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IntroductionIntroduction
• Why use methods from biology?

– Certain network types are desired to operate in a 
distributed/cooperative manner (sensor networks, 
P2P, Ad-Hoc) without central control

• New protocols/architectures are required:
– scalable to the size of the network

– robust to failures of nodes and links

– adaptive to changes in network conditions

– fully distributed and self-organizing

These features are often found in biology
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BiologicallyBiologically--Inspired MechanismsInspired Mechanisms
• The emergent collective intelligence of groups 

of simple agents (swarm intelligence).
– Ant trail (foraging behavior of ants)
– Cemetery organization and brood sorting
– Colonial closure
– Division of labor and task allocation
– Pattern forming
– Synchronization in flashing fireflies

• A group exhibits an intelligent and organized behavior 
without any centralized control, but with local and mutual 
interactions among individuals (stigmergy)

• The behavior is adaptive to changes in the environment
• A group keeps working even if a part fails
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BioBio--inspired Examplesinspired Examples
Overlay Network Symbiosis

symbiosis of different cells, organisms, 
groups, and species

Reaction-Diffusion based Control 
Scheme for Sensor Networks

pattern formation on the surface of  the 
body of an emperor angelfish

Waveform Synchronized Data Gathering
synchronized flashes in a group of fireflies

Scalable Ant-based Routing Scheme
foraging behavior of ants
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SelfSelf--OrganizationOrganization

Self-organization is a set of dynamical mechanisms 
whereby structures appear at the global level of a 
system from interactions among its lower-level
components. The rules specifying the interactions 
among the system's constituent units are executed on 
the basis of purely logical information, without reference 
to the global pattern which is an emergent property of 
the system rather than a property imposed upon the 
system by an external ordering influence. 

E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to 
Artificial Systems, Oxford University Press, 1999.
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SelfSelf--Organization (2)Organization (2)
• Four principle mechanisms for self-organization in 

biological systems:
– positive feedback permits evolution and promotes creation of 

structure (reinforcement)
– negative feedback regulates influences from previous bad 

adaptations (saturation, competition)
– direct or indirect interaction among individuals
– utilization of inherent randomness and fluctuations

• However ...
– Scalability of system 

comes at the cost 
of determinism 

– Adaptation speed is 
rather slow (evolution)
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BiologicallyBiologically--Inspired NetworksInspired Networks

• Using analogies of cell/tissue/organ hierarchy for 
autonomous networking

• Artificial immune systems 
for reaction to intruding 
cells (network security)

• Bio-Networking Architecture provides 
architecture and middleware based on 
cooperation and evolution of individuals.
J. Suzuki and T. Suda, A middleware platform for a biologically inspired 
network architecture supporting autonomous and adaptive applications, 
IEEE Journal on Selected Areas in Communications, 23(2), 249-260, 2005.
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Case Study 1Case Study 1

Waveform Synchronized Data 
Gathering in Sensor Networks

based on synchronized flashing in a group of fireflies

N. Wakamiya and M. Murata, Synchronization-based Data Gathering Scheme for 
Sensor Networks, IEICE Transactions on Communications (Special Issue on 
Ubiquitous Networks), Vol. E88-B, No. 3, pp. 873-881, March 2005.
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Sensor NetworksSensor Networks
• Sensor nodes are equipped with sensor 

(heat, temperature), wireless transmitter, 
battery unit 

• Applications：
– Health and welfare (vital signs, safety)
– Crime prevention and security
– Disaster prevention (fire, landslide, flood, earthquake)
– Environment (weather, water/air pollution)

• Requirements:
– large number of nodes required
– deployed in an uncontrolled and 

unorganized way
– may halt due to depletion of the 

battery or failure

MOTE2
Crossbow Technology, Inc. 
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base station

Periodic Data GatheringPeriodic Data Gathering
• Collect sensor information from all sensor nodes at 

regular intervals
• Save energy consumption by multi-hop communication

– sensor information propagates from the edge to the base station
• Each node receives 

information from more 
distant nodes, 
aggregates it with its own 
information, and sends it 
to the next node

• Information is propagated 
in concentric circles
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Synchronized Data GatheringSynchronized Data Gathering
• A group of fireflies flashes synchronously
• Each firefly decides its timing of flashing by observing its 

surroundings (flashing of neighboring fireflies) 
fully-distributed and self-organizing

• By adopting the mechanism, sensor nodes come to 
synchronization without any centralized control

pulse-coupled 
oscillator model
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PulsePulse--Coupled Oscillator ModelCoupled Oscillator Model
• A set of oscillators O = {O1, ..., ON}
• Oscillator Oi has phase φi ∈[0,1] and state xi ∈ [0,1]

xi = fi(φi )  with  fi:[0,1] → [0,1]  and  i = 1, ..., N
• When state xi reaches 1, the oscillator fires
• A coupled oscillator Oj is stimulated and raises its state
• When oscillator Oj also fires from stimulus, both are 

synchronized
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Conclusion for Case Study 1Conclusion for Case Study 1

• simple and easy to implement
• fully-distributed and self-organizing
• longer lifetime of a sensor network
• no initial setting of sensor nodes and no careful planning
• adapts to addition, removal, and movement of sensor 

nodes
• adapts to changes in frequency of data gathering

The proposed method can collect sensor information 
from a large number of randomly distributed sensors 

at regular intervals in an energy-efficient way
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Case Study 2Case Study 2

MultiMulti--Path Routing in Overlay Path Routing in Overlay 
Networks with Attractor SelectionNetworks with Attractor Selection

based on the adaptive response in E. Coli cells 
to the availability of a nutrient

K. Leibnitz, N. Wakamiya, and M. Murata, Biologically-Inspired Self-Adaptive Multi-
Path Routing in Overlay Networks, Communications of the ACM, Vol. 49, No. 3, pp. 
62-67, March 2006.



15Kenji Leibnitz
Osaka University

Our ObjectiveOur Objective

• Select paths in a multi-path overlay network environment
• Apply randomization in path selection to reduce 

selfishness 
• Consideration of primary and secondary paths with 

transmission rates mi
• Inline measurements of path metrics (e.g. RTT)
• Original model for E. coli cells to adapt to changes in the 

availability of a nutrient 
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Adaptive Response by Attractor SelectionAdaptive Response by Attractor Selection

• Basic mechanism:
– consider state space with magnets (attractors)
– solution is a metal ball which is constantly in motion 

but stays locked at an attractor
– activity influences which magnet is activated and the 

strength of the noise influence

state spaceattractor

system
state

external
influence

attractor gets
instable

state settles at 
new attractor
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Summary of ARAS PrincipleSummary of ARAS Principle

• ARAS can be seen as a mapping of an input 
space (environment) to a set of discrete points 
(attractors)

• When a solution is not suitable, the activity value 
causes a random walk towards a better solution.

continuous input space discrete output space

ARAS

input vector
changes due
to external influence

random walk is 
performed to find 
suitable attractor
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Mathematical ModelMathematical Model

• Formulation as differential equations with mutual 
influence

• Attractor locations are entirely defined by the differential 
equations themselves

• Activity α makes the first two terms become zero
system behaves like a random walk
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Application to MultiApplication to Multi--Path RoutingPath Routing
• Route Setup Phase

– Find disjoint paths from source to destination
– Paths are found by broadcasting probe 

packets
• Route Maintenance Phase

– Use ARAS to select best path
– Randomization in path selection 

(primary & secondary paths)
– Hysteresis threshold to avoid path flapping
– Input metric taken from measurements 

(e.g. RTT, available bandwidth)

randomization 
& hysteresis
for reducing 
selfishness
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Extension to HopExtension to Hop--byby--Hop BehaviorHop Behavior
• So far we only considered the selection 

among a set of predefined candidates.
next step is finding the candidates

• Scenario is ad-hoc network
• Each node can transmit to any neighbor
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ARAS in AdARAS in Ad--Hoc ScenarioHoc Scenario

• Next-hop candidate nodes are maintained in sets
• Packets are forwarded to the primary node selected by 

ARAS
• Efficiency of path (path length/hop count) is propagated 

through activity to all nodes along path 
similar to reinforcement learning

to evaluate paths 
we compare the 

path length & hops

this path is not 
so efficient 

low activity

act. the destination 
sets activity for 

all nodes on path

p1

p2
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Example BehaviorExample Behavior

• Right are the hop selection probabilities of node 24:
First, node 11 is chosen as next hop, but after t = 500 is 
switched to node 0
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Conclusion for Case Study 2Conclusion for Case Study 2

• Path selection scheme in overlay networks and next hop 
selection in ad-hoc networks based on biological 
attractor selection model

• Parameters of the model are chosen such that 
selfishness is reduced

• Interactions of flows leads to symbiotic solutions
• Future work:

– Large scale network experiments
– Investigation of different input metrics or their combinations

The proposed method can choose the best path in a 
self-adaptive and efficient way and can be tuned to 

reduce the selfish behavior of routing
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Perspective and CaveatsPerspective and Caveats
• By getting inspiration from biological systems, we can 

establish fully-distributed and self-organizing 
technologies.

• However, we have to consider,
– the rate of adaptation is rather slow
– they do not necessarily provide the best performance

We should refrain from simply mimicking biology!
But instead we should:

1. Build a mathematical model

2. Carefully consider which part of the model leads to the 
desirable feature of the biological system

3. Move to the application of the model and establish a more 
concrete mechanism


