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Qutline of Presentation
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o Adaptive response by attractor-selection
 Application to ad-hoc routing
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e Conclusion and outlook
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Introduction
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. Requirements IN ad-hoc network routing:
scalable, robust, adaptive, fully distributed and
self-organizing

=» These features can often be found in biological
systems (swarm intelligence)

e Main idea:
randomized selection method of next hop using
method inspired from biology
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Adaptive Response by Attractor-Selection (ARAS)

 Method from cell biology:

— reaction to lack of nutrient when no signaling pathway
exists from environment to DNA

e Description by stochastic differential equation
system

e Attractor:

— region within which the orbit of dynamical system
returns regardless of initial conditions and noise

o Activity:
— mapping of environment to “goodness” of current
system state
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General Concept of ARAS
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Mathematical Model of ARAS

e Consider a system with M possible
choices m;,1=1, ..., M with:
dm,  syn(o)
dt  1+m? —m?

m = max{m,}
1

—deg(a)m; —n;

* syn(a) and deg(a) are the rate of synthesis
and degradation and are functions of the
activity o and n.Is white noise.

syn(o.) = OL[B a’ +¢ *] and deg(a)
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Mathematical Model (2)
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Mapping of Activity

o Activity reflects the “goodness” of the system.
 Initialized with 0 and dynamics follow as

do .
= S(a* —a.)
o] (1 B dzstance(s,d)j(l B min_hops)
path_length hops
 Objective:
short path lengths and low hop counts
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Ad-Hoc Routing with ARAS
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« MARAS - routing decision with ARAS
* Geographic information is used for routing

e At certain intervals, all nodes are probed for their
relative distance to the destination and stored in
sets: neighbor set N, candidate set C,
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Summary of Algorithm

Node n receives packet destined for d

 Ifn=d, calculate a* and update all nodes
along the path, process packet.

* determine neighbor and candidate set N
and C,

o IfC Isempty, setA =N . Otherwise set
ATL = CTL

 Perform ARAS on set A, and forward
packet according to hop probabillities.
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Example Behavior
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 Example scenario with source node (24) sending to
destination node (29)

Instant reaction to failure of node 11 at time 500

e Unnecessary detours removed on activity updates
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Simple Numerical Results

 Nodes randomly distributed (2-dimensional
homogeneous Poisson Process with rate 1) In
unit square

e source node and destination node are the ones
with smallest/largest x-coordinates

e Results averaged from 500 simulations with
3000 time steps each

* 95% confidence intervals
o Comparison to Greedy selection of next hop
« Performance metric: success rate of packets
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Delivery Rate vs. Node Density
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 Low node density or range reduce success rate

« MARAS outperforms Greedy due to stochastic
selection
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Resilience to Topology Changes

: o) .
 o° o |
%) I o
:O @) ;
O :
e ° 5  ©
O o : )
i O O O : loXe)
: transit @ i dest
o area o o @
Q o
Q 00 i " »O o ! o
o oQ 00 OO: ©
& o o o
o:. O ! @)
: ©) ! @)
© o © o8
| @) i O | ®
® "~ o : o 00 @
SIC o !

delivery success rate

1.1
1

09¢--_

0.8f
0.7}
0.6
0.9]

0.4

—e— MARAS }\\
- -o- - Greedy )

"0 010203040506070809 1

state change probability g

* Nodes In “transit area” switch state with
probabillity g

* Improvement of MARAS over Greedy
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Density vs. Radius

* Probability of empty candidate set computed
over geometry of intersecting circles

V(r,d)= arccos£§J r’ + arccos(d ;X] d> —dyY
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Conclusion and QOutlook

* Biologically-inspired method for selecting
next hop In ad-hoc networks

 Increased resilience through stochastic
routing

 Feedback based (reinforcement learning)

e Future work:

— More in-depth comparison with other routing
methods required

— Definition of more accurate input/activity
mapping
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