Implementation and Evaluation of Shared Memory System for Establishing λ Computing Environment

Eiji Taniguchi
Graduate School of Information Science and Technology
Osaka University, Japan

Contents
- Research background
 - Grid computing environment
 - λ computing environment
- Research objective
- Implementation of shared memory system
- Evaluation
- Conclusion and future work

Grid computing environment
- Grid computing environment
 - Computing nodes share CPU and storage by utilizing network
 - QoS demands of Grid computing environment
 - Wide range, large-scale distributed computing
 - High-speed transmission of volume data
 - Computing nodes communicate by TCP/IP
 - The overhead of packet processing
 - Decreasing of transmission rate

It is difficult to achieve high-quality communication

λ computing environment
- In the Lambda computing environment
 - Connect each computing node and router with optical fiber
 - Utilize wavelength path for communication
 - Treat wavelength as degree of granule treating information
- Provide high-speed, high-reliability communication pipe to end users
 - High-speed data sharing at hardware level
- We can apply the lambda computing environment to distributed computing and data sharing

Contents
- Research background
 - Grid computing environment
 - λ computing environment
- Research objective
- Implementation of shared memory system
- Evaluation
- Conclusion and future work
Research objective

- Implementation of the shared memory system
- Evaluation of the shared memory system

Implementation of the shared memory system

- Design and implement some functions
- Synchronization
- Memory allocation for shared variable
- Source code modification for applying to AWG-STAR system

AWG-STAR system

- AWG-STAR system is an information sharing platform realized by
 - WDM technology
 - Wavelength routing using AWG routers
 - The AWG router processes signals without O-E-O transforming
- Computing nodes
 - are connected to AWG router
 - configure physical start topology but have logical ring topology
 - each node is equipped with a shared memory board
- Shared memory contains the identical data at the same address over all computing nodes.
- Information of data changed on the shared memory is transmitted to other computing nodes by using optical ring and update other computing node’s shared memory.

Contents

- Research background
 - Grid computing environment
 - λ computing environment
 - Research objective
 - Implementation of shared memory system
 - Evaluation
 - Conclusion and future work

Application

- MPI
- TCP/IP
- Ethernet

Lambda computing environment

- Application
- Implemented functions
- AWG-STAR

MPI: Message Passing Interface, generally used for distributed-parallel computing.
Experiment configuration

- Specification of the computing node
 - The maximum number of computing nodes: 3
 - Distance between computing nodes: 20 m
 - CPU: Xeon 3.0 GHz
 - OS: Redhat 7.3

- Specification of the shared memory board
 - Network interface: 2Gbps
 - Transmission frame size: 1KB
 - Access speed to shared memory from local host: 60MB/s

CPU: Xeon 3.0 GHz
OS: Redhat 7.3

Experimental result: LU matrix decomposition program

- Many accesses to shared memory
- Few accesses to shared memory

Performance improvement strategy

- Hardware improvement
 - Undergoing

- Software improvement
 - Decrease the number of accesses
 - Access to shared memory in unit of blocks not in elements (first improvement)
 - Utilize the local memory as cache for shared memory (second improvement)

Conclusion and future work

- Research background
 - Grid computing environment
 - Grid computing environment

- Research objective
- Implementation of shared memory system
- Evaluation
- Conclusion and future work

Contents