from an inline measurement tech-

nique [10]. The proposed mechanism does not use ad hoc algorithms such as TCP Vegas [9] and

instead employs algorithms that have a mathematical background, which enable us to mathemati-

cally discuss and guarantee their behavior even though posing a simplification of the target system.

For this, algorithms from the logistic growth model and the Lotka-Volterra competition model [11]

are borrowed for proposed mechanism, both of which are used in biophysics to describe changes

in the population of species. The biophysics models were chosen based on their essential nature

of stability and robustness, which is achieved even when they behave independently in an au-

tonomous and distributed fashion. This is the case for the congestion control of TCP: each TCP

connection behaves independently, but still we want to maximize the bandwidth utilization and

the throughput of the connection.

In [10], our research group has evaluated the proposed congestion control mechanism has been

evaluated. Since this mechanism requires physical/available bandwidth information of the network

path to control congestion window size, Inline mesurement TCP (ImTCP) which is the inline net-

work measurement mechanism proposed in [12] to get the available bandwidth information in the

simulation evaluation in [10]. However, it is difficult for ImTCP to measure available bandwidth

in high-speed networks over 100 [Mbps] due to its essential nature of the algorithm. Therefore,

the proposed congestion control mechanism has not been evaluated in high-speed network yet.

Also, in [10] we assumed that we can get accurate information on the physical bandwidth without

measurement. Thet is,it is necessary to evaluate the proposed method with physical bandwidth

measurement algorithm.

Fortunately, we have now a measurement algorithm for physical/available bandwidth of the

high-speed network. Our research group proposed a new inline network measurement mechanism

that works well in high-speed networks was proposed in [13]. That is called Interrupt Coalescence-

8

aware Inline Measurement (ICIM). ICIM estimates physical/available bandwidth based on changs

in intervals of packet burst by chnging the number of packet in bursts. Unlike other active mea-

surement tools, ICIM adjusts the number of packets that are transmitted in a burst caused by IC

and estimates the available bandwidth by observing the number of packets in the burst as it passes

through the network, rather than by observing the inter-intervals of the packets. ICIM does not set

the sending interval of the packets, so the overhead for packet spacing at the sender is eliminated.

The measurement results show that TCP with ICIM can transmit data with the same performance

as Reno TCP and can measure the available bandwidth of high-speed networks.

In this thesis, we evaluate the effectiveness of congestion control mechanism proposed by

our research group in [10] in high-speed networks through simulation expriments. We evaluate

the fundamental characteristics of our congestion control mechanism by using a simple network

model for the simulation. For performance comparison purpose, we conduct simulations with

many congestion control mechanisms: TCP Reno, HighSpeed TCP, Scalable TCP, FAST TCP and

BIC TCP. We utilize throughput, change in congestion window size and the queue length of the

bottleneck link as performance metric.

The reminder of this thesis is organized as follows. In Section 2, we introduce the design of the

congestion control mechanism based on inline network measurement and a measurement mecha-

nism in high-speed networks. In Section 3, we show simulation settings and briefly summarize the

congestion control algorithm and parameter setting of TCP variants for comparative evaluation. In

Section 4, we present simulation results and discuss on the performance of our mechanisms and

performance comparison with other TCP variants. Finally, in Section 5, we present our conclu-

sions of this thesis and present future research plan.

9

2 Congestion Control Mechanism based on Inline Network Measure-

ment

2.1 Congestion Control Mechanism based on Bandwidth Informatioin

The concept of the window updating algorithm of the proposed mechanism in [10] is borrowed

from a biological system, which is often pointed out to be robust [14], because in many biological

systems, the actions of the entity (e.g., living organism) are not determined based on the results

of direct interactions among entities, but rather on information obtained through the environment,

which is a fundamental necessary condition for the system to be robust. The concept is often

called “stigmergy” in the literature (see, e.g., [15]). With respect to the current case, the window

increase/decrease strategy is determined based on the physical and available bandwidth, rather than

on the packet loss or RTTs, which are direct consequences of the activities of the TCP connections.

Of course the up-to-date and reliable available bandwidth is necessary in order to realize such

a mechanism for TCP congestion control. Fortunately, the inline measurement method of TCP

(ICIM [13]) can quickly obtain such information within several RTTs. Then the resultant control

method has good scalability with respect to both RTT and capacity, which has not been achieved

in the previous proposals. This is the main motivation for inline network measurement congestion

control method. In this subsection, at first we briefly introduce the mathematical models borrowed

from biophysics and present the proposed mechanism.

2.1.1 Logistic Model

The logistic equation is a formula that represents the evolution of the population of a single species

over time. Generally, the per capita birth rate of a species increases as the population of the species

becomes larger. However, since there are various restrictions on living environments, the environ-

ment has a carrying capacity, which is usually determined by the available sustaining resources.

The logistic equation describes such changes in the population of a species as follows [11]:

d

dt
N = ε

(
1− N

K

)
N (1)

where t is time, N is the population of the species, K is the carrying capacity of the environment,

and ε is the intrinsic growth rate of the species (0 < ε).

10

2.1.2 Lotka-Volterra Competition Model

The Lotka-Volterra competition model is a well known model for examining the population growth

of two or more species that are engaged in interspecific competition. In the model, Equation (1) is

modified to include the effects of both interspecific competition and intraspecific competition. The

basic two-species Lotka-Volterra competition model with both species N1 and N2 having logistic

growth in the absence of the other is comprised of the following equations [11]:

d

dt
N1 = ε1

(
1− N1 + γ12 ·N2

K1

)
N1 (2)

d

dt
N2 = ε2

(
1− N2 + γ21 ·N1

K2

)
N2 (3)

where Ni, Ki, and εi are the population of the species, the carrying capacity of the environment,

and the intrinsic growth rate of the species i, respectively. In addition, γij is the ratio of the

competition coefficient of species i with respect of species j.

In this model, the population of species 1 and 2 does not always converge to a value larger

than 0, and in some cases one species becomes extinct, depending on the values of γ12 and γ21.

Commonly, when the following conditions are satisfied, two species can survive in the environ-

ment [11]:

γ12 <
K1

K2
, γ21 <

K2

K1
(4)

Assuming that the two species have the same characteristics, they have the same values: K = K1 = K2,

ε = ε1 = ε2, and γ = γ1 = γ2. Then, Equations (2) and (3) can be written as follows:

d

dt
N1 = ε

(
1− N1 + γ ·N2

K

)
N1 (5)

d

dt
N2 = ε

(
1− N2 + γ ·N1

K

)
N2 (6)

In addition, Equation (4) can be written as γ < 1. Figure 1 shows the population changes in the

two species using Equations (5) and (6), where K = 100, ε = 1.95 and γ = 0.90, and species 2 joins

the environment 10 seconds after species 1. From the figure, we can observe from this figure that

the population of the two species converges quickly to the same value.

We can easily extend Equations (5) and (6) for n species as follows:

d

dt
Ni = ε

(
1− Ni + γ ·∑n

j=1,i�=j Nj

K

)
Ni (7)

11

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

N
um

be
r

of
 S

pe
ci

es
Time [sec]

Species #1
Species #2

Figure 1: Changes in population of two species with the Lotka-Volterra competition model

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500

N
um

be
r

of
 S

pe
ci

es

Time [sec]

Species #1
Species #2
Species #3
Species #4
Species #5
Species #6
Species #7
Species #8
Species #9

Species #10

Figure 2: Changes in population of 10 species with the Lotka-Volterra competition model

Figure 2 shows the population changes among the ten species when using Equation (7), where

K = 100, ε = 1.95 and γ = 0.90, where new species join the environment one after another. We can

observe that ten species converge in the same manner as two species, as shown in Figure 1. Note

that survival and convergence conditions are identical, i.e., γ < 1. Even when two or more species

exist, each independently utilizes Equation (7) to obtain Ni, and the population of the species can

converge to the value equally shared among competing species. We consider that the changing

population trends of species depicted in Figures 1 and 2 are ideal for controlling the transmission

speed of TCP. That is, by using Equation (7) for the congestion control algorithm of TCP, rapid

and stable link utilization can be realized, whereas each TCP connection can behave independently

as an autonomous distributed system. However, this model cannot be directly applied to the con-

12

gestion control algorithm of TCP because the model must obtain Nj . This is discussed in the next

subsection.

2.1.3 Application to Window Size Control Algorithm

To convert Equation (7) to a window increase/decrease algorithm, we consider Ni as the transmis-

sion rate of TCP sender i and K as the physical bandwidth of the bottleneck link. Furthermore,

when applying Equation (7) to the congestion control algorithm for connection i, it is necessary

for connection i to know the data transmission rates of all other connections that share the same

bottleneck link. This assumption is quite unrealistic with respect to the current Internet. Therefore,

we use the sum of the data transmission rates of all of the other connections using the physical and

available bandwidths as follows:
n∑

j=1,i�=j

Nj = K −Ai

where Ai is the available bandwidth for connections i. Thus, Equation (7) becomes:

d

dt
Ni = ε

(
1− Ni + γ · (K −Ai)

K

)
Ni (8)

The proposed mechanism requires modifications only with respect to sender-side TCP, and

no change in receiver-side TCP is required. A TCP sender controls its data transmission rate

by changing its window size. To retain the essential characteristics of TCP and decrease the

implementation overhead, we employ window-based congestion control in the proposed TCP by

converting Equation (8) to obtain an increasing algorithm of window size in TCP. The window size

of connection i, wi, is calculated from Ni, the transmission rate, using the following equation:

wi = Niτi

where τi is the minimum value of the RTTs of connection i, which is assumed to equal the prop-

agation delay without a queuing delay in the intermediate routers between sender and receiver

hosts. Next, Equation (8) can be rewritten as follows:

d

dt
wi = ε

(
1− wi + γ(K −Ai)τi

Kτi

)
wi (9)

Finally, we integrate Equation (9) as follows:

wi(t) = wi(0)e
εt
{

1−γ
(
1−Ai

K

)}
{K−γ(K−Ai)}τi

wi(0)

(
e
εt
{

1−γ
(
1−Ai

K

)}
−1

)
+{K−γ(K−Ai)}τi

(10)

13

In Equation (10), when we set the initial value of the window size (wi(0)) and the current time to

0 (t = 0), we can directly obtain window size wi(t) for any time t. We use the above equation for

the control algorithm of the window size of TCP connections.

Equation (10) contains the ex calculation. Generally, exponentiation cannot be operated in the

system kernel because of the lack of a library and the processing overhead. Therefore, for function

ex, we give the Taylor polynomial of degree 4 around x = a as follows,

ex ∼ ea
4∑

k=0

1
k!

(x− a)k

where a is the integer part of x (e.g., a = 0 when 0 ≤ x < 1). By preparing ea on a memory table

for a limited range of a, we can calculate ex with minimal processing overhead. In determining

the maximum value of a in the proposed mechanism, we consider the following equation:

x = εt

{
1− γ

(
1− Ai

K

)}
≤ εt

That is, when we assume that the maximum RTT of TCP connection is 10 [sec], we can determine

the maximum value of a to � 10 ε�.
Equation (10) requires measurement of the physical and available bandwidths of a network

path. Therefore, we utilize the inline network measurement technique in ICIM [16]. In [16],

the authors proposed ICIM, which is an inline network measurement technique for the physical

and available bandwidths of network paths between TCP sender and receiver hosts. ICIM can

continuously measure bandwidth by using data and ACK packets of a TCP connection under data

transmission. That is, the TCP sender transmits data packet bursts at intervals determined by an

inline measurement algorithm and checks the arrival interval times of the corresponding ACK

packet bursts to estimate bandwidth. Since ICIM performs the measurement without transmitting

additional probe packets over the network, the effect on other network traffic is negligible. ImTCP

can also quickly update the latest changes in bandwidths by frequently performing measurements

(one result per 1–4 RTTs) as long as TCP transmits data packets.

Note that the inline network measurement algorithm can estimate both of the physical and

available bandwidths based on the assumption that the narrowest link on the physical bandwidth

of the end-to-end network path becomes the tightest link on the available bandwidth. According

to the algorithm in [17], when such an assumption is not satisfied, that is, when the narrowest link

and the tightest link are different in the path, the physical bandwidth cannot be measured exactly,

14

whereas the available bandwidth can be obtained successfully. However, in that case, since the

physical bandwidth is likely to be underestimated, this measurement error does not cause a serious

problem for the proposed congestion control mechanism, because underestimation of the physical

bandwidth does not result in injecting too many packets into the network.

The inline network measurement based congestion control algorithm is based on traditional

TCP Reno, and we use the same algorithm as TCP Reno for the window updating algorithm

until measurement results are obtained through inline network measurements. That is, the slow

start phase is used as other TCP congestion control methods. If two or more TCP connections

were to open large windows at the same time, many packets would be lost, and so probes on

the path are still necessary. Therefore, the slow start phase is utilized during several RTTs for

accurate estimation of the bandwidth information. As well, in cases of packet loss, the window

size is decreased in a manner identical to that of TCP Reno in both cases of timeout and fast

retransmit [18]. When bandwidth information is obtained, the congestion control algorithm adjusts

its window size using Equation (10). That is, when the j-th ACK packet is received at the TCP

sender, we use Equation (10) to obtain the new value of the congestion window size of the TCP

connection by the following calculation: set wi(0) to the current window size and t to the time

duration from the arrival time of the (j-1)-th ACK packet to that of the j-th ACK packet.

2.2 Measurement Mechanism of Physical/Available Bandwidth in High-speed Net-

works

2.2.1 Measuring in High-speed Networks

In the present study, the authors of ImTCP focus on a new challenge regarding active measurement.

Specifically, they investigate the bandwidth measurement of 1-Gbps or faster network paths, which

are becoming increasingly popular. In such high-speed networks, ImTCP, Pathload and other

active measurement tools based on packet spacing [19-22] must overcome the following problems.

First, measurement in fast networks requires short transmission intervals of the probe packets (for

example, 12 μs for a 1-Gbps link). However, regulating such short intervals causes a heavy load on

the CPU. Second, network cards for high-speed networks usually employ Interrupt Coalescence

(IC) [23, 24], which rearranges the arrival intervals of packets and causing bursty transmission,

so that the algorithms utilizing the packet arrival intervals do not work properly.

15

2.2.2 Packet Burst-based Bandwidth Measurement Algorithm

As shown in Figure 3, we consider the situation in which two bursts of packets are sent at the

interval S. The number of packets in the first burst (Burst 1) is N . Assume that C is the capacity

of the bottleneck link. CCross is the average transmission rate of cross traffic over the bottleneck

link when the two bursts pass the link, and P is the packet size. Then, the amount of traffic that

enters the bottleneck link during the period from the point at which the first packet of Burst 1

reaches the link until the point at which the first packet of Burst 2 reaches the link will be the sum

of the packets in Burst 1 and the cross traffic packets arriving in S, i.e., CCross · S + N · P . If the

amount is larger than the transfer ability of the link during this period, considered to be C ·S, then

Burst 2 will go to the buffer of the link. This results in a tendency for the interval between the two

bursts to increase after leaving the bottleneck link.

We can write that the burst interval will be increased if

CCross · S + N · P > C · S (11)

or,
N · P

S
> C − CCross

Note that C − CCross is the available bandwidth (A) of the bottleneck link. Therefore, Eq. (1)

becomes
N · P

S
> A

Since we assume that the absolute timer is used, S is always larger than RxAbsIntDelay.

Therefore, at the NIC of the TCP receiver, since the arrival interval of the two bursts are larger or

equal to S, the two bursts are passed to the kernel in two different interrupts. The TCP receiver then

sends the ACK of the two bursts in the same intervals to the sender TCP. Thus, by checking the

arrival intervals of the corresponding ACK packets of the two bursts, the TCP sender can determine

if A > NP/S. By sending numerous bursts with various values of NP/S (by changing N), we

can search for the value of the available bandwidth A. This is the measurement principle of the

proposed inline measurement mechanism.

16

Transmission direction

Burst 1
Burst 2

S

(N pkts)

At the TCP sender

Probing rate: NP/S

A >NP /S

A<NP/S

Burst 2

S

S

At the TCP receiver

Burst 1

Burst 2 Burst 1

Burst 2

S

At the TCP sender

AC K packets

Burst 1

Burst 2

S

Burst 1

Figure 3: Packet burst-based available-bandwidth measurement principle

2.2.3 TCP with Interrupt Coalescence-aware Inline Measurement (ICIM)

ICIM inherits the concept of the search range from the measurement algorithm in ImTCP [25].

This is the idea of limiting the bandwidth measurement range using statistical information from

previous measurement results rather than searching from 0 bps to the upper limit of the physical

bandwidth for every measurement. By limiting the measurement range, we can keep the number

of probe packets small.

At first, we explain how to search for the available bandwidth in a determined search range

and then we present an overview of the measurement algorithm.

Assume that the search range for a measurement is (Bl, Bu). The algorithm then check k

values in the range to determine which is nearest to the real available bandwidth. We use k = 4 in

the following simulations. The k points are:

Bi = Bl +
Bu −Bl

k − 1
(i− 1) (i = 1, ..., k)

The TCP sender then sends k consequence bursts and the number of packets are adjusted so that

the probe rate of Burst i is Bi:
Ni · P

Si
= Bi (12)

We illustrate the setting in Figure 4.

Realization of Eq. (2) requires the following:

• The value of Si must be estimated at the timing of the transmission of Burst i. In fact, Si

is unknown until Burst i + 1 is transmitted. But we need the value at the timing of the

transmission of Burst i in order to guarantee Eq. (3). We therefore estimate the value of Si

17

1N2N1−kNkN

ku BB =

1−kS 1SkS

1−kB 2B

lBB =1

Packet transmission direction

iii SPNB /=

Seach range

Packet bursts

(i=1..k)

Figure 4: Probing a search range in ICIM

by assuming that the amount of data in Burst i is proportional to the length of the interval

as follow:

Si =
Ni · P

T
(13)

where T is the average throughput of TCP.

• In case the number of packets in Burst i is smaller than Ni, additional packets must be

added to the burst so that the packet number becomes Ni. ICIM utilizes a buffer located at

the bottom of the TCP layer in order to store the packets temporarily before sending them

to the IP layer, in the manner of ImTCP. ICIM stores all of the packets of the burst that

preceded Burst 1 in the buffer. Packets are added to Burst i (i = 1..k) when necessary in

order to maintain the desired number of packets (Ni) in these bursts.

ICIM sends k bursts and checks the corresponding ACK of the bursts. If from burst number

j, j = 1..k, the arrival interval of the bursts becomes larger, then Bj is considered to be the

value of the available bandwidth in that measurement. Here, the burst interval is consider to

become larger if the arrival interval is larger then λ times of the sending interval. We set λ

to 1.01 in the following simulations.

The measurement algorithm of ICIM is as follows:

(1) Set the initial search range

We set the initial search range as (T, 2 · T) where T is the throughput of TCP.

(2) Search for the available bandwidth in the decided search range.

18

ICIM waits until the window size (cwnd) is larger than Cmin (large enough to create bursts

for measurement). We use Cmin = 50 in the following simulations. Data packets are then

sent in order to search the available bandwidth in the decided search range, as described

above.

(3) Add the new measurement result to the database and calculate the new search range.

The measurement result in the last step is added to a dabatase of measurement results. We

then calculate the new search range (B′
l, B

′
u) from the database. We use the 95% confiden-

tial interval of the data stored in the database as the width of the next search range, and the

current available bandwidth is used as the center of the search range. The search range is

calculated as follow:

B′
l = R−max

(
1.96

V√
q
,

R

10

)

B′
u = R + max

(
1.96

V√
q
,

R

10

)

where R is the latest measurement result. V is the variance of stored values of the available

bandwidth and q is the number of stored values. R/10 is a value that ensures that the search

range does not become too small. Moreover, when measurement result in Step 3 falls to

Bl (Bu), it is possible to consider that the network has changed greatly so that the real

value of the available bandwidth is lower (higher) than the search range. In this case, we

discard the accumulated measurement results because they become unreliable as statistic

data and enlarge the search range (Bl, Bu) twice towards the lower (higher) direction to

create (B′
l, B

′
u).

(4) Wait for Q seconds then return to Step 2 and start the next measurement. During the waiting

time Q, TCP transmits packets in the normal manner. The waiting time is needed for the

TCP transmission to return to the normal state after the packets store-and-forward process

at Step 2.

2.2.4 Measurement Algorithm for Physical Bandwidth

For measuring the physical bandwidth of the network path, we employ the same algorithm

in [17]. The largest advantage of the algorithm is that we can obtain the accurate estimation

19

results for physical bandwidth even when the network is highly loaded, while other existing

mechanism can not derive the valid results in high-loaded network. See [17] for detailed

algorithm for physical bandwidth measurement.

20

UDP Traffic

TCP Traffic

TCP Sender TCP Receiver

5 [Gbit/s] 20 [ms]

10 [Gbit/s] 5 [ms] 10 [Gbit/s] 5 [ms]

UDP Sender UDP Receiver

Figure 5: Network topology in simulation experiments

3 Simulation Settings

In this section, we explain the network model and various settings for the simulation. We use ns-2

[24] for simulation experiments.

3.1 Network Model and Parameters

The network model used in the simulation is depicted in Figure 5. The model consists of sender/receiver

hosts, two routers, and links between the hosts and routers. A TCP connection is established be-

tween the TCP sender and the TCP receiver. To create background traffic, we injected UDP packets

at a rate of rudp into the network, where the packet size distribution follows the traffic observation

results in the Internet [26]. That is, a TCP connection and an UDP flow share a bottleneck link

between the two routers. The bandwidth of the bottleneck link is 5 [Gbps], and the propagation

delay is 20 [msec]. The bandwidth and the propagation delay of the access link for TCP sender

is 10 [Gbps] and 5 [msec]. We deployed the TailDrop scheme at the router buffer, and the buffer

size is set to be equivalent to the bandwidth-delay product between sender and receiver host. The

buffer size of sender/reciever hosts is sufficient. The packet size is set to 1500 [KByte]. We set

ε = 1.95 and γ = 0.9 for the evaluated mechanism, the effect on the performance caused by these

parameter change is mentioned in Subsection 4.2.

21

3.2 TCP Variants for Comparative Evaluation

In this subsection, we explain TCP congestion control mechanisms for comparison candidates

focusing on the algorithms of changing congestion window size at sender host, which make the

largest influence on the performance evaluated in the next section. To understand their detailed

mechanisms, please refer to [27] for TCP Reno, [5] for HighSpeed TCP (HSTCP), [28] for Scal-

able TCP, [7] for FAST TCP and [8] for BIC TCP.

3.2.1 TCP Reno

TCP Reno is the most popular version of TCP used on the current Internet. It increases the con-

gestion window size on the reception of an ACK packet and decreases it when packet loss occurs

as:

wreno ← wreno +
1

wreno

wreno ← wreno

2

3.2.2 HighSpeed TCP

The congestion control mechanism of HighSpeed TCP is designed to slove the problem of TCP

Reno in high-speed networks. It increase congestion window size more aggressively and less

drastically than TCP Reno. HighSpeed TCP acts equally TCP Reno when its congestion window

size is not greater than the parameterLow Window. Otherwise, the congestion windows size is

regulated as:

whstcp ← whstcp +
a(whstcp)
whstcp

whstcp ← (1− b(whstcp))whstcp

a(whstcp) and b(whstcp) are defined as

a(whstcp) =
w2

hstcp · p(whstcp) · b(whstcp)
2− b(whstcp)

b(whstcp) = (High Decrease− 0.5)
log(whstcp)− log(Low Window)

log(High Window)− log(Low Window)
+ 0.5

and p(whstcp) is

p(whstcp) = exp(log(Low P) + (log(High P)− log(Low P))

22

log(whstcp)− log(Low Window)
log(High Window)− log(Low window)

)

Low P =
1.5

Low Window2

In the simulation experiments, we set parameters for HighSpeed TCP according to [5] as: Low Window =

38, High Window = 83000, High P = 10−7 and High Decrease = 0.1.

3.2.3 Scalable TCP

Scalable TCP changes the congestion window size as:

wstcp ← wstcp + a

wstcp ← wstcp − �b · wstcp	

Similarly to HighSpeed TCP, Scalable TCP behaves equally to TCP Reno when the current con-

gestion window size is lower than lwnd. Owing to this algorithm, the time for recovery congestion

window size after packet loss is independent from the link capacity. In the simulation experiments,

in accordance with [28], we set parameters as a = 0.01, b = 0.125 and lwnd = 16. The param-

eters a and b are chosen because those value make good balance between rate fluctuation and

convergence time of congestion window size [28].

3.2.4 FAST TCP

FAST TCP has a delay-based congestion control mechanism. It uses queueing delay as multi-bit

congestion signal, while the traditional TCP Reno uses a binary congestion signal (packet loss).

wfast ← min 2wfast, (1− γ)wfast + γ(
baseRTT

RTT
wfast + α(wfast, qdelay))

Where γ ∈ (0, 1]. baseRTT is the minimum RTT of the lifetime of a TCP connection. qdelay

is a queueing delay. In [7], α(w, qdelay) is defined as a constant value α. α corresponds to the

number of FAST TCP’s packets kept in the bottleneck link queue. α is set to 1000 in the following

simulation experiments. This value is an instance to maintain about 2.5 [msec] of queueing delay

with 5 [Gbps] link capacity for each FAST TCP connection [29]. It is difficult to set α according

to the network condition because the adequate value of α is changed by link capacity. Too big α

or too small α causes the oscillation of congestion window size [30], leading to the performance

degradation.

23

3.2.5 BIC TCP

The congestion control mechanism of BIC TCP searches an adequate value for the congestion

window size by using binary search algorithm. When a packet loss event occures, BIC TCP re-

duces the congestion window size by a multiplicative factor (β). The congestion window size just

before the reduction is set to the maximum and the congestion window size just after the reduc-

tion is set to the minimum. Then, BIC TCP performs a binary search using these two parameters

between Wmax and Wmin. Since packet losses have occurred at Wmax, the appropriate conges-

tion window size that the network can currently handle without packet losses must be somewhere

between these two window sizes. BIC TCP increase congestion window size Wbic by following

pseudo code.

while (Wmin <= Wmax){

inc = (Wmin+Wmax)/2 - Wbic;

if (inc > Smax)

inc = Smax;

else if (inc < Smin)

inc = Smin;

Wbic = Wbic + inc;

if (no packet losses)

Wmin = Wbic;

else

break;

}

BIC TCP decrease congestion window as

wbic ← (1− β) ∗ wbic

In the simulation experiments, in accordance with [8], we set the parameters for BIC TCP as

β = 0.125, Smin = 32, Smax = 0.01 and low window = 14. Similarly to HighSpeed TCP and

Scalable TCP, BIC TCP acts equally TCP Reno when current congestion window size is lower

than low window.

24

4 Performance comparison with other TCP

In this section, we present simulation results to evaluate the performance of the congestion con-

trol mechanism based on inline metwork measurement. Additionally, we compare it with other

congestion control mechanisms.

4.1 Fundamental behavior

First, we observe the behavior of congestion control mechanisms when there is no background

traffic and the available bandwidth for a TCP connection remains unchanged. Figure 6 shows the

simulation results of the change in throughput, congestion window size, and queue length of the

bottleneck link.

The congestion control mechanism based on inline network measurement achieves good per-

formance. It fully utilizes the physical bandwidth. The congestion window size is regulated to

bandwidth-delay product, and it keeps the queue length of the bottleneck link very small. TCP

Reno achieves good performance too. However, this is a quite “lucky” case for TCP Reno, mean-

ing that ssthresh is set to the window size almost equal to bandwidth-delay product. Otherwise

we cannot expect good performance since it increase congestion window size very slightly. High-

Speed TCP and Scalable TCP has the same shortcoming. Since they increase the congestion

window size until the router buffer becomes fully utilized, it causes periodical packet losses at the

router buffer. Since many packet losses occur in a short period of time, the SACK mechanism does

not function properly. Therefore, they begin slow start. FAST TCP achieves good performance in

terms of throughput. However, because of its mechanism, FAST TCP needs to keeps some packet

in the bottleneck link queue. Therefore, the congestion window size becomes slightly larger than

the window size corresponding to bandwidth-delay product. BIC TCP achieves good throughput,

but it increases its congestion window size too large and fills the bottleneck link buffer until packet

loss occurs.

Next, we observe the behavior of TCP variants with background traffic. In this case, UDP

traffic is generated in order to change available bandwidth to 3 [Gbps] at 0–30 [sec], 4 [Gbps] at

30–70 [sec], 3 [Gbps] at 70–85 [sec] and 2 [Gbps] at 85–100 [sec]. Figure 7 shows the simulation

results.

The congestion control mechanism based on inline network measurement achieves good per-

25

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Time [s]

Evaluated Mechanism
TCP Reno

Highspeed TCP
Scalable TCP

FAST TCP
BIC TCP

(a) Changes in throughput

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 S
iz

e
[P

ac
ke

t]

Time [s]

Evaluated Mechanism
TCP Reno

Highspeed TCP
Scalable TCP

FAST TCP
BIC TCP

(b) Changes in congestion window size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
[P

ac
ke

t]

Time [s]

Evaluated Mechanism
TCP Reno

Highspeed TCP
Scalable TCP

FAST TCP
BIC TCP

(c) Changes in queue length of the bottleneck link

Figure 6: Behavior of TCP variants without background traffic

formance even in this case. It shows quite a good adaptability tothe change in the available band-

width. It also achieves good utilization of bandwidth, changes the congestion window size prop-

erly, and keeps the queue length small. When the available bandwidth becomes small the queue

length become large, but by changing congestion window size properly the queue length become

small in a short time and the throughput is quickly recovered. The performance of TCP Reno

is also bad in this case. Once it decrease its congestion window size, it requires quite a long

time to recover congestion window size. HighSpeed TCP is not good for same reason as the case

of no background traffic. However, they are superior to TCP Reno in terms of higher average

throughput. FAST TCP achieves good performance. It shows a good adaptability to the available

bandwidth as well as the congestion control meachanism based on inline network measurement.

26

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Time [s]

Evaluated Mechanism
TCP Reno

Highspeed TCP
Scalable TCP

FAST TCP
BIC TCP

(a) Changes in throughput

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 S
iz

e
[P

ac
ke

t]

Time [s]

Evaluated Mechanism
TCP Reno

Highspeed TCP
Scalable TCP

FAST TCP
BIC TCP

(b) Changes in congestion window size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
[P

ac
ke

t]

Time [s]

Evaluated Mechanism
TCP Reno

Highspeed TCP
Scalable TCP

FAST TCP
BIC TCP

(c) Changes in queue length of the bottleneck link

Figure 7: Behavior of TCP variants with background traffic

However, the queue length of the bottleneck link becomes larger as background traffic becomes

larger. When available bandwidth changes the queue length temporarily become very large, but

by changing congestion window size properly it maintains its stability. Equivalent to the case of

no background traffic, BIC TCP can fully utilize the available bandwidth, but it introduce the long

queue length at the bottleneck link.

We summarize the characteristics of TCP variants evaluated in this subsection in Table 1.

4.2 Effect of Parameter Setting

The congestion control meachanism based on inline network measurement has two parameters, γ

and ε. In this subsection, we discuss the effect of these parameters.

27

congestion congestion control based on TCP HighSpeed Scalable FAST BIC

control inline network measurement Reno TCP TCP TCP TCP

throughput © × © ©
packet loss © × × × ×
parameter © © © ×
settings

queueing delay © × × × ×
ease of process congestion cotrol © ©

measurement method ×
responsiveness to © × ©

available bandwidth

Table 1: Performanc comparison

4.2.1 γ Setting

The parameter γ indicates the degree of the influence of the other competing connections that

share the same bottleneck link. From Equation (9), we get convergence window size as:

w∗ = {(1− γ)K + γAi}τi (14)

From Equation (14), greater γ leads to smaller convergence window size. This can be observed in

Figure 9, which depicts the effect of the γ value on the change in the congestion window size. The

converged window size increases as γ decrease, then the queue size of the bottleneck link becomes

larger, shown in Figure 9. In particular, when the available bandwidth is small, the performance

of congestion control mechanism based on inline network measurement deteriorates because of

causing packet losses. To converge the congestion window size, 0 < γ < 1 is needed [11].

Therefore, we recommend to set γ close to 0.9. But greater γ causes larger convergence time

especially when multiple TCP connections share the bottleneck link. The performance evaluation

when more than one TCP connections exists in the network is one of the important future work.

28

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 S
iz

e
[P

ac
ke

t]

Time [s]

γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9

(a) Available bandwidth does not change

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 S
iz

e
[P

ac
ke

t]

Time [s]

γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9

(b) Available bandwidth changes

Figure 8: Changes in congestion window size with various γ values

4.2.2 ε Setting

ε determines convergence speed, as shown in Equation (9). Generally, when we convert Equation

(1) into a discrete equation, the population of the species does not converge with ε ≥ 2 [11]. In

contrast, the window size updating algorithm proposed in Subsection 2.1.3 converts Equation (10)

into a discrete equation in such a way that it does not cause oscillation. Therefore, in the proposed

algorithm, there is no limitation on ε, which means that as ε becomes larger, the window size

converges faster. Figure 10 shows the change in the congestion window size and we can see that

the congestion window size converges quickly when ε is large. Figure 11 shows the change in the

queue length of the bottleneck link, presenting that the queue length does not become larger when

ε become greater. On the other hand, to avoid the oscillation of the congestion window size, we

need to consider delayed feedback [10]. ε is needed to satisfy

ε ≤ π

2τd

where τd is the delay of the feed back information. Due to the nature of ImTCP’s bandwidth

measurement algorithm, the delay in the proposed mechanism corresponds to the time required

for the data (ACK) packets to traverse from the bottleneck link to the sender hosts. Since ICIM

needs up to 4 RTTs to measure the bandwidth information, the delay is approximately 2 RTTs

since ImTCP estimates the average values of the physical and available bandwidth for the 4 RTTs.

That is, the length of the delay depends on the RTT value of a TCP connection. In other words, by

29

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
[P

ac
ke

t]

Time [s]

γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9

(a) Available bandwidth does not change

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
[P

ac
ke

t]

Time [s]

γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9

(b) Available bandwidth changes

Figure 9: Changes in queue length of bottleneck link with various γ values

setting ε according to the RTT for each TCP connection, the congestion control mechanism based

on inline network measurement can avoid window size oscillation. However, using different values

of ε results in different convergence speeds as shown in Equation (9), and short-term unfairness

among connections with different RTTs might occur. Therefore, we suggest that the fixed value

for ε is used, which is around 2.0 under the rough assumption that the maximum RTT value of a

TCP connection is about 500 [msec].

30

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 S
iz

e
[P

ac
ke

t]

Time [s]

ε = 0.5
ε = 1.0
ε = 1.5

ε = 1.95
ε = 2.5
ε = 3.0

(a) Available bandwidth does not change

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100

W
in

do
w

 S
iz

e
[P

ac
ke

t]

Time [s]

ε = 0.5
ε = 1.0
ε = 1.5

ε = 1.95
ε = 2.5
ε = 3.0

(b) Available bandwidth changes

Figure 10: Changes in window size with various ε values

5 Conclusion

In this thesis, we evaluate the congestion control mechanism based on inline network measurement

in high-speed networks through simulation experiments. From the extensive simulation results,

we indicate the effectiveness of the mechanism in high-speed networks. In addition, we confirm

that the mechanism is superior to other existing TCP congestion control mechanisms, in terms of

enough throughput and small queue length at the bottleneck link, whereas almost no packet loss

occurs. We also show the guidelines in setting the parameters in our congestion control scheme,

by validating the analysis results from the simulation results.

For the future work, we will evaluate the interaction between multiple connections of our

mechanism and the fairness among TCP Reno. Implementation experiments are also remaining

task.

31

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
[P

ac
ke

t]

Time [s]

ε = 0.5
ε = 1.0
ε = 1.5

ε = 1.95
ε = 2.5
ε = 3.0

(a) Available bandwidth does not change

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 L

en
gt

h
[P

ac
ke

t]

Time [s]

ε = 0.5
ε = 1.0
ε = 1.5

ε = 1.95
ε = 2.5
ε = 3.0

(b) Available bandwidth changes

Figure 11: Changes in queue length of the bottleneck link with various ε values

Acknowledgement

I would like to express my deepest appreciation to Professor Masayuki Murata. Without his help,

I could not carry on a study.

I feel grateful to Associate Professor Go Hasegawa for his proper and continuous guidance.

I am grateful to Professors Koso Murakami, Makoto Imase, Teruo Higashino, Hirotaka Nakano,

and Tetsuji Satoh of Osaka University, for their appropriate guidance.

I would like to express sincere thanks to Cao Le Thanh Man for his kind help.

I would like to express gratitude to the member of my research group and laboratory too.

I wish sincerely to express my gratitude to all the people who supported me.

32

References

[1] S. Shenker, L. Zhang, and D. D. Clark, “Some observations on the dynamics of a congestion

control algorithm,” ACM Computer Communication Review, vol. 20, pp. 30–39, Oct. 1990.

[2] J. C. Hoe, “Improving the start-up behavior of a congestion control scheme of TCP,” ACM

SIGCOMM Computer Communication Review, vol. 26, pp. 270–280, Oct. 1996.

[3] L. Guo and I. Matta, “The war between mice and elephants,” Technical Report BU-CS-2001-

005, May 2001.

[4] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop wireless

channel on TCP throughput and loss,” in Proceedings of IEEE INFOCOM 2003, Apr. 2003.

[5] S. Floyd, “HighSpeed TCP for large congestion windows,” Request for Comments (RFC)

3649, Dec. 2003.

[6] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area networks,” in Pro-

ceedings of PFLDnet ’03: workshop for the purposes of discussion, Feb. 2003.

[7] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, architecture, algorithms, perfor-

mance,” in Proceedings of IEEE INFOCOM 2004, Mar. 2004.

[8] L. Xu and K. H. andInjong Rhee, “Binary increase congestion control (BIC) for fast long-

distance networks,” in Proceedings of IEEE INFOCOM 2004, Mar. 2004.

[9] L. S. Brakmo, S. W.O’Malley, and L. L. Peterson, “TCP Vegas: New techniques for conges-

tion detection and avoidance,” in Proceedings of ACM SIGCOMM ’94, Oct. 1994.

[10] T. Iguti, G. Hasegawa, and M. Murata, “A new congestion control mechanism of TCP with

inline network measurement,” in Proceedings of The International Conference on Informa-

tion Networking (ICOIN) 2005, pp. 109–121, Jan. 2005.

[11] J. D. Murray, Mathematical Biology I: An Introduction. Springer Verlag Published, 2002.

[12] C. L. T. Man, G. Hasegawa, and M. Murata, “An inline measurement method for capacity

of end-to-end network path,” in Proceedings of the 3rd IEEE/IFIP Workshop on End-to-End

Monitoring Techniques and Services (E2EMON 2005), May 2005.

33

[13] C. L. T. Man, G. Hasegawa, and M. Murata, “ICIM: An inline network measurement mecha-

nism for highspeed networks,” to be presented in Fourth IEEE/IFIP Workshop on End-to-End

Monitoring Techniques and Services (E2EMON ’06), Apr. 2006.

[14] A. Montresor, H. Meling, and O. Babaoglu, “Toward self-organizing, self-repairing and re-

silient distributed systems,” chapter 22, pages 119-124. Number 2584 in Lecture Notes in

Computer Science. Springer-Verlag, June 2003.

[15] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial

Systems. New York: Oxford University Press, 1999.

[16] C. L. T. Man, G. Hasegawa, and M. Murata, “An inline network measurement mechanism

for High-Speed networks,” technical report of IEICE (IN2005-123), pp. 79–84, Dec. 2005.

[17] C. L. T. Man, G. Hasegawa, and M. Murata, “A merged inline measurement method for ca-

pacity and available bandwidth,” in Proceedings of the 6th Passive and Active Measurement

Workshop PAM 2005, Mar. 2005.

[18] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts:

Addison-Wesley, 1994.

[19] N.Hu and P.Steenkiste, “Evaluation and characterization of available bandwidth probing

techniques,” IEEE Journal on Selected Areas in Communications, no. 6, pp. 879–894.

[20] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study of available bandwidth estima-

tion tools,” in Proceedings of Internet Measurement Conference 2003, Oct. 2003.

[21] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell, “PathChirp: Efficient available

bandwidth estimation for network paths,” in Proceedings of Passive and Active Measurement

Workshop, 2003.

[22] J. Navratil and R. Cottrell, “ABwE: A practical approach to available bandwidth estimation,”

in Proceedings of the 4th Passive and Active Measurement Workshop PAM 2003, Apr. 2003.

[23] Intel, “Interrupt Moderation Using Intel Gigabit Ethernet Controllers,” available at http:

//www.intel.com/design/network/applnots/ap450.pdf(2003).

34

[24] Syskonnect, “SK-NET GE Gigabit Ethernet Server Adapter,” available at http://www.

syskonnect.com/syskonnect/technology/SK-NET GE.PDF(2003).

[25] C. L. T. Man, G. Hasegawa, and M. Murata, “Available bandwidth measurement via TCP

connection,” in Proceedings of the 2nd Workshop on End-to-End Monitoring Techniques and

Services E2EMON, Oct. 2004.

[26] Agilent Technologies, “Mixed packet size throughput.” available at http://advanced.

comms.agilent.com/n2x/docs/journal/JTC 003.html.

[27] R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[28] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area networks,” ACM

SIGCOMM Computer Communication Review, vol. 33, pp. 83–91, Apr. 2003.

[29] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP for High-Speed Long-Distance net-

works,” June 2003. available at http://netlab.caltech.edu/pub/papers/

draft-jwl-tcp-fast-01.txt.

[30] “NS Simulation result of FAST TCP.” available at http://netlab.caltech.edu/

∼weixl/research/summary/fast-ns2/.

35

