Self-Adaptive Ad-Hoc/Sensor Network Routing with AttractorSelection

Kenji Leibnitz, Naoki Wakamiya, Masayuki Murata
Osaka University
\{leibnitz,wakamiya,murata\}@ist.osaka-u.ac.jp

Presenter: Go Hasegawa, Osaka University

IEEE Globecom '06, San Francisco, CA.
November 2006

Outline of Presentation

- Introduction and motivation
- Adaptive response by attractor-selection
- Application to ad-hoc routing
- Numerical examples
- Conclusion and outlook

Introduction

- Requirements in ad-hoc network routing: scalable, robust, adaptive, fully distributed and self-organizing
\rightarrow These features can often be found in biological systems (swarm intelligence)
- Main idea: randomized selection method of next hop using method inspired from biology

Adaptive Response by Attractor-Selection (ARAS)

- Method from cell biology:
- reaction to lack of nutrient when no signaling pathway exists from environment to DNA
- Description by stochastic differential equation system
- Attractor:
- region within which the orbit of dynamical system returns regardless of initial conditions and noise
- Activity:
- mapping of environment to "goodness" of current system state

General Concept of ARAS

Kenji Leibnitz
Osaka University

Mathematical Model of ARAS

- Consider a system with M possible choices $m_{i}, i=1, \ldots, M$ with:

$$
\begin{aligned}
\frac{d m_{i}}{d t} & =\frac{\operatorname{syn}(\alpha)}{1+\hat{m}^{2}-m_{i}^{2}}-\operatorname{deg}(\alpha) m_{i}-\eta_{i} \\
\hat{m} & =\max _{i}\left\{m_{i}\right\}
\end{aligned}
$$

- $\operatorname{syn}(\alpha)$ and $\operatorname{deg}(\alpha)$ are the rate of synthesis and degradation and are functions of the activity α and η_{i} is white noise.

$$
\operatorname{syn}(\alpha)=\alpha\left[\beta \alpha^{\gamma}+\varphi^{*}\right] \text { and } \operatorname{deg}(\alpha)=\alpha
$$

Mathematical Model (2)

- Define

$$
\varphi(\alpha)=\frac{\operatorname{syn}(\alpha)}{\operatorname{deg}(\alpha)}
$$

- In equilibrium there are M solutions with entries

$$
x_{i}^{(k)}=\left\{\begin{array}{lll}
\varphi(\alpha) & i=k & H \text { value } \\
\frac{1}{2}\left[\sqrt{4+\varphi(\alpha)^{2}}-\varphi(\alpha)\right] & i \neq k & L \text { value }
\end{array}\right.
$$

- H and L merge at $\varphi^{*}=\frac{1}{\sqrt{2}}$

Mapping of Activity

- Activity reflects the "goodness" of the system.
- Initialized with 0 and dynamics follow as

$$
\begin{aligned}
& \frac{d \alpha}{d t}=\delta\left(\alpha^{*}-\alpha\right) \\
& \alpha^{*}=1-\left(1-\frac{\text { distance }(s, d)}{\text { path_length }}\right)\left(1-\frac{\text { min_hops }}{\text { hops }}\right)
\end{aligned}
$$

- Objective: short path lengths and low hop counts

Ad-Hoc Routing with ARAS

- MARAS - routing decision with ARAS
- Geographic information is used for routing
- At certain intervals, all nodes are probed for their relative distance to the destination and stored in sets: neighbor set N_{n}, candidate set C_{n}

Summary of Algorithm

Node n receives packet destined for d

- if $n=d$, calculate α^{*} and update all nodes along the path, process packet.
- determine neighbor and candidate set N_{n} and C_{n}
- if C_{n} is empty, set $A_{n}=N_{n}$. Otherwise set $A_{n}=C_{n}$
- Perform ARAS on set A_{n} and forward packet according to hop probabilities.

Kenji Leibnitz
Osaka University

Example Behavior

- Example scenario with source node (24) sending to destination node (29)
- Instant reaction to failure of node 11 at time 500
- Unnecessary detours removed on activity updates

Simple Numerical Results

- Nodes randomly distributed (2-dimensional homogeneous Poisson Process with rate λ) in unit square
- source node and destination node are the ones with smallest/largest x-coordinates
- Results averaged from 500 simulations with 3000 time steps each
- 95\% confidence intervals
- Comparison to Greedy selection of next hop
- Performance metric: success rate of packets

Delivery Rate vs. Node Density

- Low node density or range reduce success rate
- MARAS outperforms Greedy due to stochastic selection

Kenji Leibnitz
Osaka University

Resilience to Topology Changes

- Nodes in "transit area" switch state with probability q
- Improvement of MARAS over Greedy

Kenji Leibnitz
Osaka University

Density vs. Radius

- Probability of empty candidate set computed over geometry of intersecting circles
with

$$
\begin{aligned}
& V(r, d)=\arccos \left(\frac{\tilde{X}}{r}\right. \\
& =\frac{r^{2}}{2 d}, \tilde{Y}=\sqrt{r^{2}-\widetilde{X}^{2}}
\end{aligned}
$$

- Poisson process allows computation: $P(K=0)=e^{-\lambda \pi V(r, d)}$

Conclusion and Outlook

- Biologically-inspired method for selecting next hop in ad-hoc networks
- Increased resilience through stochastic routing
- Feedback based (reinforcement learning)
- Future work:
- More in-depth comparison with other routing methods required
- Definition of more accurate input/activity mapping

