Reasons not to Parallelize TCP Connections for Fast Long-Distance Networks

Zongsheng Zhang
Go Hasegawa
Masayuki Murata

Osaka University
Contents

- Introduction
- Analysis of parallel TCP mechanism
- Numerical results
- Conclusion
Introduction

- Status of today’s network
 - Networks have been a part in daily life
 - TCP/IP is the keystone of networks
 - TCP Reno is the most widely used transport-layer protocol

However,

- Continuous and explosive growth of the Internet
 - Especially fast long-distance networks (LFNs).
- Appearance of data intensive applications, e.g., Data Grid, Storage Area Network.
 - Hosts have gigabit-level network interface.
 - Perform backups, synchronize databases.

Inability of TCP Reno
Transmission Control Protocol (TCP)
- Instrumental in preventing congestion collapse
- Limit transmission rate at the source
- Window-based rate control -- Congestion window (CWND)

Four algorithms:
- Slow-start
- Congestion-avoidance
- Fast-retransmit
- Fast-recovery

Additive Increase Multiplicative Decrease (AIMD) algorithm
For fully utilizing a link of 10 Gbps with
- Round Trip Time (RTT): 100 ms
- Packet size: 1,500 bytes
- Requirement: CWND = 83,333 packets

If the AIMD algorithm is used, 4,000 seconds are needed to recover throughput, once packet loss occurs.

What’s wrong with TCP?

- TCP was designed when T1 (1.544 Mbps) was a fast network.

- Additive Increase Multiplicative Decrease (AIMD) algorithm of TCP Reno in congestion avoidance phase:
 - No packet loss (AI): increase congestion window by one packet/RTT \(\Rightarrow\) too slowly
 - Packet loss (MD): decrease congestion window by half \(\Rightarrow\) too dramatically

- It doesn’t perform well in LFNs because of congestion window (CWND) algorithms.
Solutions

- Patches, e.g., SACK option, NewReno, ECN.
 - The problem of AIMD is not solved.
- Traditional method: parallel TCP mechanism
 - Parallel TCP is adopted in present applications, e.g. GridFTP. An important reason is that parallel TCP is easy to be implemented in application layer.
- High-speed protocols: New algorithms for updating CWND, e.g., HighSpeed TCP (HSTCP), Scalable TCP, FAST TCP, and XCP.
- An important yet neglected topic: Parallel TCP v.s. High-speed protocols, which should be employed in your future application.
Is parallel TCP really effective?

- Characteristics of parallel TCP
 - Parallel TCP uses many concurrent TCP connections for one task
 - Mechanism of parallel TCP can be viewed from different points, e.g.,
 - It uses a larger AI parameter than normal TCP, or
 - Each TCP connection uses a “stripped” network link

 However,

 - Is it easy to determine the number of TCP connections?
 - Is parallel TCP really effective?
Performance analysis

- Model: Dumbbell topology
- DropTail mechanism

Performance metrics:
- packet drop rate \((p)\)
- goodput

\[
\text{goodput} = \text{throughput} \times (1 - p)
\]

Two extreme cases are considered for analysis.
- Synchronization case: TCP connections are synchronized \(\Rightarrow \text{lower limit of throughput}\)
- Non-synchronization case: TCP connections are not synchronized at all. \(\Rightarrow \text{upper limit of throughput.}\)
Synchronization case

Congestion window

\[
cwnd \leftarrow cwnd + \frac{a(cwnd)}{cwnd}
\]

\[
cwnd \leftarrow (1 - b(cwnd)) \times cwnd
\]

\[
a(cwnd) = N, b(cwnd) = 1/2
\]

Packet drop rate

\[
p = \begin{cases}
0 & \text{if } N \times W_{max} \leq B + D \\
\frac{8N^2}{3(B + D)(B + D + 2N)} & \text{if } N \times W_{max} > B + D
\end{cases}
\]

Throughput

\[
\text{throughput} = \begin{cases}
N \times \frac{W_{max}}{RTT} & \text{if } N \times W_{max} < D \\
BW & \text{if } D \leq N \times W_{max} \leq B + D \\
\frac{N_{pkts} + N \cdot p_{to} \cdot E(n)}{t1 + t2 + p_{to} \cdot E(t)} & \text{if } N \times W_{max} > B + D
\end{cases}
\]
Non-synchronization case

- Each TCP connection (*square root p formula*):

\[
b(p) \approx \frac{1}{RTT \sqrt{\frac{2bp}{3}} + T_0 \min(1, 3\sqrt{\frac{3bp}{8}})p(1 + 32p^2)}
\]

RTT -- average round trip time, *T_0* -- the timeout time,
b -- number of packets that are acknowledged by a received ACK,
p -- packet loss rate.

- Total behavior (aggregate CWND is a normal distribution):

\[
W(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

W -- aggregate of congestion window size.
μ -- mean of the aggregate congestion window size,
σ -- standard deviation.
Example

- Parameters:
 - Bandwidth = 1 Gbps,
 - RTT = 100 ms,
 - Buffer size = (0.1--0.5)BDP,
 - Packet size = 1500 Bytes,
 - T0 = 5*RTT,
 - Wmax = 64 KBytes.
Bandwidth = 1Gbps

- When the number of TCP connections is larger than a certain value, as the number of parallel TCP connection is increased:
 - Packet drop rate becomes large.
 - Goodput is decreased.

- Goodput in non-synchronization case is better than that in synchronization case.
 - However, synchronization is common when DropTail is deployed.

- In synchronization case, if buffer size of router is small, the performance deteriorates significantly as the number of TCP connections is increased.
 - But, it is difficult to build a router with a large buffer size.
Parallel TCP possesses the property that can lead to synchronization.
- Pass through the same path, have the same RTT
- Goodput ≥ 95% bottleneck link bandwidth
- Parameters of the left figure: BW = 100 M/1 G/10 Gbps, RTT = 100 ms.
- Parameters of the right figure: BW = 1 Gbps, RTT = 100/200/500 ms.
- Difficulty: Select the number of TCP connections for the expected throughput.
 - Especially in the case of small buffer size of router.
 - The buffer size cannot be large enough as the link bandwidth becomes more large.
Supplemental discussion

- Dynamic network resources allocation of parallel TCP (GridFTP v2) [★]
 - Determination of the granularity of changing the number of TCP connections is required.
 - It is difficult to manage opening/closing of TCP connections and control data channels dynamically.
 - This mechanism determines the number of TCP connections based on measurement of network conditions.
 - Because the number of TCP connections is changed dynamically, setting up the chunk size is not easy.

- For dynamic networks, high-speed protocols can offer more flexibility because of its inherent characteristics.

Conclusion

- Parallel TCP mechanism, one approach for LFNs, is investigated by mathematical analysis.
- The throughput of two extreme cases, synchronization case and non-synchronization case, are considered as lower and upper limits.
- The analysis results reveal the difficult using parallel TCP in practice for the sake of approving throughput, especially in case of small router buffer size and coming high-speed networks.
- In contrast, high-speed protocols are better choices for your future applications.
Thanks