
Master’s Thesis

Title

Ill-effects of Tampered-TCP Flows and

Protection Mechanisms for Well-behaved TCP Flows

Supervisor

Professor Hirotaka Nakano

Author

Junichi Maruyama

February 14th, 2007

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Ill-effects of Tampered-TCP Flows and Protection Mechanisms for Well-behaved TCP Flows

Junichi Maruyama

Abstract

TCP is a de facto standard transport-layer protocol in the current Internet. Because TCP works

at end hosts, malicious users can selfishly modify its behavior. So there are many kind of TCP

variants created by malicious users to get higher throughput than the normal TCP. We refer to such

modified TCPs as tampered-TCPs. If the number of tampered-TCP connections increases in the

network, they may occupy the network bandwidth because of their selfish behavior.

In this thesis, we first investigate the effect of a tampered-TCP through mathematical analysis

and simulation experiments, focusing on a tampered-TCP which changes the increase and decrease

ratio of the congestion window size during the congestion avoidance phase. By the results of

the evaluation, we point out that if tampered-TCP connections with SACK option co-exist with

normal TCP connections, the fairness among those connections cannot be kept and the normal

TCP connections suffer from low throughput. In a certain network situation, the throughput of the

tampered-TCP connection is up to 50 times of that of co-existing TCP Reno connection.

To protect normal TCP connections from tampered-TCP connections, we propose a new mech-

anism which keeps the fairness among TCP connections at edge routers. The proposed mechanism

monitors TCP packets at an edge router and estimates a window size or an average throughput of

each TCP connection. By using estimation results, the proposed mechanism assesses whether

each TCP connection is tampered or not and drops packets intentionally if necessary to improve

the fairness among TCP connections. From the results of simulation experiments, we exhibit that

the proposed mechanism can identify tampered-TCP connections at high probability and regulate

throughput ratio between tampered-TCP connections and competing TCP Reno connections to

around 1.

Keywords

1

Transmission Control Protocol (TCP)

tampered-TCP

Congestion window

Network Monitoring

Fairness

2

Contents

1 Introduction 6

2 Evaluation of the effects of Tampered-TCP 10

2.1 Mathematical Analysis of Tampered-TCP Throughput 10

2.1.1 Network Model and Evaluation Metric 10

2.1.2 Behavior of TCP Reno and Tampered-TCP connections 10

2.1.3 Analysis . 13

2.2 Simulation Experiments and Discussions . 16

2.2.1 Confirmation of Analysis Results . 16

2.2.2 Characteristics of Tampered-TCP . 20

2.2.3 Effects of Tampered-TCP with SACK Option 24

3 Protection Mechanism for Well-behaved TCP Flows 26

3.1 Design of Proposed Mechanism . 26

3.1.1 Cwnd-based Method . 26

3.1.2 Throughput-based Method . 33

3.2 Simulation Experiments of Proposed Mechanism 37

3.2.1 Throughput Ratio . 37

3.2.2 False Negative Ratio and Detection Time 39

3.2.3 False Positive Ratio . 42

3.3 Comparison of Cwnd-based Method with Throughput-based Method 45

3.3.1 Characteristics of Cwnd-based Method 45

3.3.2 Characteristics of Throughput-based Method 45

3.3.3 Appropriate Network Environments for Both Methods 46

4 Conclusion 48

Acknowledgements 50

References 53

3

List of Figures

1 Network model . 11

2 Changes in the congestion window size during thei-th cycle 11

3 Analysis and simulation results for throughput ratio (nR = 1, nT = 1, µ = 10Mbps) 18

4 Analysis and simulation results for throughput ratio (nR = 10,nT = 1, µ =

50Mbps) . 19

5 Changes in the throughput of TCP Reno and tampered-TCP connections with var-

iousα andβ . 21

6 Throughput ratio as a function of the ratio of tampered-TCP connections 23

7 Changes in throughput ratio between tampered-TCP with SACK option and TCP

Reno connections . 25

8 Overview of the proposed mechanism . 27

9 Detecting the boundary of two successive windows 27

10 Cyclic changes in the estimated window size of a TCP connection at the edge router 29

11 Setting the target packet discarding probability in the cwnd-based method 32

12 RTT estimation using timestamp values . 35

13 Changes in throughput ratio when using the proposed mechanism 38

14 False negative ratio of tampered-TCP connections 40

15 Detection time of tampered-TCP connections 41

16 False positive ratio of TCP Reno connections 43

4

List of Tables

1 Throughput and throughput ratio of miss-assessed TCP Reno and successfully-

assessed TCP Reno connections . 44

2 Comparison of cwnd-based method and throughput-based method 47

5

1 Introduction

Currently, most Internet traffic is carried by the Transmission Control Protocol (TCP) [1]. The

congestion control mechanism of TCP allows the Internet to provide fair and unstoppable services

without any collapse due to an extreme traffic increase. The congestion control mechanism of

TCP is defined by RFC [2], and its implementation in operating systems is based on this docu-

ment. Therefore, if two users, with different operating systems, should share a bottleneck link

in the network, each user can obtain a roughly fair throughput despite the minor implementation

differences of the protocol in the two operating systems.

However, since TCP works at end hosts, it is easy for users to modify its behavior, especially

for those with open source operating systems such as Linux [3, 4]. Thus, it is likely that there

exists many kind of TCP variants created by malicious users for higher than normal throughput

[5, 6]. In this thesis, we refer to such modified TCPs astampered-TCPs.

Generally, when modifications to TCP congestion control mechanisms are proposed, the ef-

fects of those modifications are compared with the original TCP Reno, and the performance when

the proposed TCP and TCP Reno connections share the network bandwidth is also evaluated for

assessing the deployment path of the proposed TCP [7–13]. However, malicious users can selfishly

modify TCP behavior, focusing only on increasing their own throughput. When the population of

tampered-TCP connections increases in a network, therefore, these tampered-TCP connections

may unfairly occupy network bandwidth, causing the normal TCP connections to suffer from low

throughput.

On the other hand, such tampered-TCPs may not work well in the actual Internet environ-

ment. For example, by augmenting the increase ratio of the congestion window size, the number

of packets that are simultaneously injected into the network increases rapidly. This results in in-

creased packet loss due to congestion within the network, which leads to degraded throughput.

Thus, a tampered-TCP mayself-destruct, when its behavior causes it to send data packets more

aggressively than normal TCP Reno connections.

In this thesis, we first investigate the effects of a tampered-TCP on a network shared with

normal TCP Reno connections to determine whether the tampered-TCP exhibits self-destructive

behavior or not under various situations. In addition, proofs showing that the low cost modification

of TCPs without SACK option [14] does not work are presented by considering a tampered-TCP,

6

which changes the increase and decrease ratio of the congestion window size during the congestion

avoidance phase, and we call such TCP variant just tampered-TCP. There are two reasons for

choosing such a tampered-TCP. Firstly, for malicious users, it is comparatively easy to modify the

increase and decrease ratio of the congestion window size in the TCP source code. Secondly, it is

possible for researchers to investigate the behavior of the modified TCP by mathematical analysis

[15, 16].

We employ mathematical analysis and simulation experiments to evaluate tampered-TCP char-

acteristics. For the mathematical analysis, the analysis presented in [15] is extended to derive the

average throughput of the TCP Reno and tampered-TCP connections when they share a bottle-

neck link, and, hence, explain how the parameters of the tampered-TCP affect its performance

and fairness against normal TCP Reno connections. The accuracy of the mathematical analysis is

confirmed using simulation experiments. Based on the results of the analysis and simulation ex-

periments, the following characteristics of the tampered-TCP are identified: (1) when the increase

ratio is larger than two packets per Round Trip Time (RTT), the throughput degraded significantly

due to many timeouts, (2) lowering the decrease ratio is effective for throughput improvement,

(3) the effects of lowering the decrease ratio is less than ill-effects encountered when the increase

ratio is augmented. As the result, we conclude that little region exists where the tampered-TCP

without SACK option can improve the throughput.

However, it is not a reasonable assumption that malicious users do not use SACK option and

there are many recent OSes that enable SACK option in default settings [17–19]. So we also evalu-

ate the effects of tampered-TCP with SACK option and show that it works quite effectively in large

network parameter region. In other words, with SACK option, the tampered-TCP connection can

obtain high throughput by depressing the throughput of competing TCP Reno connections. Since

tampered-TCPs are TCP variants that are modified at end hosts, we need additional mechanisms

in the network, that is, on network routers, for protecting the normal TCP Reno connections from

such tampered-TCP connections. In [20], the authors proposed a router mechanism which controls

UDP traffic to realize TCP-friendliness [21]. However, this mechanism is not intended to control

TCP traffic. Because TCP traffic behaves adaptively in packet loss events, whereas UDP traffic

does not change its transmission speed against the network congestion, a new mechanism for con-

trolling TCP traffic is necessary. In addition, the authors of [20] do not specify how to estimate

parameters used to calculate estimated throughput.

7

For the second contribution of this thesis, therefore, we propose a new mechanism to keep the

fairness among TCP connections at edge routers, for protecting the normal TCP Reno connections

from tampered-TCP connections. There are two reasons that the proposed mechanism is supposed

to work not at core routers, but at edge routers. One reason is that the number of TCP connec-

tions passing through edge routers is smaller than core routers, which results in lower processing

overhead to monitor and control TCP connections. Another reason is that we can avoid too many

packets from tampered-TCP connections from being injected into the network.

The proposed mechanism estimates a window size or an average throughput of each TCP

connection by monitoring TCP packets at an edge router, and assesses its tampering property

based on the estimation results. In case of estimating window size (we callcwnd-based method

in this thesis), the increase ratioα and decrease ratioβ of the congestion window size during the

congestion avoidance phase are estimated. If the estimatedα andβ do not satisfy the conditions for

achieving similar throughput to the normal TCP Reno connections, the TCP connection is assessed

as a tampered-TCP. On the other hand, in case of estimating throughput (throughput-based method

in this thesis), we obtain the average throughput of each TCP connections by using the traditional

per-flow network monitoring tools such as sFlow [22] and NetFlow [23]. We also monitor packet

loss rate, RTT, and other parameters for estimating a throughput when the TCP connection would

be a TCP Reno. If the observed throughput is larger than the estimated throughput, the TCP

connection is assessed as a tampered-TCP. For both methods, the packets belonging to a tampered-

TCP connection are dropped intentionally at the edge router with an appropriate probability to

regulate its throughput to the same value as the TCP Reno connections.

We evaluate the proposed mechanism by simulation experiments using ns-2 [24]. We em-

ploy the throughput ratio as a metric to check the fairness among TCP Reno and tampered-TCP

connections. In addition, we use following three metrics to examine the performance of the pro-

posed mechanism: false negative ratio, detection time of tampered-TCP connections, and false

positive ratio. By results of the evaluations, we show that the proposed mechanism can identify

tampered-TCP connections at high probability and regulate throughput ratio between tampered-

TCP connections and competing TCP Reno connections to around 1.

The rest of this thesis is organized as follows. In Section 2, we evaluate the effects of a

tampered-TCP through the mathematical analysis and simulation experiments. In Section 3, we

show the design of the proposed mechanism to keep the fairness among TCP connections at edge

8

routers. We also present the evaluation results of proposed mechanism by simulation experiments.

We finally conclude this thesis and present future works in Section 4.

9

2 Evaluation of the effects of Tampered-TCP

In this section, we investigate the effects of a tampered-TCP, which changes its increase and de-

crease ratio of the congestion window size during the congestion avoidance phase, through math-

ematical analysis and simulation experiments. We also examine the effects of tampered-TCP with

SACK option through simulation experiments.

2.1 Mathematical Analysis of Tampered-TCP Throughput

2.1.1 Network Model and Evaluation Metric

Figure 1 depicts the network model that is used for mathematical analysis and simulation exper-

iments. The network model consists of sender and receiver hosts using TCP Reno connections,

sender and receiver hosts using tampered-TCP connections, two routers (RA andRB) with a drop-

tail buffer, and links interconnecting the hosts and routers. The bandwidth of the link between the

routerRA and the routerRB is µ Mbps, the buffer size at the routerRA is B packets, the prop-

agation delay between the sender and receiver hosts isτ sec, the bandwidth of the links between

the tampered-TCP hosts and routers isµT Mbps, and that between the TCP Reno hosts and the

routers isµR Mbps. There arenT tampered-TCP connections andnR TCP Reno connections. We

assume that the sender hosts have an infinite amount of data to send and continue transmitting as

much data as is allowed by their congestion window sizes.

To evaluate the effects of the tampered-TCP, the throughput ratio was introduced as an evalu-

ation metric. It is defined as:

Throughput ratio =
(Throughput of tampered-TCP)

(Throughput of TCP Reno)
(1)

When this value is greater than 1, the tampered-TCP is said to work effectively.

2.1.2 Behavior of TCP Reno and Tampered-TCP connections

When triggered by a packet loss event, TCP Reno will change its congestion window size [15, 16].

Figure 2 shows a typical case in a network where both TCP Reno and tampered-TCP connections

co-exist. Here, we denote the interval from the (i-1)-th packet loss event to thei-th packet loss

event as thei-th cycle. We further divide thei-th cycle into RTTs and consider the congestion

10

Figure 1: Network model

Figure 2: Changes in the congestion window size during thei-th cycle

11

window size for each RTT. The congestion window size of a TCP Reno connection at thej-th

RTT of thei-th cycle is denoted asWR(i, j).

The congestion control mechanism of the TCP Reno consists of two phases: the slow start

phase and the congestion avoidance phase. For each phase, TCP Reno uses a different algorithm

for increasing the congestion window size. In the slow start phase, TCP Reno increases its window

size by one packet on receiving an ACK packet. On the other hand, in the congestion avoidance

phase, TCP Reno increases its window sizeWR(i, j) by 1/WR(i, j) packets when it receives an

ACK packet. Focusing on the change of the congestion window size in every RTT,WR(i, j) can

be derived as follows:

WR(i, j) =

 2WR(i, j − 1), if WR(i, j − 1) < SR(i)

WR(i, j − 1) + 1, if WR(i, j − 1) ≥ SR(i)
(2)

whereSR(i) is an ssthresh value in thei-th cycle at which TCP Reno changes its phase from the

slow start phase to the congestion avoidance phase.

When packet losses occur in the network, TCP Reno detects them either by a retransmission

timeout or by receiving triple duplicate ACK packets (three or more ACK packets with the same

sequence number) and retransmitting them. If the packet losses are detected by the retransmission

timeout, TCP Reno sets its congestion window size to 1 packet and change its phase to the slow

start phase. On the other hand, if packet losses are detected by the duplicate ACK packets route,

then TCP Reno sets its congestion window size to half of that just before the packet loss. In both

cases, TCP Reno setsSR(i) to half of the congestion window size just before the detection of the

packet losses.

The behavior of the tampered-TCP is almost identical to that of TCP Reno. However, in the

congestion avoidance phase, the increase speed of the congestion window size is different than

that in a TCP Reno. The congestion window size of a tampered-TCP connection at thej-th RTT

of thei-th cycle was denoted asWT(i, j). Then, when a tampered-TCP receives an ACK packet,

it increases its congestion window size byα · 1/WT(i, j), that isα times faster than TCP Reno.

This behavior can be described as follows:

WT(i, j) =

 2WT(i, j − 1), if WT(i, j − 1) < ST(i)

WT(i, j − 1) + α, if WT(i, j − 1) ≥ ST(i)
(3)

whereST(i) is an ssthresh value of the tampered-TCP in thei-th cycle. When packet losses occur

in the network, the tampered-TCP detects and retransmits them in the same way as a TCP Reno.

12

However, when packet losses are detected by duplicate ACK packets, the tampered-TCP sets its

congestion window size toβ (0.5 ≤ β ≤ 1) times of that just before the packet loss. In both cases,

the tampered-TCP setsST(i) to β times of the congestion window size just before the detection

of the packet losses.

2.1.3 Analysis

In the analysis, the cyclic changes in the congestion window size for TCP Reno and tampered-

TCP connections were modeled as being triggered by packet loss events (Figure 2). Thus, the

average throughput values can be calculated. It was assumed thatnR TCP Reno connections

behave identically, and thatnT tampered-TCP connections also behave identically. Note that this

assumption is reasonable when a droptail buffer is used at the bottleneck link.

The congestion window sizes at the beginning of thei-th cycle, corresponding toWR(i, 1)

andWT(i, 1), are equal to those at the end of the (i-1)-th cycle. The congestion window sizes

of both connections grow according to Equations (2) and (3). When the sum of the congestion

window sizes becomes larger than the bandwidth-delay product of the network (2τµ here), then

the excess packets begin to accumulate at the router buffer. Finally, packet losses occur when the

buffer is fully utilized. Assuming that the packet losses occur at theL(i)-th RTT of thei-th cycle,

the following equations are satisfied:

nRWR(i, L(i) − 1) + nTWT(i, L(i) − 1) ≤ 2τµ + B

nRWR(i, L(i)) + nTWT(i, L(i)) > 2τµ + B (4)

Then,L(i) is given by:

L(i) =
(2τµ + B) − nRWR(i, 1) + nTWT(i, 1)

nTα + nR
(5)

SinceD(i) denotes the number of dropped packets due to buffer overflow at the end of thei-th

cycle, thenD(i) is given by:

D(i) = nRWR(i, L(i)) + nTWT(i, L(i)) − (2τµ + B)

Furthermore, the number of dropped packets in each TCP Reno connection is denoted byDR(i)

and in each tampered-TCP connection byDT(i). By assuming that the ratio ofDR(i) andDT(i)

13

is equal to the ratio of their congestion window sizes at the packet loss events, the following

equations can be derived:

DR(i) =
WR(i, L(i))

nRWR(i, L(i)) + nTWT(i, L(i))
D(i)

DT(i) =
WT(i, L(i))

nRWR(i, L(i)) + nTWT(i, L(i))
D(i)

Next, the congestion window size of each TCP connection just after the packet losses was

derived. In this analysis, since it can be assumed that droptail routers are used, the packets are

dropped due to buffer overflow at the routerRA in a bursty fashion. Thus, we assumeD(i) > 1.

When three or more packets are dropped within a TCP connection window, the first two packets

are transmitted by the fast retransmit algorithm, followed by a timeout and then the retransmission

of the remaining packets [25]. Since the tampered-TCP behaves the same as TCP Reno during a

packet loss event, the congestion window sizes of TCP Reno and tampered-TCP connections after

the first packet retransmission are determined by:

WR(i, L(i) + 1) = WR(i,L(i))
2

WT(i, L(i) + 1) = βWT(i, L(i))

Similarly, the congestion window sizes after the second retransmission are determined by:

WR(i, L(i) + 2) = WR(i,L(i)+1)
2

WT(i, L(i) + 2) = βWT(i, L(i) + 1)

After the second retransmission, the retransmission timeout occurs, each TCP connection sets its

congestion window size to 1, and the values of ssthresh are updated as follows:

SR(i + 1) = WR(i,L(i)+2)
2

ST(i + 1) = βWT(i, L(i) + 2)
(6)

Let us now consider the congestion window size of the tampered-TCP connection during a packet

loss event. From empirical results, the average number of dropped packets in a tampered-TCP

connection at the end of thei-th cycle is approximated asDT(i) = α. This equation means

that for a tampered-TCP connection, timeout never occurs whenα < 3, while timeout occurs

wheneverα ≥ 3. Thus, we derive the evolution of the congestion window size of a tampered-TCP

connection in thei-th cycle for the two cases where the (i − 1)-th cycle ends with and without a

retransmission timeout.

14

In case of no timeout (α < 3) In this case, thei-th cycle begins with a congestion avoidance

phase. At the (i-1)-th cycle, since the number of dropped packets in the tampered-TCP connection

is DT(i − 1) = α, the tampered-TCP retransmitsα packets. Thus, the congestion window size at

the beginning of thei-th cycle,WT(i, j), is given by:

WT(i, 1) = βαWT(i − 1, L(i − 1))

From Equation (3),WT(i, j) is derived as follows:

WT(i, j) = βαWT(i − 1, L(i − 1)) + αj (7)

In case of timeout (α ≥ 3) In this case, since timeout occurred at the end of the (i-1)-th cy-

cle, thei-th cycle begins with a slow start phase. Since the number of the dropped packets in a

tampered-TCP connection at the end of the (i-1)-th cycle isDT(i − 1) = α, the tampered-TCP

retransmits the first 2 packets by detecting duplicate ACKs. Thus, the ssthresh value is given by

Equation (6), and the congestion window size at the beginning of thei-th cycle is 1.

By assuming that the slow start phase of thei-th cycle ends at thess(i)-th RTT, the congestion

window size at thej-th RTT of thei-th cycle,WT(i, j), is derived as follows:

WT(i, j) =

 2j , if j < ss(i)

2ss(i) + α(j − ss(i)), if j ≥ ss(i)
(8)

Here,ss(i) can be calculated from Equation (3) as follows:

ss(i) = ⌊log2(β
2WT(i − 1, L(i − 1)))⌋ (9)

From Equations (7)-(9),WT(i, j) can be determined as follows:

WT(i, j) =

 βαWT(i − 1, L(i − 1)) + αj, if α < 3

β2WT(i − 1, L(i − 1)) + α[j − ss(i)], if α ≥ 3
(10)

Finally, the average throughput for TCP Reno and tampered-TCP connections based on the

congestion window size evolutions is derived. In order to determine this, the queuing delay at

the bottleneck link buffer is needed to obtain the precise value of RTTs in the TCP connections.

Since the number of stored packets in the buffer at thej-th RTT of thei-th cycle is given by

max((nRWR(i, j) + nTWT(i, j) − 2τµ), 0), the queuing delay,Q(i, j), is derived as follows:

Q(i, j) =
max((nRWR(i, j) + nTWT(i, j) − 2τµ), 0)

µ

15

Therefore, the average throughput of TCP Reno connectionρR and tampered-TCP connectionρT

is:

ρR =

∑∞
i=1

∑L(i)
j=1 WR(i, j)∑∞

i=1

∑L(i)
j=1(Q(i, j) + 2τ)

ρT =

∑∞
i=1

∑L(i)
j=1 WT(i, j)∑∞

i=1

∑L(i)
j=1(Q(i, j) + 2τ)

2.2 Simulation Experiments and Discussions

In this subsection, first, simulation experiments are presented that confirm the accuracy of the

mathematical analysis developed in the previous subsection and, then, the characteristics of the

tampered-TCP based on the mathematical analysis and the simulation results are discussed. In the

simulation experiments, the network model shown in Figure 1, where we setµR = µT = 100

Mbps,τ = 20 msec, the buffer size of the bottleneck link is twice the bandwidth-delay product

between the sender and receiver hosts, and the packet size is 1500 bytes. The simulation time was

60 seconds.α, the increase ratio of the congestion window size of the tampered-TCP connection,

is changed in [1,20], andβ, the decrease ratio of the congestion window size of the tampered-TCP

connection, is changed in [0.5,1.0]. We use a ns-2 [24] for the simulation experiments.

2.2.1 Confirmation of Analysis Results

Figure 3 shows the change in the throughput ratio, defined by Equation (1), as a function ofα and

β, where we setnR = nT = 1 andµ = 10 Mbps. Both the analytical and simulation results were

plotted. This figure confirms that the mathematical analysis presented in the previous section gives

a precise throughput ratio estimation. As well, it can be seen that the tampered-TCP connection

fails to obtain a large throughput compared with the normal TCP Reno connection for almost all

of the parameter region (α, β), except for the case whenα is smaller than 3 andβ is around 0.9.

Figure 4 shows the results whennR is increased to 10 andµ is increased to 50 Mbps. This

setting is more realistic since it assumes that there are many normal TCP Reno connections and

relatively few tampered-TCP connections. Once more, the analytical results are almost the same

as the simulation results. As before, the tampered-TCP connection does not work for most of

the (α, β) parameter region. The next subsection based on the analytical and simulation results

16

explains the behavior of the tampered-TCP in more detail and reveals why the tampered-TCP is

so ineffective.

17

 0
 1
 2
 3
 4
 5
 6

T
h

ro
u
g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) Analysis

 0
 1
 2
 3
 4
 5
 6

T
h

ro
u

g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) Simulation

Figure 3: Analysis and simulation results for throughput ratio (nR = 1, nT = 1, µ = 10Mbps)

18

 0
 1
 2
 3
 4
 5
 6

T
h

ro
u
g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) Analysis

 0
 1
 2
 3
 4
 5
 6

T
h

ro
u

g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) Simulation

Figure 4: Analysis and simulation results for throughput ratio (nR = 10,nT = 1, µ = 50Mbps)

19

2.2.2 Characteristics of Tampered-TCP

This subsection helps to explain the ineffectiveness of the tampered-TCP by presenting the relevant

analytical results, which were confirmed by simulations. Furthermore, the assumptions of the

mathematical analysis are validated.

Sensitivity to α and β In this paragraph, a single TCP Reno connection co-exists with a single

tampered-TCP connection (nR = nT = 1), and the bottleneck link bandwidthµ is set to 10 Mbps.

Figure 5(a) plots the change of the average throughput of the TCP Reno and the tampered-TCP

connections for both the analytic and simulation cases as a function of the value ofα whenβ is

set to 0.5. We show both of analysis and simulation results in this figure. A sharp decrease in

throughput occurs for the tampered-TCP connection whenα is larger than 2. Furthermore, further

increases inα cause the throughput of the tampered-TCP connection to gradually degrade, due to

an increase in the number of dropped packets asα increases.

Figure 5(b) shows the results whenβ is increased to 0.9, which means that the tampered-TCP

connection decreases the window size by only 10% when a packet loss occurs. This figure shows

that forα smaller than 3, the tampered-TCP connection achieves larger throughput than the TCP

Reno connection. However, asα increases above 3, a situation with a cause similar to that seen

when inβ = 0.5 occurs. Thus, the results suggest that increasingβ is effective in increasing the

performance of tampered-TCP. However, anyα greater than 3 cancels the effects that may have

been gained from an increase inβ.

By comparing Figures 3 and 4, the parameter region where the tampered-TCP is effective

does not become so larger when the link bandwidth becomes larger. This suggests that TCP

variants for high-speed and long-distance network such as HSTCP [26] may not work well in such

networks. Furthermore, with parameter sets in the effective region, it is obvious that original TCP

Reno connections suffer from low throughput when co-existing such high-speed TCP variants.

Therefore, we need to consider fairness property of such TCP variants and original TCP Reno

when we deploy high-speed TCP variants in the actual networks.

20

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
th

ro
u
g

h
p
u
t

(M
b
p

s)

α

tampered-TCP (sim)
tampered-TCP (ana)

TCP Reno (sim)
TCP Reno (ana)

(a)β = 0.5

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
th

ro
u

g
h

p
u

t
(M

b
p

s)

α

tampered-TCP (sim)
tampered-TCP (ana)

TCP Reno (sim)
TCP Reno (ana)

(b) β = 0.9

Figure 5: Changes in the throughput of TCP Reno and tampered-TCP connections with variousα

andβ

21

Effect on the throughput ratio for tampered-TCP connections It has been shown that a

tampered-TCP is not effective in most of the parameter region (α, β). However, the results from

the previous subsections suggest that whenα is around 2 andβ is increased to about 0.9, higher

throughput is obtained by the tampered-TCP. This paragraph considers the situation where such

well-configuredtampered-TCPs proliferate in a network, and thus diminish its effects.

Figure 6 shows the change in the throughput ratio when there is an increase in the ratio of the

number of tampered-TCP connections to the total number of TCP connections in the network. The

results are plotted for the following 2 cases: (1) The total number of TCP connections is 11 and

µ = 10 Mbps, and (2) The total number of TCP connections is 110 andµ = 50 Mbps.α = 2 and

β = 0.9 were used for tampered-TCP connections, which are the best values determined in the

previous paragraph. This figure shows that as the number of tampered-TCP connections increases,

the effects sharply diminishes. In the case of 110 TCP connections, the throughput ratio decrease

below 1.0, which implies that using a tampered-TCP leads to self-destruction in its performance.

22

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
h

ro
u

g
h

p
u

t
ra

io

The ratio of tampered-TCP connections

10Mbps 11connections
50Mbps 110connections

Figure 6: Throughput ratio as a function of the ratio of tampered-TCP connections

23

2.2.3 Effects of Tampered-TCP with SACK Option

We have shown in the above subsection that tampered-TCP without SACK option self-destructs

in terms of its throughput in many network parameter regions. However, most of current OSes

enable SACK option in default settings [17–19] and malicious users must use tampered-TCP with

SACK option. In this subsection, therefore, we evaluate the effects of tampered-TCP with SACK

option by simulation experiments.

We focus on the tampered-TCP which changes the increase ratioα of the congestion window

size with SACK option and keeps the decrease ratioβ to 0.5. We use the network model shown

in Figure 1 where we setµR = µT = 100 Mbps,µ = 100 Mbps,τ = 20 msec,B = 667 packets,

and the packet size is 1500 bytes. The simulation time is 60 seconds.

Figure 7 shows the change in the throughput ratio as a function ofα andβ, when the number of

TCP connection is 10 and 30. For each case, 10 % of all the TCP connections are tampered-TCP.

This figure shows that the tampered-TCP connection with SACK option does not self-destruct, but

unfairly occupies the network bandwidth. As a result, TCP Reno connections suffer from quite

low throughput. This means that the fairness among TCP connections can not be kept because of

existence of the tampered-TCP connection with SACK option.

The tampered-TCP is modified by malicious users at end hosts. Therefore, we believe that we

need a mechanism to protect normal TCP connections from the tampered-TCP connection in the

network, that is, on network routers.

24

 0
 10
 20
 30
 40
 50
 60

T
h

ro
u
g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) 10 connections

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

T
h

ro
u

g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) 30 connections

Figure 7: Changes in throughput ratio between tampered-TCP with SACK option and TCP Reno

connections 25

3 Protection Mechanism for Well-behaved TCP Flows

3.1 Design of Proposed Mechanism

Figure 8 depicts the overall behavior of the proposed mechanism. By monitoring TCP packets

at an edge router, the proposed mechanism detects tampered-TCP connections using estimation

results. To protect TCP Reno connections, the proposed mechanism intentionally drops packets

of tampered-TCP connections at an appropriate probability that is set to regulate its throughput to

become identical to that of the normal TCP Reno connections.

We propose two methods which differ in the metric for assessing the tampering property of

TCP connections: a congestion window size and an average throughput. We refer them tocwnd-

based methodandthroughput-based method, respectively.

In the following subsections, we show the detailed mechanisms in both methods, in terms of

estimation mechanism of window size and average throughput, conditions for assessing tampering

property, and algorithms for determining the target packet discarding probabilities.

3.1.1 Cwnd-based Method

The cwnd-based method monitors TCP packets passing through the edge router and estimates the

window size of each TCP connection continuously. In addition, the increase ratioα and decrease

ratio β for the TCP connection for changing the congestion window size during the congestion

avoidance phase are estimated based on changes in estimated window sizes. If the estimatedα

andβ indicate that a TCP connection unfairly obtains higher throughput than competing TCP

Reno connections, the TCP connection is assessed as a tampered-TCP connection and regulated

its throughput based on an appropriate packet discarding probability.

(1) Estimating window size of a TCP connection

Generally, TCP sends packets in a window in bursty fashion. Therefore, as shown in Fig-

ure 9, the interval between the last packet of a window and the first packet of the next

window is longer than intervals of packets in a burst. By detecting a boundary of two win-

dows divided by such a long interval, the proposed mechanism counts the number of packets

sent by sender TCP in each window and estimates the change in the window size.

For that purpose, the proposed mechanism records arrival intervals of every successive

26

Figure 8: Overview of the proposed mechanism

Figure 9: Detecting the boundary of two successive windows

27

two packets in a TCP connection and observes the change in the arrival intervals. To observe

the change in the arrival intervals, we use an algorithm in [27], which proposes a general

method to detect an abrupt change in observed values, as shown in the following equation:

gk = (1 − δ)gk−1 + δ(yk − ȳ)2

This equation calculates the exponential moving average of the squared value of differ-

ence between the latest observed valueyk and its averagēy using a smoothing parameter

δ (0 ≤ δ ≤ 1). If this value is larger than a thresholdh, we can determine that an abrupt

change happens. In the proposed mechanism,yk corresponds to be thek-th arrival inter-

val andȳ corresponds to be the average value of the arrival intervals. Detecting the abrupt

change in the arrival intervals, an estimated value of the window size can be derived. By

this mechanism, we can obtain roughly one estimation result of the window size of a TCP

connection per RTT.

On the other hand, [28] proposes a different mechanism to estimate the RTT of TCP

connections at routers in the network. By estimating the RTT based on this mechanism, a

router counts the number of arriving packets in an RTT and estimates the window size of

each TCP connection. However, we do no utilize this method because of its necessity to

have the precise RTT value for each TCP connection. One of the advantages of the cwnd-

based method we propose here is that there is no need to estimate the RTT of each TCP

connection.

(2) Estimatingα andβ

If the window size of a TCP sender decreases after a packet loss event, the estimated window

size at the edge router also decreases. Here, we denote the interval from just after a decrease

of the estimated window size caused by a packet loss event to just before the decrease of the

estimated window size caused by the next packet loss event as a cycle, as shown in Figure 10.

The estimated window size at thej-th RTT of thec-th cycle is denoted asWe(c, j).

To obtainα, we calculateαe(c, j), which is a difference between two successive esti-

mated window sizes as follows:

αe(c, j) = We(c, j) − We(c, j − 1)

28

Figure 10: Cyclic changes in the estimated window size of a TCP connection at the edge router

At the end of each cycle, we derive the average value ofαe(c, j) as follows:

αe(c) =

∑l(c)
j=1 αe(c, j)

l(c)

wherel(c) is the number of samples of the estimated window size in thec-th cycle. For

the current estimation value ofα, we derive the exponentially weighted moving average

(EWMA) of αe(c), which is denoted asαe, as follows:

αe = (1 − γα)αe + γααe(c)

whereγα is a smoothing parameter.

For β, we calculateβe(c), which is the estimated value ofβ in thec-th cycle, from the

decrease degree of the window size on a packet loss event:

βe(c) =
We(c, 1)

We(c − 1, l(c − 1))

We then derive the EWMA ofβe(c) values as a current value ofβe:

βe = (1 − γβ)βe + γββe(c)

whereγβ is a smoothing parameter.

29

(3) Estimating packet loss rate

The cwnd-based method estimates a packet loss rate using the information administrated by

Management Information Base (MIB) [29] at the edge router. MIB normally stores the num-

ber of packets passed through the router and the number of dropped packets at the router.

Therefore, by assuming that the edge router implementing the proposed mechanism be a

bottleneck, the packet loss rate derived from the MIB information is roughly the same as

the packet loss rate which TCP connections passing through the router actually experience.

Note that when the different router in the network is the bottleneck, this method underes-

timates a packet loss rate of TCP connections. This degrades the accuracy of the control

mechanism proposed in this subsection. In this case, we should deploy another mecha-

nism such as in [30] for estimating a packet loss rate for each TCP connection, whereas we

utilize the MIB-based method for its simplicity. For future work, we plan to compare the

MIB-based method and the method in [30] from the perspective of the estimation accuracy

and the processing overhead.

When tampered-TCP connections with larger increase ratio of the congestion window

size co-exist with normal TCP Reno connections, the packet loss rate at the router increases.

As mentioned in Section 2, the number of dropped packets in a tampered-TCP connection

is proportional to its increase ratio,α, of the congestion window size. Therefore, the pro-

posed mechanism should estimate the packet loss rate when all the TCP connections passing

through the router are supposed to be TCP Reno. We can then calculate the target packet

discarding probability for tampered-TCP connections.

We denote the number of dropped packets at the router asnd, the number of all the pack-

ets passed through the router asna, and the average value ofαe for all the TCP connections

passing through the router as̄Ae. Then we estimate the packet loss rate,p, as follows:

p =
nd
na

Āe

For averagingp, we utilize the following EWMA calculation:

p = (1 − γd)p + γdp

whereγd is a smoothing parameter. Note that we derive new values ofp andp̄ every when

a new value for the target packet discarding probability is calculated.

30

(4) Assessing tampering property

In [7], the authors extended the equation in [16] for an average throughput of a TCP con-

nection for arbitrary values ofα andβ. They also derived that when the following equation

is satisfied, the TCP connection obtains as the same throughput as a normal TCP Reno

connections:

α =
4(1 − β2)

3

By using the above equation, we assess a TCP connection is a tampered-TCP when itsαe

andβe satisfy the following equation:

4(1 − βe
2)

3αe
< (1 − γw) (11)

whereγw (0 < γw < 1) is a parameter to allow the estimation error ofαe andβe. Note that

the above assessment of tampering property of the TCP connection is repeated when every

rw packets of the TCP connection arrives at the router.rw is given by:

rw =
kw

p

wherekw is a positive integer parameter.

(5) Setting the target packet discarding probability

The proposed mechanism sets a target packet discarding probabilityp′ for each TCP con-

nection assessed as tampered-TCP to regulate its throughput to roughly the same as TCP

Reno connections. In settingp′, we focus on the change in the congestion window size of

a TCP Reno connection in the situation where all the TCP connections passing through the

router are supposed to be TCP Reno. Here, the TCP Reno connection in such situation is

called as a pseudo TCP Reno connection. We calculatep′ as to equalize the throughput of

the pseudo TCP Reno connection with that of the regulated tampered-TCP connection.

Figure 11 shows the typical changes in the congestion window sizes of the pseudo

TCP Reno connection and the tampered-TCP connection with the target packet discarding

probability. The number of the packets that a pseudo TCP Reno sender sends in a cycle is

1
p . Because this value is equal to the shadow area in Figure 11(a), the following equation is

satisfied:
1
2
· (WR +

1
2
WR) · 1

2
WR =

1
p

(12)

31

Figure 11: Setting the target packet discarding probability in the cwnd-based method

whereWR is the estimated window size of the pseudo TCP Reno connection at the begin-

ning of the cycle. For the tampered-TCP connection, the similar equation is satisfied:

1
2
· (WT + βeWT) · (1 − βe)

αe
WT =

1
p′

(13)

whereWT is the estimated window size of the tampered-TCP connection at the beginning

of the cycle. Therefore, when the throughput of the tampered-TCP connection is identical

to the pseudo TCP Reno connection, we obtain the following equation:

1
p̄

1
2WR

=
1
p′

(1−βe)
αe

WT

(14)

From Equations (12)-(14), the target packet discarding probability can be obtained as fol-

lows:

p′ =
(1 + βe)
3(1 − βe)

αep̄

Note that the target packet discarding probability is calculated every whenuw packets of the

TCP connection arrives at the router.uw is given by:

uw =
1
p′

32

3.1.2 Throughput-based Method

The throughput-based method monitors the throughput of each TCP connection and regulate

tampered-TCP connections at regular intervals. We denote the interval as a control interval. In

each control interval, anobserved throughputis derived based on the information from traditional

traffic monitoring tools like sFlow [22] and NetFlow [23]. In addition, we estimate the network pa-

rameters, such as RTT, packet loss ratio, and so on, to determine the throughput when we suppose

the TCP connection would be a TCP Reno. We call this throughput as anestimated throughput. If

the observed throughput is larger than the estimated throughput, we assess that the TCP connec-

tion is NOT TCP Reno, but tampered-TCP, and regulate its throughput based on a target packet

discarding probability.

(1) Setting the control interval

The control interval is the time fornI(i) packets arriving at the router.nI(i) is derived as

follows:

nI(i) =
kt

p(i)

wherep(i) is an estimated packet loss rate at the beginning of thei-th control interval and

kt is a positive integer parameter.

(2) Calculating the observed throughput

The traffic monitoring tools generally store the total bytes of packets passed through the

router and the traffic monitoring time for each flow passing through the router. We denote

the total number of bytes in thei-th control interval asb(i), the length of thei-th control

interval ast(i) and the observed throughput in thei-th control interval asTo(i). ThenTo(i)

is given by the following equation:

To(i) =
b(i)
t(i)

(3) Calculating the estimated throughput

The equation proposed in [16] which estimates the throughput of a TCP connection has the

following parameters: packet size, delayed ACK option value, RTT, retransmission timeout,

and packet loss rate. To calculate the estimated throughput when we suppose the TCP

connection would be a TCP Reno, all the parameters are estimated as follows:

33

• Packet size

The traffic monitoring tools store amounts of traffic arrived at the router in both units

of packets and bytes. We denote the total number of packets in thei-th control interval

asn(i) and the estimated packet size asse(i). Thense(i) can be calculated as follows:

se(i) =
b(i)
n(i)

• The delayed ACK option value

We denote the ACK sequence number of thej-th ACK packet asa(i, j). Using the

difference between these two ACK sequence numbers, the estimated value of the

delayed ACK optiondele(i, j) is given by:

dele(i, j) = a(i, j) − a(i, j − 1)

The average number of thedele(i, j) in thei-th control interval is denoted asdele(i).

dele(i) is derived as follows:

dele(i) =

∑nb
j=1 dele(i, j)

nb

wherenb is the number of samples of the estimated delayed ACK option values in the

i-th control interval. Here, we ignore duplicate ACK packets and ACK packets just

after the duplicate ACK packets for calculation, because the ACK sequence numbers

of such ACK packets is not appropriate for determining the delayed ACK option

value.

• RTT

Though many kind of mechanisms are proposed to estimate the RTT in past papers

[31–33], we choose the mechanism proposed in [28] which utilizes TCP’s timestamp

option [34]. This mechanism estimates the RTT as follows. Figure 12 depicts the

time chart of packet transfers between a sender and a receiver via a router. The sender

transmits a TCP data packetdp1 with timestampts1. It arrives at the router at time

m1. The receiver responds with an ACK packetap1 with timestampts2 and the

echots1. The router recognizests1 in both the packetdp1 andap1, then makes an

association between the two packets. On receiving the ACK packetap1, the sender

34

Figure 12: RTT estimation using timestamp values

transmits a new data packetdp2 with timestampts3 and the echots2. The router

receives the packetdp2 at timem2 and recognizests2 in both the packetap1 anddp2,

then makes an association between the packetap1 anddp2. Having three associated

packets, the router estimates the RTT usingm1 andm2. Thej-th estimated RTT in

thei-th control intervalrtte(i, j) is given by:

rtte(i, j) = m2 − m1

The average value of thertte(i, j) in thei-th control interval is derived as follows:

rtte(i) =

∑nr
j=1 rtte(i, j)

nr

wherenr is the number of samples of the estimated RTTs in thei-th control interval.

• Retransmission timeout

[35] recommends that 4 times of the RTT is used as an estimated value of the re-

transmission timeout. We utilize the same method for estimating the retransmission

timeoutrtoe(i):

rtoe(i) = 4rtte(i)

• packet loss rate

The estimated packet loss rate is derived almost the same as the cwnd-based method.

35

However, because the throughput-based method does not estimate the increase ratioα

of the congestion window size of each TCP connection, the packet loss rate observed

when all the TCP connections passing through the router are supposed to be TCP

Reno can not be estimated. So We simply calculate the packet loss ratep(i) from

nd(i) andna(i) as follows:

p(i) =
nd(i)
na(i)

In case of the number of co-existing TCP connections is small, this equation overes-

timates a packet loss rate of TCP connections. However, the number of TCP connec-

tions passing through the router increases and the ratio of tampered-TCP connections

decreases relatively, the effect of the overestimation becomes small. The estimated

packet loss rate is smoothed according to the following EWMA calculation:

p(i) = (1 − γl)p(i − 1) + γlp(i)

We finally derive the estimated throughputTe(i) in thei-th control interval as follows:

Te(i) =
se(i)

rtte(i)
√

2dele(i)p(i)
3 + rtoe(i)min

(
1, 3

√
3dele(i)p(i)

8

)
p(i)(1 + 32p(i)2)

.

(4) Assessing tampering property

The throughput-based method assesses a TCP connection as tampered-TCP if itsTo(i) and

Te(i) in thei-th control interval satisfy the following equation:

To(i)
Te(i)

> (1 + γt) (15)

whereγt (0 < γt) is a parameter to allow the estimation error ofTo(i) andTe(i). Note that

the above assessment of tampering property of the TCP connection is repeated every control

interval, which reduces the effect of assessment miss.

(5) Setting the target packet discarding probability

For setting the target packet discarding probabilityp′(i) in the i-th control interval, we use

the property of TCP throughput that the throughput of a TCP connection is proportional to

36

the inverse of the square root of the packet loss rate [21]. Based on this property,p′(i) is

given by:

p′(i) =
(

To(i − 1)
Te(i − 1)

)2

p′(i − 1)

3.2 Simulation Experiments of Proposed Mechanism

In this subsection, we present simulation results to evaluate the performance of the proposed mech-

anism described in Subsection 3.1. The control parameters for the cwnd-based method are set as

δ = 0.6, h = 0.0001, γα = 0.6, γβ = 0.6, γd = 0.6, γw = 0.1, andkw = 4. The control

parameters for the throughput-based method are set asγl = 0.6, γt = 2, andkt = 4.

The simulation model is shown in Figure 1 where we setµR = µT = 100 Mbps,µ = 50 Mbps,

τ = 20 msec,B = 333 packets,nT = 1, nR = 20, and the packet size is set to 1500 bytes. The

simulation time is 60 seconds. We evaluate the performance of the proposed mechanism whenα,

the increase ratio of the congestion window size of the tampered-TCP connections, is changed in

[1,20] andβ, the decrease ratio of the congestion window size of the tampered-TCP connection,

is changed inβ [0.5,1.0]. We use the throughput ratio, false negative ratio, detection time of

tampered-TCP connections, and false positive ratio for the evaluation metrics. The detection time

is the time that the proposed mechanism takes to detect tampered-TCP connections.

3.2.1 Throughput Ratio

Figure 13 plots the change in the throughput ratio of the cwnd-based method and throughput-

based method. Figure 13(a) shows that the cwnd-based method keeps the throughput ratio around

1 for almost all the parameters. Figure 13(b) shows that when using the throughput-based method,

the throughput ratio is larger than 1 around the point(α, β) = (1, 0.5), where the tampering

property of tampered-TCP connections is weak. This is because the parameterγt is used to allow

the estimation error in Equation (15), causing that tampered-TCP connections in this region are

sometimes assessed as normal TCP Reno. However, the throughput ratio is kept around 1 in other

region.

37

 0.8

 0.9

 1

 1.1

 1.2

T
h

ro
u
g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) Cwnd-based method

 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2

T
h

ro
u

g
h

p
u

t
ra

ti
o

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) Throughput-based method

Figure 13: Changes in throughput ratio when using the proposed mechanism

38

3.2.2 False Negative Ratio and Detection Time

Figures 14 and 15 show changes in false negative ratio and detection time of the cwnd-based

method and throughput-based method. Figure 14 shows that the both method have almost the

same trend of the false negative ratio. In the region around(α, β) = (1, 0.5), which corresponds

to TCP Reno’s increase and decrease ratio of the congestion window size, the false negative ratio

is nearly 0. This means that the proposed mechanism does not assess a normal TCP Reno con-

nection as a tampered-TCP connection. In addition, in the region where tampering property of the

tampered-TCP connections is weak, the false negative ratio becomes high. This is because the pa-

rameterγw andγt are used to allow the estimation error in Equations (11) and (15), tampered-TCP

connections in this region are sometimes assessed as normal TCP Reno. However, tampered-TCP

connections are detected at almost 100 % in other region.

Figure 15 shows that the cwnd-based method takes about 2 seconds to detect the tampered-

TCP connections, and about 5 seconds for the the throughput-based method. Though it takes

a little longer to detect tampered-TCP connections in the region where tampering property of

tampered-TCP connections is weak, even in that case it takes only about 10 seconds. Currently,

when ISP monitors and detects connections that uses large bandwidth, the MIB information is

mainly used, and the typical update interval of the MIB information is 5 minutes, so we can say

that the proposed mechanism detects tampered-TCP connections in quite a short time.

39

 0
 0.2
 0.4
 0.6
 0.8
 1

F
al

se
 n

eg
at

iv
e

ra
te

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) Cwnd-based method

 0
 0.2
 0.4
 0.6
 0.8
 1

F
al

se
 n

eg
at

iv
e

ra
te

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) Throughput-based method

Figure 14: False negative ratio of tampered-TCP connections

40

 0

 2

 4

 6

 8

T
im

e
 (

s)

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) Cwnd-based method

 0
 2
 4
 6
 8
 10
 12
 14

T
im

e
 (

s)

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) Throughput-based method

Figure 15: Detection time of tampered-TCP connections

41

3.2.3 False Positive Ratio

Figure 16 depicts the false positive ratio of the cwnd-based method and throughput-based method.

This figure shows that the false positive ratio of both methods increases as the tampering property

of tampered-TCP connections becomes stronger. This can be explained as follows. The tampered-

TCP in this thesis increases its congestion window size rapidly as its tampering property becomes

stronger, which leads the unstable changes in the congestion window size and throughput of the

competing TCP Reno connections. This causes the estimation error of theα andβ in the cwnd-

based method, and the observed throughput and the estimated throughput in the throughput-based

method.

However, in case of false positive error, the throughput of miss-assessed TCP Reno connec-

tion does not decrease so largely. This is shown by Table 1, which presents the throughput and

throughput ratio of miss-assessed TCP Reno connections and successfully-assessed TCP Reno

connections.

Therefore, we can say that though the proposed mechanism sometimes miss-assesses TCP

Reno connections as tampered-TCP, the effects of miss-assessment is little.

42

 0.025
 0.05
 0.075
 0.1
 0.125
 0.15

F
al

se
 p

o
si

ti
v
e

ra
te

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) Cwnd-based method

 0

 0.1

 0.2

 0.3

 0.4

F
al

se
 p

o
si

ti
v
e

ra
te

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) Throughput-based method

Figure 16: False positive ratio of TCP Reno connections

43

Table 1: Throughput and throughput ratio of miss-assessed TCP Reno and successfully-assessed

TCP Reno connections

Cwnd-based method

α β Miss-assessed Reno (Mbps)Reno (Mbps) Throughput ratio

10 0.7 2.614 2.329 1.122

20 0.9 2.330 2.391 0.975

Throughput-based method

α β Miss-assessed Reno (Mbps)Reno (Mbps) Throughput ratio

10 0.7 2.464 2.358 1.050

20 0.9 2.209 2.405 0.926

44

3.3 Comparison of Cwnd-based Method with Throughput-based Method

We presented that both of the cwnd-based method and throughput-based method can detect tampered-

TCP connections in a few seconds at high probability and keep throughput ratio at around 1. In

this subsection, we discuss the characteristics of these two methods and propose the guideline for

selecting the methods for given network situations.

3.3.1 Characteristics of Cwnd-based Method

The cwnd-based method estimatesα andβ, assesses the tampering property, and sets the target

packet discarding probability, based on the estimation of the window size of TCP connections.

So, in the ideal case, tampered-TCP connections are detected in one cycle. In addition, since

this method maintains the estimatedα values, the packet loss rate when all the TCPs connections

passing through the router are supposed to be TCP Reno can be estimated. Consequently, the

appropriate target packet discarding probability can be set in the situation where the number of

co-existing TCP connections is small.

On the other hand, to estimate the window size, all arriving packets have to be monitored,

which leads to the large processing overhead especially when many TCP connections are passing

through the router. In addition, if the boundary of two successive windows can not be detected,α

will be overestimated andβ will be underestimated, which causes the miss-assessment. This trend

will be strong in the situation where RTT of the TCP connections is small and the jitter in RTT is

large.

3.3.2 Characteristics of Throughput-based Method

The throughput-based method can reduce the processing overhead by adjusting the number of

samples used in estimating parameters. In addition the effect of estimation errors is generally less

than the cwnd-based method.

On the other hand, the throughput-based method takes at least one control interval to detect

tampered-TCP connections, which is about 3-4 times larger than one cycle in the cwnd-based

method. In addition, because it does not estimateα, the packet loss rate when all the TCP con-

nections passing through the router are supposed to be TCP Reno can not be estimated. Then, the

target packet discarding probability can not be set appropriately when there are small number of

45

co-existing TCP connections.

3.3.3 Appropriate Network Environments for Both Methods

Table 2 summarize the characteristics of both methods. From this table, we can conclude that

the cwnd-based method is suitable when the number of competing TCP connections is small and

when the amount of short-lived flows is large. On the other hand, the throughput-based method

is good at the situations where there are many TCP connections passing through the router and

when the network is comparatively unstable. Therefore, we can conclude that these two methods

are complemental to each other.

46

Table 2: Comparison of cwnd-based method and throughput-based method

Detection Suitable number Tolerance to Processing

time of connections estimation error overhead

Cwnd short small low large

Throughput a little long large high small

47

4 Conclusion

In this thesis, we focused on tampered-TCP, which changes the increase and decrease ratio of the

congestion window size during the congestion avoidance phase, and evaluated its effects by math-

ematical analysis and simulation experiments. For the tampered-TCP without SACK option, the

following characteristics was presented: when the increase ratio is larger than 2 packets per RTT,

TCP retransmission timeouts occur frequently and the throughput of tampered-TCP diminishes

sharply. Lowering the decrease ratio is beneficial whenever the increase ratio is smaller than 3.

Futhermore the effect rapidly decreases if there are too many tampered-TCP connections, even

when well-configured parameters are used.

However, it is difficult to assume that malicious users do not use SACK option. In addition,

there are many OSes that enable SACK option in default settings recently. So we investigated

the effects of the tampered-TCP with SACK option. We presented that the tampered-TCP con-

nections with SACK option unfairly occupy the network bandwidth causing normal TCP Reno

connections suffer from the low throughput. Because these tampered-TCPs are modified at end

host, we pointed out the necessity of a new mechanism to keep the fairness among TCP connec-

tions in the network.

We then proposed a new mechanism at edge routers to protect normal TCP connections from

tampered-TCP connections. The proposed mechanism estimates a window size or an average

throughput of each TCP connection passing through the edge router by monitoring TCP packets,

and assesses its tampering property based on the estimation results, and regulates tampered-TCP

connections by dropping incoming packets at an appropriate probability.

We evaluated the proposed mechanism by simulation experiments using ns-2. By results of

the evaluations, we presented that the proposed mechanism keeps the throughput ratio around 1

and achieve the fairness among TCP connections. We also showed that the proposed mechanism

detects tampered-TCP connections at almost 100 % in large parameter regions. The detection

time was only about 2 seconds in the cwnd-based method and 5 seconds in the throughput-based

method. This was short enough compared with the update interval of MIB information which ISP

uses to monitor and control connections. Though the false positive rate of the proposed mecha-

nism was a little high, we explained that its effect is quite a little by showing the throughput and

throughput ratio between the miss-assessed and rightly-assessed TCP Reno connections.

48

For future work, we want to examine the implementation method to routers. We also plan to

investigate the performance of the proposed mechanism in the actual Internet environment.

49

Acknowledgements

My deepest gratitude goes to Professor Hirotaka Nakano of Osaka University for his supervision

of this thesis. I greatly appreciate the continuous support and expensive advice he has given to me.

I would like to express my gratitude to Professor Masayuki Murata of Osaka University. In

addition to giving me good insights into this thesis, his constant encouragement helped me very

much.

I also wish to express my sincere appreciation to Associate Professor Go Hasegawa of Osaka

University for his appropriate guidance and invaluable direct advice. All works of this thesis would

not have been possible without his support. In addition, he gave me everyday life wisdom as well

as many technical advice. I can’t express how grateful I am.

I am most grateful to Professors Koso Murakami, Makoto Imase, Teruo Higashino, and Tetsuji

Satoh of Osaka University, for their technical guidance and helpful advice.

I am indebted to Associate Professors Naoki Wakamiya and Research Assistants Shin’ichi

Arakawa, Masahiro Sasabe, and Yuichi Oshita of Osaka University, who gave me useful comments

and supports.

I also wish to thank Cao Le Thanh Man, Tomoaki Tugawa, and Kana Yamanegi of Osaka

University, who gave me variable comments. Their helps greatly contributed to my thesis.

Finally, I want to say thanks to all my friends and colleagues in the Department of Information

Networking of the Graduate School of Information Science and Technology of Osaka University

for their support. Our conversations and work together have greatly influenced this thesis.

50

References

[1] M. Fomenkov, K. Keys, D. Moore, and K. Claffy, “Longitudinal study of Internet traffic from

1998-2003,” inProceedings of WISICT 2004, Jan. 2004.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”RFC2581, Apr. 1999.

[3] S. Bokhari, “The Linux operating system,”IEEE Computer, vol. 28(8), pp. 74–79, Aug.

1995.

[4] I. Phillips and J. Crowcroft,TCP/IP and Linux Protocol Implementation: Systems Code for

the Linux Internet (Networking Council Series). John Wiley and Sons Inc, 2001.

[5] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP congestion control with a mis-

behaving receiver,”ACM SIGCOMM Computer Communications Review, vol. 29(5), pp. 71–

78, Oct. 1999.

[6] M. Baldi, Y. Ofek, and M. Yung, “Idiosyncratic signatures for authenticated execution of

management code,” inProceedings of DSOM 2003, Oct. 2003.

[7] Y. R. Yang and S. S. Lam, “General AIMD congestion control,” inProceedings of ICNP

2000, Nov. 2000.

[8] L. Mamatas and V. Tsaoussidis, “Protocol behavior : More effort, more gains?,” inProceed-

ings of PIMRC 2004, Sept. 2004.

[9] L.S.Brakmo, S.W.O’Malley, and L.L.Peterson, “TCP Vegas: New techniques for congestion

detection and avoidance,” inProceedings of ACM SIGCOMM ’94, Aug. 1994.

[10] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area networks,” inPro-

ceedings of PFLDnet 2003, Feb. 2003.

[11] Z. Zhang, G. Hasegawa, and M. Murata, “Analysis and improvement of HighSpeed TCP

with TailDrop/RED routers,” inProceedings of MASCOTS 2004, Oct. 2004.

[12] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “Compound TCP: A scalable and TCP-friendly

congestion control for high-speed networks,” inProceedings of PFLDnet 2006, Feb. 2006.

51

[13] H. Shimonishi, M. Sanadidi, and T. Murase, “Assessing interactions among legacy and high-

speed TCP protocols,” inProceedings of PFLDnet 2007, Feb. 2007.

[14] E. Blanton, M. Allman, K. Fall, and L. Wang, “A conservative selective acknowledgment

(SACK)-based loss recovery algorithm for TCP,”RFC3517, Apr. 2003.

[15] K. Tokuda, G. Hasegawa, and M. Murata, “Performance analysis of HighSpeed TCP and its

improvement for high throughput and fairness against TCP Reno connections,” inProceed-

ings of IEEE High Speed Network Workshop 2003, Mar. 2003.

[16] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple model

and its empirical validation,” inProceedings of ACM SIGCOMM ’98, Sept. 1998.

[17] J. Padhye and S. Floyd, “On inferring TCP behavior,”ACM SIGCOMM Computer Commu-

nication Review, vol. 31(4), pp. 287–298, Aug. 2001.

[18] K. Pentikousis and H. Badr, “Quantifying the deployment of TCP options - a comparative

study,” IEEE Communications Letters, vol. 8(10), pp. 647–649, Oct. 2004.

[19] M. Mellia, R. L. Cigno, and F. Neri, “Measuring IP and TCP behavior on edge nodes with

Tstat,”Computer Networks, vol. 47(1), pp. 1–21, Jan. 2005.

[20] S. Floyd and K. Fall, “Router mechanisms to support End-to-End congestion control,”Tech-

nical report, Lawrence Berkeley Laboratory, Berkeley, CA, Feb. 1997.

[21] J. Padhye, J. Kurose, D. Towsley, and R. Koodi, “Model based TCP-friendly rate control

protocol,” inProceedings of NOSSDAV’ 99, June 1999.

[22] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow: A method for monitoring

traffic in switched and routed networks,”RFC 3176, Sept. 2001.

[23] “NetFlow.” available athttp://www.cisco.com/japanese/warp/public/3/

jp/product/hs/ios/nmp/prodlit/pdf/iosnf ds.pdf .

[24] “The Network Simulator - ns-2.” available athttp://www.isi.edu/nsnam/ns/ .

[25] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK TCP,”

ACM SIGCOMM Computer Communication Review, vol. 26(3), pp. 5–21, July 1996.

52

[26] S. Floyd, “HighSpeed TCP for large congestion windows,”RFC 3649, Dec. 2003.

[27] M. Basseville and I. Nikiforov,Detection of abrupt changes: Theory and application.

Prentice-Hall,Inc, 1993.

[28] B. Veal, K. Li, and D. K. Lowenthal, “New methods for passive estimation of TCP round-trip

times,” inProceedings of PAM 2005, pp. 121–134, Mar. 2005.

[29] K. McCloghrie and M. Rose, “Management information base for network management of

TCP/IP-based Internets: MIB-II,”RFC1213, Mar. 1991.

[30] P. Benko and A. Veres, “A passive method for estimating end-to-end TCP packet loss,” in

Proceedings of IEEE GLOBECOM 2002, Nov. 2002.

[31] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”ACM Computer

Communication Review, vol. 32(3), pp. 75–88, Aug. 2002.

[32] G. Lu and X. Li, “On the correspondency between TCP acknowledgment packet and data

packet,” inProceedings of IMC 2003, Oct. 2003.

[33] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring TCP connection

characteristics through passive measurements,” inProceedings of INFOCOM 2004, Mar.

2004.

[34] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high performance,”RFC1323,

May 1992.

[35] M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP friendly rate control (TFRC),”

RFC3448, Jan. 2003.

53

