
Master’s Thesis

Title

TCP Congestion Control Mechanisms

for Achieving Predictable Throughput

Supervisor

Prof. Hirotaka Nakano

Author

Kana Yamanegi

February 14th, 2007

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

TCP Congestion Control Mechanisms for Achieving Predictable Throughput

Kana Yamanegi

Abstract

The demand of Internet users for diversified services has increased due to the rapid develop-

ment of the Internet, and applications such as video streaming and VoIP that require a QoS guar-

antee have rapidly become popular. There are a number of network-layer technologies, such as

IntServ and DiffServ, and UDP-based application-layer approaches that provide such high-quality

network services over the Internet. However, we believe that these approaches have deployment

difficulties due to many problems. Our research group considers that a transport-layer approach

is the best solution for providing high-quality data transmission services, since TCP controls the

data transmission rate according to the network condition.

In this thesis, we propose a congestion control mechanism for TCP to provide predictable

throughput for upper-layer applications. Although we cannot absolutely guarantee the throughput,

we can provide the throughput required by an upper-layer application with high probability when

the network congestion level is not extremely high. We modify only the degree of increase of the

congestion window size of a TCP connection in the congestion avoidance phase by using informa-

tion on the available bandwidth of the network path obtained by Inline Measurement TCP (ImTCP)

which has previously been proposed by our research group. We also propose an additional mech-

anism for guaranteeing predictable throughput for multiple TCP connections parallelized in the

network.

We present the evaluation results for the proposed mechanism obtained in simulation experi-

ments and implementation experiments in both experimental networks and the commercial Inter-

net environment. As a result, we confirm from all of the experiments that the proposed mechanism

can achieve a TCP throughput of 10-20% of the bottleneck link capacity even when much com-

peting traffic exists in the network and there is almost no residual bandwidth.

1

Keywords

Transmission Control Protocol (TCP), throughput guarantee, congestion control mechanism, sim-

ulation, implementation

2

Contents

1 Introduction 6

2 Proposed Mechanisms 9

2.1 Calculating the target throughput . 9

2.2 Achieving the target throughput by changing the congestion window size 10

2.2.1 Increasing the degree of the congestion window size 11

2.2.2 Limitation of the degree of increase based on the available bandwidth . . 12

2.2.3 Length of the control slot . 14

2.3 Maintaining multiple connections . 15

3 Simulation Results and Discussions 17

3.1 Case of one connection . 17

3.2 Case of multiple connections . 21

3.3 Case of a mixture of short-lived and long-lived connections 23

3.3.1 Effect of background short-lived TCP connections 23

3.3.2 Protecting a mixture of multiple connections 23

4 Implementation and Evaluations on Actual Networks 26

4.1 Implementation overview . 26

4.2 Performance evaluations using an experimental network 27

4.2.1 Changes in congestion window size and throughput 28

4.2.2 Probabilities of obtaining the required throughput 32

4.3 Experiments in an actual Internet environment 33

5 Conclusion 38

Acknowledgments 39

References 40

3

List of Figures

1 Overview of the proposed mechanism . 10

2 Evaluation and control slots . 11

3 Algorithm for determining control slot length 15

4 Mechanism for multiple TCP connections . 16

5 Network model for the simulation experiments 18

6 Changes in congestion window size, average throughput, and length of the control

slot . 19

7 Percentage of evaluation slots in which the required throughput is achieved . . . 20

8 Case for limiting the throughput of co-existing TCP Reno connections 21

9 Performance comparison for multiple connections 22

10 Performance with co-existing short-lived connections 24

11 Case for a mixture of connections . 25

12 Outline of implementation architecture . 27

13 Flow chart of thecong avoid() function . 28

14 Experimental network environment . 29

15 Changes in cwnd, control slot length and throughput in the experimental network 30

16 Changes in throughput without settingkmin . 31

17 Ratio of evaluation slots to achieve the required throughput 32

18 Cumulative distribution function of the throughput 33

19 Experimental system in the Internet environment 34

20 Changes in cwnd, control slot length and throughput in the Internet experiment . 36

21 CDF of the throughput in the Internet experiment 37

4

List of Tables

1 Parameters for the SURGE model . 23

2 PC specifications of the experimental network environment 29

3 PC specifications of the Internet environment 34

5

1 Introduction

The Internet users’ demands for network quality has increased due to services becoming progres-

sively diversified and sophisticated because of the remarkable degree to which the Internet has

grown, which is due in part to access and backbone network technologies. Applications involv-

ing real-time media delivery services, such as VoIP, video streaming and TV meeting systems,

all of which have experienced a dramatic level of development, require large and stable amounts

of network resources in order to maintain the Quality of Service (QoS). For example, the quality

of real-time streaming delivery applications is highly dependent on propagation delay and delay

jitter. The available bandwidth on the end-to-end network path is also an important factor in order

to smoothly provide rich contents, including voice and video.

There are a number of network-layer technologies, such as IntServ [1] and DiffServ [2],

that provide such high-quality network services over the Internet. However, implementation

of IntServ or DiffServ architectures would require additional mechanisms to be deployed to all

routers through which traffic flows traverse in order to sufficiently benefit from the introduction

of IntServ or DiffServ into the network. Therefore, due to factors such as scalability and cost, we

believe that these schemes have almost no chance of being deployed on large-scale networks.

On the other hand, a number of video streaming applications use User Datagram Protocol

(UDP) [3] as a transport-layer protocol, and UDP controls the data transmission rate according to

the network condition [4–6]. However, these mechanisms have a large cost when modifying the

application program for achieving application-specific QoS requirements, and the parameter set-

tings are very sensitive to various network factors. Furthermore, when such applications co-exist

in the network and share the network bottleneck resources, we cannot estimate the performance

of the network or that of the applications, because the control mechanisms of such applications

are designed and implemented independently, without considering the effect of interactions with

other applications.

In our research group, we have previously proposed transport-layer approaches for achieving

QoS for such applications. For example, in [7], we proposed a background transfer mechanism

using Transmission Control Protocol (TCP) [8], which transfers data using the residual bandwidth

of the network without any impact on the co-existing network traffic sharing the bottleneck link

bandwidth. Since TCP controls the data transmission rate according to the network condition

6

(congestion level), we believe that the transport-layer approach is ideal for providing high-quality

data transmission services in the Internet. Furthermore, by implementing the mechanism into TCP,

rather than introducing a new transport-layer protocol or modifying UDP, we can accommodate

existing TCP-based applications transparently, and we can minimize the degree of modification to

provide high-quality transport services.

In this thesis, we focus on achieving predictable throughput by TCP connections. Essentially,

TCP cannot obtain guaranteed throughput because its throughput is dependent on, for example,

Round Trip Time (RTT), packet loss ratio of a network path, and the number of co-existing flows

[9]. Therefore, we intend to increase the probability at which a TCP connection achieves the

throughput required by an upper-layer application, while preserving the fundamental mechanisms

of congestion control in TCP. We refer to this aspredictable throughput. By predictable through-

put, we mean the throughput required by an upper-layer application, which can be provided with

high probability when the network congestion level is not extremely high. In this thesis, we pro-

pose a congestion control mechanism of TCP for achieving the predictable throughput with high

probability, regardless of the network congestion level. We modify the degree of the increase of

the congestion window size [10] of a TCP connection in the congestion avoidance phase by using

the information on the available bandwidth of the network path obtained by Inline Measurement

TCP (ImTCP) [11, 12], which has been previously proposed by our research group. The applica-

tion examples of the proposed mechanism include TCP-based video/voice delivery services, such

as Windows Media Player [13], RealOne Player [14], and Skype [15]. We also show that we can

control the sum of the throughput of multiple TCP connections, by extending the mechanism for

one TCP connection. This mechanism may be used in the situation in which a stable through-

put should be provided for the network traffic between two local area networks interconnected by

IP-VPN [16].

We first evaluate the effectiveness of our proposed mechanism by simulation experiments us-

ing ns-2 [17] to investigate the fundamental characteristics. We confirm that the proposed mech-

anism can achieve a TCP throughput of 10-20% of the bottleneck link capacity, even when the

link is highly congested and there is little residual bandwidth for the TCP connection. We also

show that the proposed mechanism can provide a constant throughput for the traffic mixture of

long-lived and short-lived TCP connections. We further implement the proposed mechanism on a

Linux 2.6.16.21 kernel system, and evaluate its performance on an experimental network, which

7

is the controlled conditional network. Finally, we confirm the performance of our proposed mech-

anism in the commercial Internet environment. From these results, we confirm that the proposed

mechanism can achieve the required throughput with high probability in an actual network, as in

the simulation results.

The remainder of this thesis is organized as follows: In Section 2, the proposed mechanism to

provide predictable throughput is described. The performance of the proposed mechanism through

extensive simulation experiments is evaluated in Section 3. In Section 4, the implementation

design in the Linux 2.6.16.21 kernel system is outlined and the performance in an actual network

is presented. Finally, conclusions and areas for future study are discussed in Section 5.

8

2 Proposed Mechanisms

Figure 1 shows an overview of the proposed mechanism. We assume that an upper-layer appli-

cation sendsbw (packets/sec) andt (sec) to the proposed mechanism, which is located at the

transport layer. This means that the application requires average throughputbw at every interval

of t sec in the TCP data transmission, and the proposed mechanism tries to achieve this demand.

Note that by implementing the proposed mechanism, we also need to modify the socket interface

to pass the value of required throughput from the upper-layer application to TCP. Here,bw is the

required throughputand the time interval is referred to as theevaluation slot, as shown in Figure 1.

We change the degree of increase of the congestion window size of a TCP connection to achieve

a throughput ofbw everyt sec. Note that in the slow start phase, we use a mechanism that is iden-

tical to the original TCP Reno, i.e., the proposed mechanism changes the behavior of TCP only

in the congestion avoidance phase. By minimizing the degree of modification of the TCP source

code, we expect that the original property of the congestion control mechanism can be preserved.

We can also reduce the introduction of implementation bugs by basing our modification on the

existing TCP source code.

Since the proposed mechanism changes its behavior in units of the RTT of the connection, we

introduce the variablee ast = e · rtt, wherertt is the RTT value of the TCP connection.

In Subsection 2.1, the calculation method of target throughput in each evaluation slot is intro-

duced. In Subsection 2.2, the algorithm to achieve the required throughput is proposed.

2.1 Calculating the target throughput

We split an evaluation slot into multiple sub-slots, calledcontrol slots, to control the TCP behavior

in a finer-grained time period. The length of the control slot iss (RTT), wheres is 2 ≤ s ≤ e

(Figure 2). Figure 2 shows the relationship between the evaluation slot and the control slots. We

set the throughput value we intend to achieve in a control slot, which is referred to as thetarget

throughputof the control slot. We change the target throughput in every control slot and regulate

the packet transmission speed in order to achieve the target throughput. The final goal is to make

the average throughput in the evaluation slot larger than or equal tobw, the required throughput.

We use the smoothed RTT (sRTT) value of the TCP connection to determine the lengths of

the evaluation slot and the control slot. That is, we set the length of thei-th control slot tos ·

9

APPbw , tTCP
Sender host Receiver host

bw [packets/sec] throughput at every t secin TCP data transmission with proposed mechanism

0bw
Evaluation slot

t TimeThroughput
CWND0

2t 3t0bw
Evaluation slot

t TimeThroughput
CWND0

2t 3t
Figure 1: Overview of the proposed mechanism

srtti, wheresrtti is the sRTT value at the beginning of thei-th control slot. At the end of each

control slot, we calculate the achieved throughput of the TCP connection by dividing the number

of successfully transmitted packets in the control slot by the length of the control slot. We then set

the target throughput of thei-th control slot,gi (packets/sec), as follows:

gi = bw + (gi−1 − tputi−1)

g0 = bw

wheretputi (packets/sec) is the average throughput of thei-th control slot. This equation means

that the target throughput of thei-th control slot is determined according to the difference between

the target throughput and the achieved throughput in the(i− 1)-th control slot.

2.2 Achieving the target throughput by changing the congestion window size

Although it may seem that one simple method to achieve the target throughput by TCP would be

to fix the congestion window size to the product of the target throughput and RTT and to keep the

window size even when packet losses occur in the network, such a straightforward method would

introduce several irresolvable problems in the network congestion. In addition, such a method

would result in severe unfairness with respect to co-existing connections using the original TCP

10

evaluation slot0-thcontrol slot
es

1-thcontrol slot (-1)-thcontrol slot
0 2s e-s

eses
[packets
/sec]

～～
～～2-thcontrolslot

3s Time [RTT]
0-thcontrol slot 1-thcontrol slot

e+s e+2s

evaluation slot
required throughputtarget throughputrequired throughputtarget throughput

Figure 2: Evaluation and control slots

Reno. Therefore, in the proposed mechanism, the degree of modification of the TCP congestion

control mechanism is minimal in order to maintain the original properties of TCP. This means that

the degree of the congestion window size is increased only in the congestion avoidance phase of

a TCP connection; in other words, this mechanism does not modify the TCP behavior in the slow

start phase or when a TCP connection experiences packet loss(es).

In the proposed mechanism, the sender TCP updates its congestion window sizecwnd in the

congestion avoidance phase according to the following equation when it receives an ACK packet

from the receiver TCP:

cwnd ← cwnd +
k

cwnd
(1)

wherek is the control parameter. From the above equation, we expect that the congestion window

size increases byk packets in every RTT. The main function of the proposed mechanism is to

regulatek dynamically and adaptively, whereas the original TCP Reno uses a fixed value ofk = 1.

In the rest of this subsection, we explain how to changek according to the network condition and

the current throughput of the TCP connection.

2.2.1 Increasing the degree of the congestion window size

Here, we derivekbw
j , which is an ideal value for the degree of increase of the congestion window

size when thej-th ACK packet is received from the beginning of thei-th control slot, so that the

TCP connection achievesgi of the average throughput. For achieving the average throughputgi in

the i-th control slot, we need to transmit(gi · srtti · s) packets in (s · srtti) sec. However, since

11

it takes one RTT to receive the ACK packet corresponding to the transmitted packet, and since it

takes at least one RTT to detect packet loss and retransmit the lost packet, we intend to transmit

(gi · s · srtti) packets in ((s− 2) · srtti) sec.

We assume that the sender TCP receives thej-th ACK packet at thenj-th RTT from the

beginning of the control slot, and the congestion window size at that time iscwndnj . Since the

congestion window size increases byk packets every RTT, we can calculatepsnd, the number of

packets that would be transmitted if we usekbw
j for k in Equation (1) in the rest of the control slot.

The length of the rest of the control slot is (s − 2 − nj) · srtti sec. The equation forpsnd is as

follows:

psnd = (s− nj − 1)cwndnj +
kbw

j

2
(s− nj − 1)(s− nj)

On the other hand,pneed, i.e., the number of packets that should be transmitted in order to obtain

gi, is calculated as follows:

pneed = gi · srtti · s− aj

whereaj is the number of transmitted packets from the beginning of the control slot to when the

j-th ACK packet is received. Then, we can calculatekbw
j by solving the equationpsnd = pneed for

kbw
j :

kbw
j =

2{gi · srtti · s− aj − (s− nj − 1)cwndnj}
(s− nj − 1)(s− nj)

(2)

In the proposed mechanism, we use the above equation to updatek for Equation (1) when the

sender TCP receives a new ACK packet.

2.2.2 Limitation of the degree of increase based on the available bandwidth

By using Equation (2) for determiningk, the degree of increase of the congestion window size be-

comes too large when the current throughput of a TCP connection is far below the target through-

put. Values ofk that are too large would cause bursty packet losses in the network, resulting in

a performance degradation due to retransmission timeouts. On the other hand, when the network

has sufficient residual bandwidth, the degree of increase of the congestion window size in Equa-

tion (2) becomes smaller than 1. This results in a lower throughput increase than that for TCP

Reno. Therefore, we limit the maximum and minimum values fork, which are denoted bykmax

andkmin, respectively. We simply setkmin = 1 to preserve the basic characteristics of TCP Reno.

12

However, some applications, such as those transferring sensing observation data and maintaining

a monitoring log on a system, generate data at a constant rate and do not require higher throughput

than the designated throughput even when the network has enough bandwidth. For such applica-

tions we do not setkmin, which means that the proposed mechanism does not achieve more than

the required throughput even if the residual bandwidth is more than the required throughput.

kmax, on the other hand, should be set such that bursty packet losses are not invoked, and the

target throughput is obtained. Thus, we decidekmax according to the following considerations.

First, when the proposed mechanism has obtained the target throughput in all of the control slots

in the present evaluation slot, we determine that the available bandwidth of the network path is

sufficient to obtain the target throughput of the next control slot. Therefore, we calculatekmax so

as to avoid packet losses by using the information of the available bandwidth of the network path.

The information about the available bandwidth of the network path is estimated by ImTCP [12],

which is the mechanism for inline network measurement. ImTCP measures the available band-

width of the network path between the sender and receiver hosts. In TCP data transfer, the sender

host transfers a data packet and the receiver host replies to the data packet with an ACK packet.

ImTCP measures the available bandwidth using this mechanism; that is, ImTCP adjusts the send-

ing interval of the data packets according to the measurement algorithm and then calculates the

available bandwidth by observing the change of ACK arrival intervals. Because ImTCP estimates

the available bandwidth of the network path from the data and ACK packets transmitted by an

active TCP connection in an inline fashion, ImTCP does not inject extra traffic into the network.

ImTCP is described in detail in [12].

Next, when the proposed mechanism has not obtained the target throughput in the previous

control slot, the proposed mechanism will not obtain the target throughput in the following control

slots. We then setkmax so as to obtain a larger throughput than the available bandwidth of the

network path. This means that the proposed mechanism steals bandwidth from competing flows

in the network in order to achieve the bandwidth required by the upper-layer application.

In summary, the proposed mechanism updateskmax by using the following equation when the

13

sender TCP receives a new ACK packet:

kmax =

A · srtti − cwnd

(∀x{(1 ≤ x < i) ∨ (tputx < gx)}) (3)

min(A + (gi − tputi−1), P) · srtti − cwnd

(∃x{(1 ≤ x < i) ∧ (tputx < gx)}) (4)

whereA andP (packets/sec) are the current values for the available bandwidth and physical capac-

ity, respectively, as measured by ImTCP. In Equation (3),A ·srtti indicates the maximum number

of packets that the proposed mechanism can occupy within the network capacity without packet

losses occurring. In Equation (4),(gi − tputi−1) · srtti indicates the number of packets required

in order to obtain the target throughput when the network has insufficient available bandwidth.

2.2.3 Length of the control slot

In general, the length of the control slot (s) controls the trade-off relationship between the gran-

ularity of the throughput control and the influence on the competing traffic. For example, if we

use a small value fors, it becomes easier to obtain the required throughput because we update

the target throughputgi more frequently. On the other hand, the smaller value ofs means that

the congestion window size is changed so drastically that we achieve the average throughput in

a smaller control slot, which results in a larger effect on other competing traffic. Therefore, we

should sets to be as large as possible, while maintaining the required throughput. Since the ideal

value ofs depends on various factors of the network condition, including the amount of competing

traffic, we propose an algorithm to dynamically regulates.

The algorithm is based on the following considerations. First, when the proposed mechanism

has not obtained the target throughput although we setkmax by using Equation (4), a smaller

value should be used fors in order to achieve the target throughput. Second, when the proposed

mechanism has achieved the target throughput withkmax calculated by Equation (3) and when

the congestion window size is satisfied withcwnd ≥ bw · srtti, we can expect that the proposed

mechanism could achieve the target throughput, even when we increase the length of the control

slot. Therefore, we use a largers in the next evaluation slot. Figure 3 summarizes this algorithm

as a state transition diagram.

14

(tputi≧bw, s←s)

(tputi＜bw, s←s/2)

(tputi＜bw, s←s)

(tputi≧bw&&cwnd≧bw*srtti,
s←s*2)

(tputi≧bw&&cwnd＜bw *srtti,
s←s)

set kmax by Eq. (4) set kmax by Eq. (3)
(condition, action)

Figure 3: Algorithm for determining control slot length

2.3 Maintaining multiple connections

In this subsection, by extending the mechanism in Subsections 2.2 and 2.3, we depict the mech-

anism that controls the sum of the throughput of multiple TCP connections. In this mechanism,

we assume that multiple TCP connections are maintained at transport-layer proxy nodes such as

TCP proxy [18], and the throughput is controlled at the proxy nodes (Figure 4). The proposed

mechanism at the proxy node controls the sum of the throughput of multiple TCP connections

according to the following assumptions:

• The proposed mechanism is intended to achieve the required throughput,bw, of the sum of

multiple TCP connections at everyt sec interval.

• The multiple TCP connections use the same values for the length of the evaluation and

control slots, which are set based on the minimum sRTT measured by the sender-side proxy

node.

• The sender-side proxy node can identify the number of active TCP connections. This as-

sumption is natural when we use explicit proxy mechanisms such as TCP proxy and SOCKS

[19].

We can simply extend Equation (2) to multiple TCP connections, as follows:

kbw
j =

2{(gi · srtti · s− asum
j)/Npm − (s− nj − 1)cwnd

nj

i }
(s− nj − 1)(s− nj)

15

TCP proxy

TCP layer

0 bw
Evaluation slot

t TimeSum of throughpu
tCWND0

TCP proxy TCP proxy

TCPreceiversTCPsenders

Figure 4: Mechanism for multiple TCP connections

whereasum
j is the sum of the packets that TCP senders have sent when receiving thej-th ACK, and

Npm is the number of active TCP connections. We use this equation for all TCP connections. This

equation means that the degree of the increase of the congestion window size is calculated by dis-

tributing the number of packets needed for achieving the target slot to the active TCP connections.

16

3 Simulation Results and Discussions

In this section, we evaluate the proposed mechanism by simulation experiments using ns-2. Fig-

ure 5 shows the network model. This model consists of sender and receiver hosts, two routers,

and links between the hosts and router. We set the packet size at 1,000 Bytes. The bandwidth of

the bottleneck link is set at 100 Mbps, and the propagation delay is 5 msec. A DropTail discipline

is deployed at the router buffer, and the buffer size is set at 100 packets. The number of TCP

connections using the proposed mechanism isNpm, and the number of TCP Reno connections,

for creating background traffic, isNreno. The bandwidth of the access links is set at 1 Gbps, and

the propagation delay is 2.5 msec. For the proposed mechanism, we sett = 32・RTT (e = 32) for

the length of the evaluation slot. In this network model, 32 RTT corresponds to approximately 1

sec. In addition,s, the length of the control slot, is initialized to16.

3.1 Case of one connection

We first evaluate the performance of the proposed mechanism for one TCP connection. In this

simulation, we setNpm = 1, andbw is 20 (Mbps), which is equal to 20% of the bottleneck link

capacity. To change the congestion level of the network, we changeNreno to 1, 10, 40 at every 5

seconds. Figure 6 shows the changes in the congestion window size, the average throughput, and

the length of the control slot of the TCP connection with the proposed mechanism. In this figure,

the vertical grid represents the boundaries of the evaluation slots.

The results for 0-5 seconds, shown in Figure 6(a), indicate that when one TCP Reno connec-

tion co-exists with a TCP connection of the proposed mechanism, the proposed mechanism can

obtain the required throughput while performing almost equivalently to TCP Reno. In this period,

the available bandwidth is sufficiently large to obtain the required throughput, because there are

only two connections in the network, which have capacities of 100 Mbps. Thus, the proposed

mechanism setsk = kmin (=1), resulting in fairness while maintaining the TCP Reno connection.

For the results for 5-10 seconds, in which case there are 10 TCP Reno connections, we observe

that the proposed mechanism has a faster increase in the congestion window size compared to that

of the TCP Reno connections. In this case, this is because it is impossible to obtain the required

throughput with behavior identical to TCP Reno due to the increase in the amount of competing

traffic. Consequently, the proposed mechanism changes the degree of increase of the congestion

17

100 [Mbps]5 [msec]TCP Reno
Proposed TCP(Npm connections)

Senders2 (Nreno nodes) Receivers2 (Nreno nodes)

Sender1 Receiver1
1 [Gbps]2.5 [msec]Buffer 100 [pkt] 1 [Gbps]2.5 [msec]

Figure 5: Network model for the simulation experiments

window size (k) in order to achieve the required throughput.

Furthermore, the results after 10 seconds with 40 TCP Reno connections show that the conges-

tion window size of the proposed mechanism increases faster than that of the previous cases, and

the length of control slot,s, is changed to a smaller value. This result indicates that the proposed

mechanism controls its congestion window size with a smaller length of the control slot to obtain

the required throughput because sufficient throughput cannot be achieved by merely changing the

degree of increase of the congestion window size. As a result, the proposed mechanism can ob-

tain the required throughput even when there are 40 competing TCP Reno connections. Thus, we

have confirmed that the proposed mechanism can effectively obtain the required throughput by

changing the degree of increase of the congestion window size and the length of the control slot

according to the network congestion level.

We next show the relationship between the performance of the proposed mechanism and the

number of co-existing TCP Reno connections in greater detail. We setNpm = 1, andbw is 10%

(10 Mbps) and 20% (20 Mbps). Figure 7 shows the ratio of the number of evaluation slots, in

which the proposed mechanism obtains the required throughput, to the total number of evaluation

slots in the simulation time. In this simulation experiment, the simulation time is 60 seconds.

18

 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16

50

40

30

20

10

0

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
[p

kt
s]

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Time [sec]

cwnd of proposed mechanism
cwnd of tcp reno

av-throughput
bw=20Mbps

(a) Changes in throughput and window size

32

16
8
0

 0 2 4 6 8 10 12 14 16

[R
T

T
]

Time [sec]

(b) Changes in control slot length

Figure 6: Changes in congestion window size, average throughput, and length of the control slot

For the sake of comparison with the proposed mechanism, we also show the simulation results

obtained using TCP Reno (labeled “Reno”) and modified TCP (labeled “constant”), which uses a

constant congestion window size ofbw · srttmin (packets) even when packet drops occur. Here,

srttmin is the minimum sRTT value for the TCP connection.

Figure 7 indicates that the original TCP Reno can obtain the required throughput for 100%

of the evaluation slots when a few background connections co-exist, because the original TCP

Reno fairly shares the bottleneck link bandwidth with all of the connections. However, when

the number of co-existing connections (Nreno) increases, TCP Reno cannot obtain the required

throughput because it shares the bandwidth with numerous connections. We can also observe

that the TCP with a constant window size cannot achieve the required throughput whenNreno is

larger than 10. In this situation, the network congestion cannot be resolved because the congestion

window size is not decreased, even when packet losses occur in the network. In contrast, the

19

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

 th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

Number of co-existing TCP Reno connections

Reno:10M
Reno:20M

constant TCP:10M
constant TCP:20M

proposed:10M
proposed:20M

Figure 7: Percentage of evaluation slots in which the required throughput is achieved

proposed mechanism can obtain the required throughput with high probability even when several

connections co-exist in the network. This means that the proposed mechanism can control the

trade-off relationship between the aggressiveness of the proposed mechanism and the degree of

influences on competing traffic.

We also evaluated the proposed mechanism when we limit the maximum value of the con-

gestion window size of co-existing TCP Reno connections. This corresponds to the situation in

which the bottleneck link bandwidth is larger than the access link bandwidth. In this simulation,

we set the maximum value of the congestion window size of co-existing TCP Reno connections to

100 packets, which limits the throughput of each TCP Reno connection to approximately 4 Mbps.

Figure 8 shows the simulation results whenbw is set to 10% and 20%, respectively.

Compared with the results shown in Figure 7, the results in Figure 8 show that the proposed

mechanism has a more stable probability of achieving the required throughput. In this situation, the

proposed mechanism can utilize the network bandwidth more effectively because the competing

TCP Reno connections are not very strong due to their window size limitation.

20

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

Number of co-existing TCP Reno connections

bw: 10 Mbps
bw: 20 Mbps

Figure 8: Case for limiting the throughput of co-existing TCP Reno connections

3.2 Case of multiple connections

Next, we demonstrate the performance of the proposed mechanism for the multiple TCP con-

nections described in Subsection 2.4. In the simulation, we establish multiple TCP connections

between Sender 1 and Receiver 1 in Figure 5, and the proposed mechanism at Sender 1 controls

the throughput of the connections. We setbw = 20 (Mbps) andNpm= 5 and 10. This setting

means that a total throughput of 20 (Mbps) is achieved for the 5 or 10 TCP connections. The max-

imum value of the congestion window size of co-existing TCP Reno connections is 100 packets.

Here, we assume that the TCP sender host knows the current information on the available band-

width and physical capacity of the network path. This assumption is necessary in order to focus

on evaluating the algorithm described in Subsection 2.4.

Figure 9 shows the percentage of the number of evaluation slots, in which the proposed mech-

anism can obtain the required throughput, to the total number of evaluation slots in the simulation

time. This figure shows the results for the following cases: 10 connections without the proposed

mechanism (labeled “TCP Reno”); 10 connections, each with the proposed mechanism, where

bw=2 (Mbps) (labeled “For one”); and multiple connections with the proposed mechanism (la-

beled “For multi”). This figure shows that the original TCP Reno without the proposed mechanism

21

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

Number of co-existing TCP Reno connections

Reno:10 connections
For one:10 connections

For multi: 5 connections
For multi:10 connections

Figure 9: Performance comparison for multiple connections

cannot obtain the required throughput when the number of co-existing connections becomes larger

than 30. When we use the proposed mechanism for each of the 10 connections, the performance

is not as good when the number of competing connections exceeds 40. This is because bursty

packet losses occur because the multiple connections simultaneously inject several packets into

the network based on the available bandwidth information estimated by each connection. On the

other hand, the proposed mechanism for multiple connections can obtain the required throughput

with high probability even when the number of the co-existing TCP Reno connections increases.

This is because the problem of the proposed mechanism for one connection is solved by sharing

kmax with the multiple connections, as described in Subsection 2.4. In addition, the performance

for Npm = 10 is better than that forNpm = 5 to achieve the required throughput. This is because

the effect of sharingkmax becomes larger when a larger number of connections is accommodated.

22

3.3 Case of a mixture of short-lived and long-lived connections

We finally show the result when short-lived TCP connections such as Web traffic co-exist in the

network. In these simulation experiments, the short-lived TCP connections determine their data

size and data transmission intervals based on the Scalable URL Reference Generator (SURGE)

model [20]. SURGE is a realistic Web workload generation tool that mimics a set of real users

accessing a server. Table 1 shows the parameters of the SURGE model.

Table 1: Parameters for the SURGE model

Component Function Parameters

Size-Body p(x) =
e−(lnx−µ)2/2σ2

xσ
√

2x
µ = 9.375, σ = 1.318

Size-Tail p(x) = αkαx−α+1 k = 133K, α = 1.1

Interval p(x) = αkαx−α+1 k = 1, α = 1.5

3.3.1 Effect of background short-lived TCP connections

Figure 10 shows the simulation results when the proposed mechanism tries to achieve a throughput

of bw = 20 (Mbps) for 10 long-lived (persistent) TCP connections and the background traffic

generated by short-lived TCP Reno connections. For the purpose of comparison with the proposed

mechanism, this figure also shows the results obtained when Sender 1 uses 10 normal TCP Reno

connections without the proposed mechanism. This figure shows that the proposed mechanism can

provide a higher probability of achieving the required throughput than can TCP Reno. However,

compared with Figures 7–9, the probability drops sharply when the amount of background traffic

increases. This is because the traffic from the short-lived TCP connections is more aggressive than

that from the long-lived TCP connections due to its bursty nature, and the proposed mechanism is

not adept at stealing bandwidth from short-lived connections.

3.3.2 Protecting a mixture of multiple connections

We next consider the case in which the proposed mechanism controls the throughput of the mixture

of traffic of long-lived and short-lived TCP connections. We setbw = 20 (Mbps) andNpm = 10,

where five connections are long-lived connections and the remaining five connections are short-

lived connections. Figure 11 shows the ratio of the number of evaluation slots, in which the

23

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

Average throughput of background short-lived connections [Mbps]

proposed
Reno

Figure 10: Performance with co-existing short-lived connections

proposed mechanism can obtain the required throughput, and the sum of the average throughput

of the short-lived connections. This figure also shows the sum of the average throughput of the

five short-lived connections when the long-lived connections of the proposed mechanism do not

exist in the network. This figure indicates that the proposed mechanism can obtain the required

throughput with a high probability for long-lived connections. Furthermore, the average through-

put of the short-lived traffic is approximately equivalent to that without the long-lived connections.

This means that the proposed mechanism can provide the required throughput for long-lived con-

nections but does not harm the performance of short-lived connections.

24

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50
 4

 4.2

 4.4

 4.6

 4.8

 5

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

T
hr

ou
gh

pu
t [

M
bp

s]

Number of co-existing TCP Reno connections

ratio of achieving required throughput

throughput of short-lived connections
with long-lived connections

throughput of short-lived connections
without long-lived connections

Figure 11: Case for a mixture of connections

25

4 Implementation and Evaluations on Actual Networks

In this section, we outline the implementation of the proposed mechanism in a Linux 2.6.16.21

kernel system [21], and then evaluate the performance of it in actual networks.

4.1 Implementation overview

Figure 12 shows the architecture of the proposed mechanism implemented in the Linux 2.6.16.21

kernel system. When new data is generated at the application, the data is passed to the TCP

layer through the socket interface [22]. The data is passed to the IP layer after TCP protocol

processing by thetcp output() function, and the resulting IP packets are injected into the

network. Conversely, an ACK packet that arrives at the IP layer of the sender host is passed to

the tcp input() function for TCP protocol processing. The congestion window size of a TCP

connection is updated when an ACK packet is passed to thetcp input() function. Therefore,

the control program for the congestion window size for the proposed mechanism should be imple-

mented in thetcp input() function. The Linux 2.6.16 kernel system unifies the interfaces for

congestion control mechanisms and enables us to implement the congestion control algorithm as a

module. In this thesis, we implement the proposed mechanism as a module in the Linux 2.6.16.21

kernel system.

The tcp input() function calls thecong avoid() function and updates the congestion

window size when an ACK packet arrives. The module for the proposed mechanism determines

the congestion window size according to the algorithm described in Section 2, and splits the time

into the evaluation/control slots in thecong avoid() function. On the other hand, ImTCP,

which we utilize to obtain the available bandwidth of the network path, calculates the available

bandwidth in thetcp input() function [7]. The proposed mechanism learns from ImTCP the

available bandwidth in thecong avoid() function, and changes the degree of the increase of

the congestion window size based on the bandwidth value.

Figure 13 shows the flow chart of thecong avoid() function of the proposed mechanism.

First, thecong avoid() function compares the congestion window size (cwnd) and the slow

start threshold (ssthresh). Whencwnd is smaller thanssthresh, the congestion window size

is updated by the slow start algorithm as TCP Reno. On the other hand, whencwnd is larger

thanssthresh, the congestion window size is determined based on the algorithm of the proposed

26

Application

TCP Layer

IP Layer

data parameters (bw, e)

tcp_output ()
cwnd proposed

mechanism

tcp_input ()

ImTCPavailable
bandwidth

Figure 12: Outline of implementation architecture

mechanism. In the congestion avoidance phase, the proposed mechanism checks the passed time

from the beginning of the present evaluation/control slots and judges the end of the slots. When

the passed time is longer than the length of the evaluation/control slots, the proposed mechanism

calculates the average throughput in the slot and initializes the variables for the next slots. Next,

the increase degree of the congestion window size is determined on consideration ofkmax, kmin

andkbw
j , which is calculated according to Equation (2). Finally,cwnd is updated by Equation (1).

4.2 Performance evaluations using an experimental network

In this section, we evaluate the proposed mechanism in an experimental network. Figure 14 shows

the experimental network environment. The network environment consists of a PC router in which

Dummynet [23] is installed, an endhost that generates cross traffic (trafficgenerator1), an endhost

that uses the proposed mechanism (sender1), and an endhost that receives packets from each end-

host (receiver1). All endhosts and the PC router are connected by 100-Mbps Ethernet networks.

We configured the Dummynet setting so that the minimum RTT between sender1 and receiver1 is

30 msec. Table 2 shows the specifications of the endhosts of the experimental network environ-

27

cwnd > ssthresh ?

calculate kbw

kbw < 1 || kmax < 1 ?

k=kmaxk=kbwk=1

kbw < kmax ?

set evaluation/control slot

cwnd← cwnd + k/cwnd

slow start

yes

no

yes

no

no

yes

cong_avoid ()

finish

Figure 13: Flow chart of thecong avoid() function

ment.

In this experiment, we sete = 32 for the length of the evaluation slot;s, the length of the

control slot, is initialized to16. The cross traffic is generated by trafficgenerator1, and sends the

packets to receiver1. We set the size of the TCP socket buffer on trafficgenerator1 to limit the

maximum throughput of each TCP Reno connection to approximately 4 Mbps, and the amount of

the cross traffic is changed by the number of the TCP Reno connections. The value of HZ at the

sender host (sender) is set to 20,000.

4.2.1 Changes in congestion window size and throughput

In this section, we evaluate the behavior of the proposed mechanism against the changes in the

amount of cross traffic. In this experiment, we use one connection using the proposed mechanism,

and setbw to 20 (Mbps), which is equal to 20% of the bottleneck link capacity. To change the

28

sender1

traffic_generator1

receiver1

100 Mbps
Ethernet

TCP Reno
Proposed mechanism

100 Mbps
Ethernet
30 msec

PC Router
Buffer: 100packet

Figure 14: Experimental network environment

Table 2: PC specifications of the experimental network environment

sender1 traffic generator1 receiver1

CPU Pentium 4 1.90 GHz Pentium 4 1.7 GHz Xeon 2.80 GHz

Memory 1024 MB 2048 MB 2048 MB

Kernel Linux 2.6.16.21 Linux 2.6.16.21 Linux 2.6.16.21

congestion level of the network, we change the number of TCP Reno connections between traf-

fic generator1 and receiver1 to 5, 25 and 40 at every 20 seconds. Figure 15(a) shows the changes in

the congestion window size and the length of the control slot, and Figure 15(b) shows the changes

in the average throughput in each evaluation slot.

The results for 0-20 seconds, shown in Figures 15(a) and 15(b), indicate that when five TCP

Reno connections co-exist with a TCP connection of the proposed mechanism, the proposed mech-

anism can obtain the required throughput by keeping the same behavior as the normal TCP connec-

tion (k = 1 in Equation (1)). In this period, the available bandwidth is sufficiently large to obtain

the required throughput, because there are only five connections, and the maximum throughput

of each is limited to 4 Mbps in networks that have the 100 Mbps capacity. Thus, the proposed

mechanism setsk = kmin (=1).

For the results for 20-40 seconds, in which there are 25 TCP Reno connections, we observe

29

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

2
4
8

16

32
C

on
ge

st
io

n
w

in
do

w
 s

iz
e

[p
ac

ke
ts

]

Le
ng

th
 o

f s
lo

t [
R

T
T

]

Time [sec]

cwnd
length of control slot

(a) Changes in window size and control slot length

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

bw= 20Mbps
av-throughput

(b) Changes in throughput

Figure 15: Changes in cwnd, control slot length and throughput in the experimental network

that the proposed mechanism has a faster increase in the congestion window size than that for 0-20

seconds. This is because it is impossible to obtain the required throughput with behavior identical

to TCP Reno, due to the increase of the amount of competing traffic. Consequently, the proposed

mechanism changes the degree of increase of the congestion window size in order to achieve the

required throughput.

Furthermore, the results after 40 seconds with 40 competing TCP Reno connections show

that the congestion window size of the proposed mechanism increases faster than that of previous

cases, and that the length of the control slot,s, is changed to a smaller value. This result indicates

30

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

bw= 20Mbps
av-throughput

Figure 16: Changes in throughput without settingkmin

that the proposed mechanism controls its congestion window size with a smaller length of the

control slot to obtain the required throughput because sufficient throughput cannot be achieved

by merely changing the degree of the increase of the congestion window size. As a result, the

proposed mechanism can obtain the required throughput even when there are 40 competing TCP

Reno connections. Thus, we have confirmed that the proposed mechanism can effectively obtain

the required throughput by changing the degree of the increase of the congestion window size

and the length of the control slot according to the network congestion level in the experimental

network environment.

We next check the behavior of the proposed mechanism without settingkmin, the minimum

value for the degree of increase of the congestion window size, described in Subsection 2.2.2. Fig-

ure 16 shows the changes in the average throughput in each evaluation slot. From this figure, we

observe that the proposed mechanism does not obtain more than the required throughput in 0-20

seconds when the network has enough available bandwidth. The proposed mechanism can also

obtain the required throughput after 20 seconds when the number of co-existing TCP Reno con-

nections increases. Thus, the proposed mechanism withoutkmin achieves the required throughput

regardless of the network congestion level.

31

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

[%
]

Number of co-existing TCP Reno connections

bw: 10Mbps
bw: 20Mbps

Figure 17: Ratio of evaluation slots to achieve the required throughput

4.2.2 Probabilities of obtaining the required throughput

We next show the relationship between the performance of the proposed mechanism and the num-

ber of co-existing TCP Reno connections in more detail. We setbw = 10, 20 (Mbps), and use one

connection for the proposed mechanism in the network. Figure 17 shows the ratio of the number

of evaluation slots, in which the proposed mechanism obtains the required throughput, to the total

number of evaluation slots.

Figure 17 indicates that the proposed mechanism can obtain the required throughput with high

probability even when there are co-existing connections in the network. This result is quite similar

to the simulation result described in Subsection 3.1. However, the ratio in which the proposed

mechanism can achieve the required throughput decreases whenbw is 20 Mbps and the number

of TCP Reno connections is 25. In this case, the proposed mechanism cannot set the length of

the control slot to its appropriate value according to the congestion level, because the length of

the control slot drastically changes by double or half, as described in Subsection 2.2.3. Thus, the

ratio in which the proposed mechanism can achieve the required throughput decreases due to the

frequent changes in the length of the control slot. To solve this problem, we plan to improve the

control algorithm of the length of the control slot as future work.

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Throughput [Mbps]

(10, 30)
(10, 50)
(20, 30)
(20, 50)

Figure 18: Cumulative distribution function of the throughput

We next show the cumulative distribution function of the average throughput in each evaluation

slot (Figure 18), when we setbw to 10 and 20 Mbps and the number of TCP Reno connections to

30 and 50. We observe from Figure 18 that when the number of co-existing TCP Reno connections

is 30, approximately 80% of the evaluation slots can achieve more than the required throughput,

and the rest of them can achieve throughput close to the required throughput. On the other hand,

the ratio becomes degraded when there are 50 competing TCP Reno connections. However, most

of the evaluation slots which cannot achieve the required throughput can achieve throughput close

to the required throughput.

4.3 Experiments in an actual Internet environment

We finally confirm the performance of the proposed mechanism in the commercial Internet envi-

ronment. Figure 19 shows the network environment, which consists of two local area networks in

Osaka, Japan and Tokyo, Japan, which are connected to the Internet. The network environment

consists of an endhost that generates cross traffic (trafficgenerator2), an endhost that uses the pro-

posed mechanism (sender2), and an endhost that receives packets from both endhosts (receiver2)

across the Internet. The path of the commercial Internet network between Osaka and Tokyo passes

33

receiver2

TCP Reno
Proposed mechanism

sender2 traffic_generator2

OSAKA, JAPAN TOKYO, JAPAN

Internet
17 msec

100 Mbps
Ethernet

100 Mbps
Ethernet

optical network
service

Figure 19: Experimental system in the Internet environment

Table 3: PC specifications of the Internet environment

sender2 traffic generator2 receiver2

CPU Pentium 4 3.40 GHz Xeon 3.60 GHz Xeon 2.66 GHz

Memory 1024 MB 2048 MB 1024 MB

Kernel Linux 2.6.16.21 Linux 2.6.17 Linux 2.4.21

through 100-Mbps optical fiber services, and the local area networks in Osaka and Tokyo are 100-

Mbps Ethernet networks. Table 3 shows the specifications of the endhosts of the experimental

system. Through preliminary investigations, we confirmed the following characteristics regarding

the network between Osaka and Tokyo:

• Seventeen hops exist in the network path from Osaka to Tokyo.

• The minimum value of RTTs is 17 msec.

• The upper limit of the bandwidth between Osaka and Tokyo is 70 Mbps.

In this experiment, we sete = 32 for the length of the evaluation slot;s, the length of the

control slot, is initialized to16. The cross traffic is generated by trafficgenerator2, and the packets

are sent to receiver2. We set the size of the TCP socket buffer on trafficgenerator2 to limit the

34

maximum throughput of each TCP Reno connection to approximately 3 Mbps, and the amount of

the cross traffic is changed by the number of TCP Reno connections. The size of the TCP socket

buffer on sender2 and receiver2 is large enough.

We first evaluate the behavior of the proposed mechanism against the change in the amount of

cross traffic. In this experiment, we use one connection for the proposed mechanism, and setbw to

14 (Mbps), which is equal to 20% of the bottleneck link capacity. To change the congestion level

of the network, we change the number of TCP Reno connections between trafficgenerator2 and

receiver2 to 0, 5, 25, and 40 at every 20 seconds. Figure 20(a) shows the changes in the congestion

window size and the length of the control slot, and Figure 20(b) shows the changes in the average

throughput in each evaluation slot.

From the results for 0-20 seconds in Figure 20, when there is only one connection for the

proposed mechanism, the upper limit of the throughput between Osaka and Tokyo is 70 Mbps

because the proposed mechanism can obtain approximately 70 Mbps at most. In addition, the

results after 20 seconds in Figure 20 are almost equivalent to the results on the experimental

network shown in Subsection 4.2.1. That is, the results for 20-40 seconds show that the proposed

mechanism can obtain more than the required throughput by keeping the same behavior as the

normal TCP connection, and the results for 40-60 seconds show that it can achieve the required

throughput by having a faster increase in the congestion window size. From the results after 60

seconds, we observe that the length of the control slot is changed to a smaller value, and the

proposed mechanism can achieve the required throughput. Thus, we have confirmed that the

proposed mechanism can effectively obtain the required throughput by changing the degree of the

increase of the congestion window size and the length of the control slot according to the network

congestion level in the commercial Internet environment.

We next evaluate the average throughput in each evaluation slot when we setbw to 7 and 14

Mbps and the number of TCP Reno connections to 30 and 50. Figure 21 shows the cumulative

distribution function (CDF) of the average throughput in each evaluation slot. From Figure 21, we

can observe that the ratio of achieving the required throughput is slightly smaller than that in the

experimental network in Figure 18. One possible reason is that there are short-lived connections,

including web traffic, in the Internet environment. This traffic has a highly bursty nature. Since the

proposed mechanism is based on TCP, it cannot adapt to the shorter-term changes of the network

condition than its RTT. Another reason is that the measurement accuracy of the available band-

35

 0

 100

 200

 300

 0 10 20 30 40 50 60 70 80

2
4
8

16

32
C

on
ge

st
io

n
w

in
do

w
 s

iz
e

[p
ac

ke
ts

]

Le
ng

th
 o

f s
lo

t [
R

T
T

]

Time [sec]

cwnd
length of control slot

(a) Changes in window size and control slot length

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

bw= 14Mbps
av-throughput

(b) Changes in throughput

Figure 20: Changes in cwnd, control slot length and throughput in the Internet experiment

width of the network path operated by ImTCP becomes slightly degraded in the actual Internet

environment. However, most of the evaluation slots which cannot achieve the required throughput

can achieve throughput close to the required throughput. Thus, we conclude that the proposed

mechanism works well even in the actual Internet environment.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Throughput [Mbps]

(7, 30)
(7, 50)

(14, 30)
(14, 50)

Figure 21: CDF of the throughput in the Internet experiment

37

5 Conclusion

In this thesis, the author focused on upper-layer applications requiring constant throughput, and

proposed an TCP congestion control mechanism for achieving the required throughput with a high

probability. The proposed mechanism modifies the degree of increase of the congestion window

size of a TCP connection in the congestion avoidance phase by using the information on the avail-

able bandwidth of the network path. Through simulation experiments, we demonstrated that the

proposed mechanism for one connection can achieve the required throughput with a high proba-

bility, even when there is almost no residual bandwidth on the network path. We also reported that

the extended mechanism performs effectively to provide the required throughput for multiple TCP

connections. In addition, we implemented the proposed mechanism on a Linux 2.6.16.21 kernel

system and confirmed from the implementation evaluation that the proposed mechanism works

well in actual networks.

In future studies, we will evaluate the performance of the proposed mechanism in other actual

network environments. In addition, we would like to confirm the applicability of the proposed

mechanism for actual upper-layer applications, such as a real-time video streaming.

38

Acknowledgments

I would like to appreciate to my supervisor, Professor Hirotaka Nakano of Osaka University, for his

appropriate comments and daily support. I also would like to express my sincere appreciation to

Associate Professor Go Hasegawa of Osaka University. He always supported me with direct advice

and shrewd guidance. I am most grateful to Professor Masayuki Murata of Osaka University, for

his excellent guidance and continuous support through my studies of this thesis. All works of this

thesis would have been possible without his support.

I also appreciate to Professors Koso Murakami, Makoto Imase, Teruo Higashino, and Tetsuji

Satoh of Osaka University, for their appropriate guidance and invaluable firsthand advice. I am

indebted to Associate Professors Naoki Wakamiya and Research Assistants Shin’ichi Arakawa

and Masahiro Sasabe of Osaka University, who gave me helpful comments and feedback.

Finally, I want to give thanks to my friends and colleagues in the Department of Information

Networking of the Graduate School of Information Science and Technology of Osaka University

for their support. Our conversations and work together have greatly influenced this thesis.

39

References

[1] J. Wroclawski, “The use of RSVP with IETF integrated services,”RFC 2210, Sept. 1997.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for

differentiated service,”RFC 2475, Dec. 1998.

[3] J. Postel, “User datagram protocol,”RFC 768, Aug. 1980.

[4] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate control (TFRC): Protocol

specification,”RFC 3448, Jan. 2003.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for

real-time applications,”RFC 1889, Jan. 1996.

[6] H.-J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for MPEG-4 video,”Circuits

and Systems for Video Technology, IEEE Transactions on, vol. 10, pp. 878–894, Sept. 2000.

[7] T. Tsugawa, G. Hasegawa, and M. Murata, “Implementation and evaluation of an inline

network measurement algorithm and its application to TCP-based service,” inProceedings

of NOMS 2006 E2EMON Workshop 2006, Apr. 2006.

[8] J. B. Postel, “Transmission control protocol,”RFC 793, Sept. 1981.

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a simple model

and its empirical validation,” inProceedings of ACM SIGCOMM’98, Sept. 1998.

[10] W. R. Stevens,TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts:

Addison-Wesley, 1994.

[11] C. L. T. Man, G. Hasegawa, and M. Murata, “ImTCP: Tcp with an inline measurement

mechanism for available bandwidth,”Computer Communications Journal special issue of

Monitoring and Measurements of IP Networks, vol. 29, pp. 1614–1626, June 2006.

[12] C. L. T. Man, G. Hasegawa, and M. Murata, “A simultaneous inline measurement mechanism

for capacity and available bandwidth of end-to-end network path,”IEICE Transactions on

Communications, vol. E89-B, pp. 2469–2479, Sept. 2006.

40

[13] Microsoft Corporation, “Microsoft Windows Media - Your Digital Entertainment Resource,”

available fromhttp://www.microsoft.com/windows/windowsmedia/ .

[14] RealNetworks Corporation, “Rhapsody & RealPlayer,” available fromhttp://www.

real.com/ .

[15] Skype Technologies Corporation, “Skype -The whole world can talk for free.,” available

from http://www.skype.com/ .

[16] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, “A framework for IP based

virtual private networks,”RFC 2764, Feb. 2000.

[17] T. V. Project, “UCB/LBNL/VINT network simulator - ns (version 2),” available fromhttp:

//www.isi.edu/nsnam/ns/.

[18] I. Maki, G. Hasegawa, M. Murata, and T. Murase, “Throughput analysis of TCP proxy mech-

anism,” inProceedings of ATNAC 2004, Dec. 2004.

[19] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS protocol version

5,” RFC 1928, Apr. 1996.

[20] P. Barford and M. Crovella, “Generating representative Web workloads for network and

server performance evaluation,”Measurement and Modeling of Computer Systems, vol. 26,

pp. 151–160, July 1998.

[21] the Linux Kernel Organization, Inc., “The linux kernel archives,” available fromhttp:

//www.kernel.org/ .

[22] G. R. Wright and W. R. Stevens,TCP/IP Illustrated, Volume 2: The Implementation.

Addison-Wesley, 1995.

[23] L. Rizzo, “IP DUMMYNET,” available from http://info.iet.unipi.it/

∼luigi/ip dummynet/ .

41

