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Outline of PresentationOutline of Presentation
• Introduction and motivation
• Adaptive response by attractor-selection
• Application to ad-hoc routing
• Numerical examples
• Conclusion and outlook
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IntroductionIntroduction

• Requirements in ad-hoc network routing: 
scalable, robust, adaptive, fully distributed and 
self-organizing

These features can often be found in biological 
systems (swarm intelligence)

Main idea: 
randomized selection method of next hop using 
method inspired from biology
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Adaptive Response by AttractorAdaptive Response by Attractor--Selection (ARAS)Selection (ARAS)

• Method from cell biology: 
– reaction to lack of nutrient when no signaling pathway 

exists from environment to DNA
• Description by stochastic differential equation 

system
• Attractor:

– region within which the orbit of dynamical system 
returns regardless of initial conditions and noise

• Activity:
– mapping of environment to “goodness” of current 

system state
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Mathematical Model of ARASMathematical Model of ARAS
• Consider a system with M possible 

choices mi, i = 1, ..., M with: 

• syn(α) and deg(α) are the rate of synthesis 
and degradation and are functions of the 
activity α and ηi is white noise.
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Mathematical Model (2)Mathematical Model (2)

• Define 

• In equilibrium there
are M solutions
with entries

• H and L merge at 
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Mapping of ActivityMapping of Activity
• Activity reflects the “goodness” of the system. 
• Initialized with 0 and dynamics follow as

• Objective: 
short path lengths and low hop counts
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AdAd--Hoc Routing with ARASHoc Routing with ARAS

• MARAS – routing decision with ARAS
• Geographic information is used for routing
• At certain intervals, all nodes are probed for their 

relative distance to the destination and stored in 
sets: neighbor set Nn, candidate set Cn

destination

source
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Cn

rn

node n
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Summary of AlgorithmSummary of Algorithm
Node n receives packet destined for d
• if n = d, calculate α* and update all nodes 

along the path, process packet.
• determine neighbor and candidate set Nn

and Cn

• if Cn is empty, set An = Nn. Otherwise set 
An = Cn

• Perform ARAS on set An and forward 
packet according to hop probabilities.
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Example BehaviorExample Behavior

• Example scenario with source node (24) sending to 
destination node (29)

• Instant reaction to failure of node 11 at time 500
• Unnecessary detours removed on activity updates
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Simple Numerical ResultsSimple Numerical Results
• Nodes randomly distributed (2-dimensional 

homogeneous Poisson Process with rate λ) in 
unit square

• source node and destination node are the ones 
with smallest/largest x-coordinates

• Results averaged from 500 simulations with 
3000 time steps each

• 95% confidence intervals
• Comparison to Greedy selection of next hop
• Performance metric: success rate of packets
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Delivery Rate vs. Node DensityDelivery Rate vs. Node Density

• Low node density or range reduce success rate
• MARAS outperforms Greedy due to stochastic 

selection

MARAS
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20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
liv

e
ry

 s
u
c
c
e
ss

 r
at

e

node density λ

r = 0.15r = 0.2

r = 0.3



14Kenji Leibnitz
Osaka University

Resilience to Topology ChangesResilience to Topology Changes

• Nodes in “transit area” switch state with 
probability q

• Improvement of MARAS over Greedy
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Density vs. RadiusDensity vs. Radius

• Probability of empty candidate set computed 
over geometry of intersecting circles

with 

• Poisson process
allows computation:
P(K = 0) = e -λ π V(r,d)
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Conclusion and OutlookConclusion and Outlook
• Biologically-inspired method for selecting 

next hop in ad-hoc networks
• Increased resilience through stochastic 

routing
• Feedback based (reinforcement learning)
• Future work:

– More in-depth comparison with other routing 
methods required 

– Definition of more accurate input/activity 
mapping


