
List of Publications

Journal Papers

1. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “ImTCP: TCP with an

inline measurement mechanism for available bandwidth,” Computer Communications

Special Issue: Monitoring and Measurements of IP Networks, Vol. 29, No. 10, pp.

1614–1626, June 2006.

2. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “A simultaneous inline

measurement mechanism for capacity and available bandwidth of end-to-end network

path,” IEICE Transactions on Communications, Vol. E89-B, No. 9, pp. 2469–2479,

September 2006.

3. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “Inline bandwidth mea-

surement techniques for gigabit networks,” submitted to International Journal of

Internet Protocol Technology (IJIPT), September 2006.

Refereed Conference Papers

1. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “A new available band-

width measurement technique for service overlay networks,” in Proceedings of Work-

shop on End-to End Monitoring Techniques and Services (E2EMON 2003), pp. 436–

448, September 2003.

2. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “Available bandwidth

measurement via TCP connection,” in Proceedings of the 2nd IEEE Workshop on

End-to-End Monitoring Techniques and Services (E2EMON 2004), pp. 38–44, Oc-

tober 2004.

3. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “A merged inline mea-

surement method for capacity and available bandwidth,” in Proceedings of the 6th

Passive and Active Measurement Workshop (PAM 2005), pp. 341–344, March 2005.

. i .

4. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “An inline measure-

ment method for capacity of end-to-end network path,” in Proceedings of the 3rd

IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services (E2EMON

2005), pp. 56–70, May 2005.

5. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “ImTCP HighSpeed: In-

line network measurement for high-speed networks,” in Proceedings of the 7th Passive

and Active Measurement Workshop (PAM 2006), March 2006.

6. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “ICIM: An inline net-

work measurement mechanism for highspeed networks,” in Proceedings of the 4th

IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services (E2EMON

2006), pp. 67–74, April 2006.

. ii .

Non-Refereed Technical Papers

1. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “A study on inline net-

work measurement mechanism for service overlay networks,” IEICE Technical Report

IN2003-176 (in Japanese), Vol.102, No.561, pp. 53–58, January 2003.

2. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “Inline network measure-

ment with active TCP connections,” 2003 IEICE General Conference (in Japanese),

SB-4-6, March 2003.

3. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “ImTCP: TCP with

an inline network measurement mechanism,” IEICE Technical Report IN2004-7 (in

Japanese), Vol. 104, No. 73, pp. 37–42, May 2004.

4. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “Inline network measure-

ment: TCP with a built-in measurement technique,” 2004 IEICE Communications

Society Conference, BS-10-1, September 2004.

5. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “Inline measurement

method for capacity bandwidth of end-to-end network path,” IEICE Technical Report

IN2005-17 (in Japanese), Vol. 105, No. 113, pp. 5–10, June 2005.

6. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “An inline network mea-

surement mechanism for high-speed networks,” IEICE Technical Report IN2005-123,

Vol. 105, No. 472, pp. 79–84, December 2005.

7. Cao Le Thanh Man, Go Hasegawa, and Masayuki Murata, “A packet burst-based

inline network measurement mechanism,” 2006 IEICE General Conference, BS-5-4,

March 2006.

. iii .

Preface

End-to-end bandwidth is a metric that demonstrates how fast data is transmitted over

a path connecting two separated end hosts of a network. The bandwidth information is

particularly important in adaptive control and optimal resource provision of many emerg-

ing network technologies: content delivery networks, storage area networks, peer-to-peer

networks, overlay networks, multicasting, and grid networks. End-to-end bandwidth is

also deployed in network management such as bandwidth prediction, network topology

design, enforcement of service level agreement, and detecting distributed intrusion/attacks

or isolating fault locations. In addition, end-to-end bandwidth is important for develop-

ing adaptive control for network protocols such as routing, congestion/rate control and

adaptive multimedia error concealment.

Because of the importance of bandwidth information, methodologies for monitoring

bandwidth have attracted a great deal of attention. Network operators normally collect

traffic information from routers to infer the bandwidth. For the majority of users, who

do not have access authority to the inside of networks, monitoring bandwidth at the end

hosts is the only alternative. Bandwidth measurement tools at the end hosts can be

divided into two groups: active and passive. Passive measurement tools can collect traffic

information at some end hosts for measurements without creating or modifying any traffic

on the network, but this approach requires a relatively long time for data collection and

bandwidth estimation. Active tools actively exchange probe traffic between two end hosts

to perform the bandwidth measurement, and appear more accurate and sensitive to changes

in bandwidth. However, their common weakness is causing an additional load on the

network due to probe traffic.

This thesis presents a novel approach to end-to-end bandwidth measurement. We

propose an active measurement method that does not add probe traffic to the network:

inline measurement, with the concept of plugging a measurement mechanism into an active

Transmission Control Protocol (TCP) connection. TCP is currently the most popular

. v .

transport protocol of the Internet. During data transmission, the TCP sender continuously

sends data packets to the TCP receiver, which replies to the data packets with ACK

(acknowledgement) packets. Using this mechanism, the proposed measurement approach

periodically adjusts the transmission interval of some data packets, and we then examine

the arrival-intervals of the corresponding ACK packets to infer the end-to-end bandwidth

of the network path connecting TCP sender and TCP receiver. Thus, data transmitted in

TCP connection is utilized for active measurement, rather than injecting probe traffic into

the network.

We first introduce a new version of TCP, called Inline measurement TCP (ImTCP).

ImTCP can transmit data as any other previous TCP version, and can also measure the un-

used bandwidth (called available bandwidth) of the path that the TCP connection is passing

through. We introduce a measurement algorithm suitable for inline network measurement

and that generates periodic measurement results at short intervals. The key idea in rapid

measurement is to limit the bandwidth measurement range using statistical information

from previous measurement results. When the ImTCP sender transmits data packets, it

first stores a group of up to several packets in a queue and subsequently forwards them at

the transmission rate determined by the measurement algorithm. Then, considering the

arrival intervals of the ACK packets, the ImTCP sender performs the bandwidth calcula-

tion. The simulation experiments show that ImTCP can yield measurement results within

20% of the actual available bandwidth every few RTTs, without degrading transmission

throughput. We also present two examples in which ImTCP uses measured bandwidth

information to optimize link utilization or improve the transmission performance of TCP

itself.

We then consider inline measurement of the maximum bandwidth (called the physical

bandwidth or capacity) of an end-to-end network path. We develop a new capacity measure-

ment function and combine it with ImTCP in order to enable simultaneous measurement of

both capacity and available bandwidth in ImTCP. The capacity measurement algorithm is

a new packet-pair-based measurement technique that utilizes the estimated available band-

width values for capacity calculation. This new algorithm promises faster measurement

than current packet-pair-based measurement algorithms for various situations and works

well for high-load networks, in which current algorithms do not work properly. Simulation

results indicate that the capacity measurement algorithm can deliver results with small

errors when the network load is as high as 93% of capacity. Moreover, the new algorithm

provides a confidence interval for the measurement results.

. vi .

We also perform measurement tasks for 1 Gbps or higher networks. In such high-

speed networks, current bandwidth measurement algorithms that utilize packet transmis-

sion/arrival intervals are faced with two main problems. First, network measurement for

large bandwidth requires short packet transmission intervals, which causes a heavy load

on the CPU. Second, network interface cards for high-speed networks usually employ In-

terrupt Coalescence, which rearranges the inter-arrival times of packets and causes bursty

transmission of packets. We introduce a new inline measurement method that overcomes

these two problems. Measurement algorithms for both the available bandwidth and the

capacity are proposed. Rather than adjusting packet transmission intervals, we adjust the

number of packets involved in a packet burst and utilize the inter-intervals of the bursts of

the corresponding ACK packets for bandwidth measurement. Simulation results show that

the proposed method can measure bandwidth in the network path of at least 1 Gbps or

faster. When measuring a 5-Gbps network path, 94% of the available bandwidth measure-

ment results delivered by the proposed method have relative errors smaller than 20%. The

measurement frequency is also approximately 60 times higher than that of an existing high

speed network measurement tool. We also show an implementation result in a laboratory

network environment to validate the proposed method.

The increasing demand for end-to-end bandwidth monitoring has led to extensive de-

velopment and deployment of several measurement tools. TCP with built-in measurement

technique is an effective way of overcoming the limitations of the two current measurement

approaches. Moreover, by using the mechanism of TCP, inline measurement can work even

better than stand-alone tools in some network scenarios, such as heavily loaded networks

and high-speed networks. Until recently, TCP traffic has accounted for a large proportion

of current Internet traffic. Therefore, we expect that we can monitor end-to-end bandwidth

with the proposed approach at several locations, in real-time, with high accuracy, while

having no effect on the network.

The future holds several challenging tasks. First, that is the improvement of TCP

performance using the bandwidth information inferred by inline network measurements.

Second, as streaming protocols, such as the Real Time Streaming Protocol, are emerging,

inline measurement techniques for these protocols are also of interest.

. vii .

Acknowledgements

This thesis would be impossible without people who supported me and believed in me.

Thanks to all of the wonderful people.

First and foremost, I would like to express my sincere appreciation to my research

advisor, Prof. Masayuki Murata of Osaka University. His guidance and inspiration have

provided an invaluable experience that has helped me to fulfill this research.

I am also thankful to my thesis committee members, Prof. Koso Murakami, Prof.

Makoto Imase, Prof. Teruo Higashino and Prof. Hirotaka Nakano for their careful reading

and constructive comments in completing this thesis.

I would like to express my deepest gratitude to Associate Prof. Go Hasegawa of Osaka

University. He has been a constant source of encouragement and advice throughout my

studies and in the preparation of this manuscript.

I would like to thank Associate Prof.s Naoki Wakamiya, Kenji Leibnitz and Research

associates Shinichi Arakawa, Masahiro Sasabe of Osaka University who gave me helpful

comments and feedback.

I want to thank secretaries, my many friends and colleagues in the Graduate School of

Information Science and Technology of Osaka University for assisting me in many different

ways.

Finally, I am forever indebted to my father Cao Xuan Thanh. His strong will power

has led me to the goal. I am obliged to my mother, my two sisters for their understanding,

endless patience and encouragement. Especially, I would like to give my special thanks to

my wife Thien Trang whose patient love enabled me to complete this work.

. viii .

Contents

List of Publications i

Preface v

Acknowledgements viii

1 Introduction 1

1.1 Significance of bandwidth measurement . 1

1.2 Limitations in existing bandwidth measurement tools 3

1.3 Inline bandwidth measurement and its related studies 6

1.4 Organization of the present thesis . 8

2 ImTCP: TCP with an Inline Measurement Mechanism for Available

Bandwidth 11

2.1 Introduction . 11

2.2 Algorithm for inline available bandwidth measurement 13

2.2.1 Requirements . 13

2.2.2 Proposed measurement algorithm 15

2.3 ImTCP: TCP with inline network measurement 20

2.3.1 Overview . 20

2.3.2 Packet storing mechanism . 21

2.3.3 Parameter settings . 23

2.3.4 Other issues . 26

2.4 Simulation results . 27

2.4.1 Effect of parameters . 27

2.4.2 Measurement accuracy . 32

2.4.3 Comparision with existing inline measurement methods 32

. ix .

2.4.4 Effect of ImTCP on other traffic . 34

2.4.5 Bandwidth utilization and fair share 36

2.4.6 TCP-friendliness and TCP-compatibility 37

2.5 Transmission modes of ImTCP . 39

2.5.1 Background transmission . 39

2.5.2 Full-speed transmission . 41

2.6 Conclusions . 43

3 A Simultaneous Inline Measurement Mechanism for Capacity and Avail-

able Bandwidth 44

3.1 Introduction . 44

3.2 Packet-pair-based capacity measurement algorithms 47

3.2.1 Packet pair technique . 48

3.2.2 Capacity calculation . 49

3.3 Inline measurement algorithm for capacity 50

3.3.1 Overview . 50

3.3.2 Implementation of packet pairs in ImTCP 51

3.3.3 Proposed measurement algorithm 52

3.4 Simulation experiments . 54

3.4.1 Effect of parameters . 55

3.4.2 Comparison with CapProbe . 58

3.4.3 Comparison with Pathrate . 60

3.4.4 Measurement in Web traffic environment 62

3.5 Conclusions . 64

4 Inline Bandwidth Measurement Techniques for Gigabit Networks 65

4.1 Introduction . 65

4.2 Bandwidth measurement in high-speed networks 68

4.2.1 Limitation of packet pacing in general-purpose machines 68

4.2.2 Effects of Interrupt Coalescence . 69

4.2.3 Bursty packet transmission in TCP 71

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available

bandwidth . 71

4.3.1 Packet burst-based measurement algorithm 71

4.3.2 ICIM-abw . 73

. x .

4.3.3 Simulation experiments . 76

4.4 ICIM-cap: Interrupt Coalescence-aware inline measurement for capacity . 84

4.4.1 Existing capacity measurement techniques and their problems . . . 84

4.4.2 ICIM-cap . 85

4.4.3 Simulation experiments . 87

4.4.4 Discussions . 87

4.4.5 Interpretation of the results . 90

4.5 Experiments in a real environment . 91

4.6 Conclusions . 92

5 Conclusions 94

Bibliography 97

. xi .

List of Figures

1.1 Difference between capacity and available bandwidth 2

1.2 Key idea of inline network measurement 7

2.1 Relationship of search range, sub-ranges, streams, and probe packets . . . 17

2.2 Finding the available bandwidth within a sub-range 18

2.3 Placement of measurement program at ImTCP sender 21

2.4 State transition in the Control unit . 23

2.5 Packet transmission times in TCP . 25

2.6 Network model for evaluation of ImTCP 28

2.7 Results of the proposed measurement algorithm 29

2.8 CDF of the waiting time of the first packet in measurement streams 31

2.9 Measurement results of ImTCP . 33

2.10 Throughput of ImTCP and RenoTCP . 34

2.11 Average measurement results of inline measurement methods 35

2.12 Comparison of Web page download times 36

2.13 Network model for investigating bandwidth utilization and fair share . . . 37

2.14 Comparision of ImTCP and Reno TCP throughput 38

2.15 Average of Web page download time . 40

2.16 Comparision of TCP window sizes . 42

2.17 TCP throughputs in wireless network . 42

3.1 Three cases showing how the spacing between a pair of packets may change

as the pair travels along a path. 48

3.2 Arrival time at the bottleneck link of PPs and cross traffic 49

3.3 Creation of PPs in ImTCP . 52

3.4 Proposed algorithm for inline capacity measurement 53

3.5 Simulation topology for evaluation of capacity measurement 54

. xii .

3.6 Measurement results for ImTCP when cross traffic 2 is 5 Mbps 55

3.7 Measurement results for ImTCP when cross traffic 2 is 20 Mbps 56

3.8 Measurement results for the proposed algorithm when N changes 57

3.9 Measurement results for ImTCP and CapProbe in small capacity, low net-

work load scenario . 59

3.10 Measurement results for ImTCP and CapProbe in small capacity, high net-

work load scenario . 60

3.11 Measurement results for ImTCP and CapProbe in high network load scenario 61

3.12 Histograms collected by Pathrate and ImTCP in heavy load network . . . 62

3.13 Measurement in Web traffic environment 63

4.1 Receive absolute timer . 70

4.2 Packet burst-based available-bandwidth measurement principle 72

4.3 Probing a search range in ICIM-abw . 74

4.4 Simulation topology for evaluation of ICIM-abw 76

4.5 Measurement results for ICIM . 78

4.6 Measurement results for IC-aware Pathload 79

4.7 Measurement results in Web traffic environment 81

4.8 Simulation topology for examining TCP compatibility 83

4.9 Enhanced Pathrate algorithm . 85

4.10 ICIM-cap algorithm . 85

4.11 Measurement results in gigabit network . 88

4.12 The case when the tight link is the upper link of the bottleneck link 89

4.13 The case when the bottleneck link is the upper link of the tight link 90

4.14 Network topology of the experiment . 91

4.15 Changes of the available bandwidth and the measurement results 92

. xiii .

List of Tables

1.1 Active measurement tools for end-to-end bandwidth 4

2.1 Distribution of packet size of the cross traffic 28

2.2 Number of measurement results when m changes 30

2.3 Number of measurement results when T changes 31

2.4 Fairness and link utilization of ImTCP . 37

3.1 Number of PPs required for the first measurement of ImTCP and CapProbe 59

3.2 Measurement results of ImTCP and Pathrate when cross traffic 2 changes . 62

4.1 Number of packets required for a measurement 82

4.2 Comparison on throughputs of Reno TCP with and without ICIM 84

4.3 Specifications of the PCs in the experiment 92

. xiv .

Chapter 1

Introduction

1.1 Significance of bandwidth measurement

The Internet is a large network of interconnected computer networks that transmit data

by packet switching using the standard Internet Protocol (IP). The Internet has become

an indispensable part of daily life for many people, and an increasing number of services

have been made available via the Internet. IP networks in the Internet make best-effort

attempts to deliver data to their destination. However, no special guarantees are given

for the transmission quality. Meanwhile, how fast the data is carried over the separated

locations of the network greatly affects the performance of networked services. Therefore,

monitoring IP network transmission quality and behaving adaptively has become important

in many network technologies.

The end-to-end bandwidth of a network path is an important metric (together with

other metrics such as latency and packet loss ratio) that expresses directly the data trans-

mission quality of that path. There are two major bandwidth-related definitions: capacity

and available bandwidth. The capacity is the maximum speed at which the data can be

transmitted on the path when there is no competing traffic load (cross traffic). The capac-

ity of a path is determined by the link with the minimum capacity (bottleneck link). The

available bandwidth, on the other hand, indicates the maximum speed at which the data

can be transmitted at the present time, given the current cross traffic load of the path.

The available bandwidth of a path is determined by the link with the minimum unused

bandwidth (tight link). Figure 1.1 illustrates the difference between capacity and available

bandwidth.

Bandwidth information is important in adaptive control and optimal resource provision

– 1 –

1.1 Significance of bandwidth measurement

Sender Receiver

Used bandwidth

Available bandwidth

Bottleneck link Tight link

Capacity

Figure 1.1: Difference between capacity and available bandwidth

of several emerging network technologies: content delivery networks (CDNs) [1], storage

area networks (SANs) [2], peer-to-peer (P2P) networks [3, 4], multicasting [5], grid net-

works [6, 7], and multihoming [8]. For example, in a CDN service such as Akamai [9] or

Exodus [10], measurement techniques can be used to estimate the available bandwidth and

regulate the sending rate of transmissions for Web prefetching [11] in order to avoid de-

grading the performance of other traffic. Bandwidth information can also be used to realize

adaptive control mechanisms in various service overlay networks, including the following

examples. In P2P networks, when the resource discovery mechanism finds multiple peers

having the requested contents, the measurement results help to determine from which peer

the contents are transmitted. In data grid networks, when multiple sites have the same

data, the measurement results help to determine from which site data will be copied or

read.

End-to-end bandwidth is also deployed in network management such as bandwidth

prediction, network topology design, enforcement of service level agreement, detecting

distributed intrusion/attacks or isolating fault locations [12, 13]. End-to-end bandwidth

is also important for developing adaptive control for network protocols such as routing,

congestion/rate control [14–17], and adaptive multimedia error concealment [18]. In many

cases, both capacity and available bandwidth information are required at the same time.

For example, network transport protocols should optimize link utilization according to

available bandwidth. However, if a connection tends to use all of the available bandwidth,

other connections that join the network later will find it difficult to obtain bandwidth to

fairly share the bandwidth. In this case, if the connections are aware of the capacity of

the network path, they can quickly change the used bandwidth so that the fairness with

– 2 –

Chapter 1. Introduction

newly attended connections is maintained. One method of using capacity and available

bandwidth information to optimize both bandwidth utilization and connection fairness

for TCP is proposed in [14]. Another example is streaming multimedia data. Capacity

information can be used for the decision of the size and the quality of the multimedia

data. Because available bandwidth is normally highly variable, it is better to use capacity

information in this case. Available bandwidth information is then used to improve the

performance of the transmission of the data. In addition, the billing policy of the Internet

service provider may be based on both the capacity and the available bandwidth of the

access link provided to the customer.

1.2 Limitations in existing bandwidth measurement

tools

Recent years have witnessed extensive development of bandwidth measurement tools. Net-

work operators commonly use tools such as NetFlow [19] and MRTG [20, 21] to collect

traffic information from routers and infer the bandwidth information from this informa-

tion. Although this approach normally delivers accurate results, it requires router access

authorities. As such, its usage is limited to network administrators. Instead, monitoring

end-to-end bandwidth at the end hosts without any support from the network appears to

be a more realistic approach and has recently attracted a great deal of attention.

Bandwidth measurement tools at the end hosts can be divided into two groups: active

and passive approaches. Passive measurement refers to the process of measuring a network

without creating or modifying any traffic on the network. Representative methods include

Nettimer [22] and PPrate [23]. Passive measurement is implemented by incorporating

some additional devices into the end hosts to enable them to identify and record the

characteristics and quantity of the packets as they pass. Packet statistics can then be

collected for bandwidth estimation. The limitation of passive approaches is that they

require a relatively long time for data collection before starting bandwidth estimation.

Active measurement tools, on the other hand, actively exchange probe traffic between

two end hosts to perform the bandwidth measurement. Table 1.1 shows some active mea-

surement tools that measure end-to-end capacity or available bandwidth. Measurement

tools for per-link capacity, such as Pathchar [24] and Pchar [25] are also included because

they can also infer the end-to-end capacity, due to the fact that the minimum capacity of

– 3 –

1.2 Limitations in existing bandwidth measurement tools

Table 1.1: Active measurement tools for end-to-end bandwidth

Tool Author Metric Probe model Methodology
Pathchar Jacobson Per-link Variable-size packets VPS

capacity
Clink Downey Per-link Variable-size packets VPS

capacity
Pchar Mah Per-link Variable-size packets VPS

capacity
Bprobe Carter Capacity Packet pairs Packet pair dispersion
Pathrate Dovrolis Capacity Packet pairs Packet pair dispersion
CapProbe Kapoor Capacity Packet pairs & Packet pair dispersion

Packet trains
Cprobe Carter A-bw Packet trains Packet train dispersion
TOPP Melander A-bw& Packet pairs Self-induced congestion

Capacity
Delphi Ribeiro A-bw Packet streams Packet pair dispersion
Pathload Jain A-bw Packet streams Self-induced congestion
Spruce Strauss A-bw Packet pairs Self-induced congestion
IGI Hu A-bw Packet streams Packet pair dispersion
PTR Hu A-bw Packet streams Self-induced congestion
ABwE Navratil A-bw Packet pairs Packet pair dispersion
PathChirp Ribeiro A-bw Packet streams Self-induced congestion

all link is the end-to-end capacity.

The method used for measuring the per-link capacity is called Variable Packet Size

(VPS). This method probes the network by packets in various sizes. VPS is based on round

trip time (RTT) measurements as well as on the Internet Control Message Protocol, ICMP.

VPS adjusts the Time-to-Live (TTL) to force probing packets to expire at a particular

router. The router at that hop discards the probing packets, returning ICMP messages

back to the sender. By sending packets in various sizes, the sender can estimate the

minimum RTT to the router. From the minimum RTT values to all of the routers, the

propagation of packets on each link is calculated. The capacity of the link is then calculated

from the packet size and the propagation delay of the packet on the link.

End-to-end capacity measurement tools utilize two packets sent back-to-back (packet

pair) for network probing. The intuitive rationale of capacity measurement using packet

pairs is that if two packets are sent close enough together in time to cause the packets to

queue back-to-back at the bottleneck link, then the packets will arrive at the destination

– 4 –

Chapter 1. Introduction

with the same spacing as when they left the bottleneck link. Thus, these tools send

numerous packet pairs and observe the packet pair dispersion. They filter the arrival

intervals of the pairs to discover what interval is created by the bottleneck link. The

capacity is then calculated from this interval and the packet size.

For available bandwidth measurement, both packet pair and packet stream can be

used for probing the network. Packet stream refers to a group of packets transmitted at

a determined rate. In addition to Bprobe [26], these measurement tools have two main

measurement approaches. The first approach exploits the information in the time gap

between the arrivals of two successive probe packets, similar to the capacity measurement

tools. Here, the two successive packets can be either a packet pair or two successive packets

in a stream. Packet dispersion is used for inferring the cross traffic at the tight link, from

which the available bandwidth is calculated. The second approach is based on the concept

of self-induced congestion. That is, if the transmission rate of the probe traffic is lower

than the available bandwidth along the path, then the probe traffic will pass the network

with the rate unchanged. In contrast, if the transmission rate is higher than the available

bandwidth of the network path, the probe traffic will be delayed and will arrive at the

receiver at a lower rate. Thus, by searching for the change point in the arrival rate of

probe traffic, the available bandwidth of the network path can be inferred. Bprobe sends

trains of packets at a high rate and considers the dispersion rate of the trains as the

available bandwidth.

Although active measurement tools seem accurate and sensitive to changes in band-

width, sending extra traffic into the network is their common drawback. The amount of

required probe traffic differs depending on the algorithm. According to one study [27],

Pathload [28] generated between 2.5 to 10 MB of probe traffic per measurement. Newer

tools have succeeded in reducing the amount of probe traffic per measurement. The aver-

age per-measurement probe traffic generated by IGI [29] is 130 KB, and that generated by

Spruce [27] is 300 KB. A few KB of probe traffic for a single measurement is a negligible

load on the network. However, for routing in overlay networks, or adaptive control in trans-

mission protocols, these measurements may be repeated continuously and simultaneously

from numerous end hosts. In such cases, a few KB of per-measurement probes will create

a large amount of traffic that may damage other data transmission in the network as well

as degrade the measurement accuracy itself.

– 5 –

1.3 Inline bandwidth measurement and its related studies

1.3 Inline bandwidth measurement and its related stud-

ies

The present thesis proposes a novel approach for end-to-end bandwidth measurement. We

propose an active measurement method that does not add probe traffic to the network:

inline network measurement, in which the packets transmitted in a data flow are used

for the purpose of measurement. Inline network measurement has the advantages of both

active and passive measurement approaches. That is, the accuracy of the measurement

is as good as that of active measurement, other traffic in the network is not affected.

However, inline measurement algorithms must be adaptive to the environment of the data

flow. Otherwise, the performance of the data transmission will be degraded.

We propose measurement algorithms that work in an active Transmission Control Pro-

tocol (TCP) connection. TCP is currently the most popular transport protocol of the

Internet. During data transmission, the TCP sender continuously sends data packets to

the TCP receiver, which replies to the data packets with ACK (acknowledgement) packets.

Using this mechanism, the proposed measurement approach periodically adjusts the trans-

mission interval of a number of data packets. The proposed approach then examines the

arrival-intervals of the corresponding ACK packets to infer the end-to-end bandwidth of

the network path connecting the TCP sender and the TCP receiver. Thus, data transmit-

ted in a TCP connection is used for active measurement, rather than injecting probe traffic

into the network. Figure 1.2 illustrates the key concept of inline network measurement.

The concept of inline measurement has previously appeared in traditional TCP. To a

certain extent, traditional TCP can be considered to be a tool for measuring available

bandwidth because of its ability to adjust the congestion window size to achieve a trans-

mission rate that is appropriate for the available bandwidth. One version of TCP, TCP

Vegas [30], also measures the packet transmission delay. There are, in addition, other tools

that convert the TCP data transmission stack into network measurement tools. These

tools include Sting [31] (measuring packet loss), Sprobe [32] (measuring capacity), and

abget [33] (measuring available bandwidth). Note that these tools can only be used for the

purpose of measurement and can no longer transmit data as a transport protocol.

A number of studies have considered bandwidth measurement in an active TCP connec-

tion. Bandwidth estimation in traditional TCP (Reno TCP) is insufficient and inaccurate

– 6 –

Chapter 1. Introduction

TCP
receiver

TCP sender

Network

Adjust the transmission
intervals of some data

packets

Data packets

Infer the path bandwidth from the arrival
intervals of the corresponding ACK packets

ACK packets

Figure 1.2: Key idea of inline network measurement

because it is a measure of used bandwidth, not available bandwidth. In particular, in net-

works in which the packet loss probability is relatively high, TCP tends to fail at estimat-

ing available bandwidth. Moreover, the TCP sender window size often does not accurately

represent the available bandwidth due to the nature of the TCP congestion control mecha-

nism. The first TCP measurement algorithm to improve accuracy used a passive method,

in which the sender checks ACK arrival intervals to infer the available bandwidth [34]. This

method is a simple approach based on the Cprobe [26] algorithm. A similar technique is

used in TCP Westwood [16], in which the sender also passively observes ACK packet arrival

intervals to estimate bandwidth, but the results are more accurate due to a robust calcula-

tion. Another study proposed TCP-Rab [35], which is a TCP with an inline measurement

method based on the receiver. The receiver calculates the available bandwidth from the

arrival rate of TCP segments and informs the sender, so that the sender can perform a

measurement-based congestion window control mechanism. The approach estimates the

bandwidth better than Westwood, because it can eliminate noise caused by the fluctuation

of transmission delay of ACK packets. However, because these methods are all passive

measurements, changes in available bandwidth cannot be detected quickly. In particular,

when the available bandwidth increases suddenly, the TCP data transmission rate cannot

adjust as rapidly and requires time to ramp up because of the self-clocking behavior of

TCP. Meanwhile, as transmission proceeds at a rate lower than the available bandwidth,

the measurement algorithm yields results lower than the true value. TCP Probe [36] em-

ploys the CapProbe [37] algorithm to perform inline measurement which can only measure

– 7 –

1.4 Organization of the present thesis

capacity. The proposed algorithm uses an active approach for inline measurement, for both

available bandwidth and capacity. That is, the sender TCP not only observes ACK packet

arrival intervals, but also actively adjusts the transmission interval of data packets. The

sender thus collects more information for a measurement, and improved accuracy can be

expected. Moreover, the proposed mechanism requires a modification of the TCP sender

only, incurring the same deployment cost as the approaches in described [16,34–36].

1.4 Organization of the present thesis

The present thesis consists of three inline measurement algorithms. Each of these algo-

rithms is described together with the experiment results for evaluations and comparison

with related methods.

In Chapter 2, we introduce a new version of TCP, called Inline measurement TCP

(ImTCP). Like previous TCP versions, ImTCP can transmit data; however, ImTCP can

also measure the available bandwidth of the path followed by TCP packets. We first

introduce a measurement algorithm suitable for inline network measurement that generates

periodic measurement results at short intervals, on the order of several RTTs. The key

idea in rapid measurement to limit the bandwidth measurement range using statistical

information from previous measurement results, unlike existing algorithms, which search

from 0 bps to the upper limit of the physical bandwidth with every measurement [28,38].

By limiting the measurement range, we can avoid adjusting TCP packets to an extremely

high rate and keep the number of packets required for measurement small.

We then build the algorithm into the most popular TCP version, Reno TCP, to create

ImTCP. When a sender transmits data packets, ImTCP first stores a group of up to

several packets in a queue and then subsequently forwards them at a transmission rate

determined by the measurement algorithm. Each group of packets corresponds to a probe

stream. Then, considering ACK packets as echoed packets, the ImTCP sender estimates

available bandwidth according to the algorithm. To minimize the transmission delay caused

by the packet store-and-forward process, we introduce an algorithm using the round trip

timeout (RTO) calculation in TCP to regulate the packet storage time in the queue. We

evaluate the inline measurement system using simulation experiments. The results show

that ImTCP can yield measurement results within 20% of the actual available bandwidth

every few RTTs without degrading transmission throughput. We also present two examples

in which ImTCP uses bandwidth information to optimize link utilization or improve the

– 8 –

Chapter 1. Introduction

transmission performance of TCP itself.

In Chapter 3, we focus on inline measurement of the capacity of the end-to-end network

path. We develop a new capacity measurement function and combine it with ImTCP in

order to enable simultaneous measurement of both capacity and available bandwidth in

ImTCP. The proposed algorithm utilizes the arrival intervals of the ACK packets of packet

pairs (PPs) that are sent back-to-back. Due to the characteristic of ImTCP whereby PPs

are available after the transmission of each measurement stream, the capacity measure-

ments do not require any further changes in ImTCP. Using the proposed method, ImTCP

measures the capacity at the early stage of the connection and continues to collect data to

improve the measurement accuracy during the transmission. We do not intend to develop

a new capacity measurement tool that is more accurate than the existing tools [22,37,39].

Rather, in an attempt to reduce the load over the network caused by probe traffic, our

primary focus is how to extract capacity information from a TCP connection with the small-

est change in TCP. The main concept of the proposed capacity measurement algorithm

in ImTCP is that the available bandwidth information, which can be yielded periodically

due to the deployed available bandwidth measurement mechanism, is exploited. In the

existing PP-based capacity measurement algorithms, the PPs that are cut into by other

packets from cross traffic at the bottleneck link cause incorrect capacity estimation and

are therefore eliminated from the data used in the calculation. However, in the proposed

method, the available bandwidth information is used for estimation of the quantity of the

cross traffic that cuts into PPs at the bottleneck link. The interval of the PPs becomes

usable for the capacity measurement, which enables ImTCP to collect more information

from PPs so that faster and more accurate measurements can be expected. The proposed

algorithm also uses statistical analysis to calculate the confidence interval of the delivered

results. Through simulation validations, we show that ImTCP can deliver capacity mea-

surement results quickly, independent of the characteristics of the network. In addition,

we find that the capacity measurement algorithm can deliver accurate results even when

the network load is as high as 93% of the capacity, while current measurement algorithms

do not work well.

Chapter 4 describes the challenges involved in bandwidth measurement for high-speed

(1 Gbps or higher) networks. For most active bandwidth measurement tools, bandwidths

of 1 Gbps or higher are difficult to measure. There are two reasons for this. First, mea-

surement in fast networks requires short transmission intervals of the probe packets (for

example, 12 µs for a 1-Gbps link and a 1,500-byte packet). However, regulating such short

– 9 –

1.4 Organization of the present thesis

intervals causes a heavy CPU load. Second, network cards for high-speed networks usu-

ally employ Interrupt Coalescence (IC)) [40, 41], which rearranges the arrival intervals of

packets and causes bursty transmission, and, therefore, algorithms utilizing packet arrival

intervals do not work properly. We then introduce a new inline measurement mechanism

that works well in high-speed networks. Measurement algorithms for both the available

bandwidth and capacity are proposed. We refer to these algorithms collectively as In-

terrupt Coalescence-aware Inline Measurement (ICIM). Unlike other active measurement

tools, which observe the inter-intervals of the packets, ICIM adjusts the number of packets

that are transmitted in a burst caused by IC and estimates the capacity and available

bandwidth by checking whether the inter-intervals of the bursts of corresponding ACK

packets are increased as they pass through the network. ICIM does not set the sending

interval of the packets, so the overhead for packet spacing at the sender is eliminated. The

simulation results show that ICIM-abw performs accurate measurements in networks of 1

Gbps and faster. More than 94% of the results delivered by ICIM-abw have relative errors

smaller than 20% for measurement on a 5-Gbps network path. Moreover, TCP with ICIM

can transmit data with the same performance as Reno TCP.

In the final chapter of this thesis, we present a summary of the three proposed in-

line measurement approaches. We also discuss future challenges concerning the present

research.

– 10 –

Chapter 2

ImTCP: TCP with an Inline

Measurement Mechanism for

Available Bandwidth

2.1 Introduction

Information concerning bandwidth availability in a network path plays an important role

in adaptive control of the network. Many researches on measuring available bandwidth

have been done so far. Available bandwidth can be measured at routers within a net-

work [19–21]. This approach may require a considerable change to network hardware

and is suitable for network administrators only. Some passive measurement tools can col-

lect traffic information at some end hosts for performance measurements [22, 23], but this

approach requires a relatively long time for data collection and bandwidth estimation. Ex-

changing probe traffic between two end hosts to find the available bandwidth along a path

(an active measurement) seems the more realistic approach and has attracted much recent

research. They are Cprobe [26], TOPP [42], Pathload [28], IGI/PTR [29], CapProbe [37]

and many others [27, 33, 38, 39, 43, 44]. However, sending extra traffic into the network is

the common weakness in all active available bandwidth measurement tools. In some cases,

probe traffic may damage other data transmission in the network as well as degrade the

measurement itself.

In this thesis, we propose an active measurement method that does not add probe

traffic to the network, named inline network measurement. This is the idea of plugging a

measurement mechanism into an active TCP connection; data packets and ACK packets

– 11 –

2.1 Introduction

of an TCP connection are utilized for the measurement, instead of probe packets. This

method has the advantage of requiring no extra traffic to be sent to the network.

As for the measurement of available bandwidth in an active TCP connection, there is

some related research. The first TCP measurement algorithm to improve accuracy used a

passive method in which the sender checks ACK arrival intervals to infer available band-

width proposed by Hoe [34]. It is a simple approach based on the Cprobe [26] algorithm. A

similar technique is used in TCP Westwood [16] where the sender also passively observes

ACK packet arrival intervals to estimate bandwidth, but the results are more accurate

due to a robust calculation. Another study in [35] proposes TCP-Rab, a TCP with an in-

line measurement method that based on the receiver. The receiver calculates the available

bandwidth from the arrival rate of TCP segments and informs the sender, so that the sender

can perform a measurement-based congestion window control mechanism. The approach

estimates the bandwidth better than Westwood, because it can eliminate noise caused by

the fluctuation of ACK packets’ transmission delay. However, because these methods are

all passive measurements, changes in available bandwidth cannot be detected quickly. Es-

pecially when the available bandwidth increases suddenly, the TCP data transmission rate

cannot adjust as rapidly and needs time to ramp up because of the self-clocking behavior

of TCP. Meanwhile, as transmission proceeds at a rate lower than the available bandwidth,

the measurement algorithm yields results lower than the true value.

In this chapter, we first introduce an active measurement algorithm suitable for inline

network measurement that generates periodic measurement results at short intervals. The

key idea in measuring rapidly is to limit the bandwidth measurement range using statistical

information from previous measurement results. This is done rather than searching from

0 bps to the upper limit of the physical bandwidth with every measurement as existing

algorithms do [28, 38]. By limiting the measurement range, we can avoid sending probe

packets at an extremely high rate and keep the number of probe packets small.

We then introduce ImTCP (Inline measurement TCP), a Reno-based TCP that in-

cludes the proposed algorithm for inline network measurement described above. When a

sender transmits data packets, ImTCP first stores a group up to several packets in a queue

and subsequently forwards them at a transmission rate determined by the measurement

algorithm. Each group of packets corresponds to a probe stream. Then, considering ACK

packets as echoed packets, the ImTCP sender estimates available bandwidth according to

the algorithm. To minimize transmission delay caused by the packet store-and-forward

process, we introduce an algorithm using the RTO (round trip timeout) calculation in

– 12 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

TCP to regulate packet storage time in the queue. We evaluate the inline measurement

system using simulation experiments. The results show that ImTCP can yield measure-

ment results within 20.8% of the actual available bandwidth in every some RTTs without

degrading transmission throughput.

Measurement results of ImTCP can be passed to higher network layer and used for

optimal route selection [45] in service overlay networks, in network topology design or in

isolating fault locations [13]. Besides, ImTCP can use such bandwidth information to

optimize link utilization or improve transmission performance of TCP itself. We present

two examples of the second usage. In background mode, ImTCP uses the results of band-

width availability measurements to prevent its own traffic from degrading the throughput

of other traffic. This allows a prioritization of other traffic sharing the network bandwidth.

In full-speed mode, ImTCP uses measurement results to keep its transmission rate close to

the measured value necessary for optimum utilization of the available network bandwidth.

This mode is expected to be used in wireless and high-speed networks where traditional

TCP cannot use the available bandwidth effectively.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

our proposed algorithm for inline available bandwidth measurement. In Section 2.3 we

introduce ImTCP and evaluate its performance in Section 2.4. In Section 2.5, we introduce

two examples of congestion window control mechanisms for ImTCP. Finally, in Section 2.6,

we present concluding remarks.

2.2 Algorithm for inline available bandwidth measure-

ment

2.2.1 Requirements

We consider the following factors to be the requirements for the algorithm of inline available

bandwidth measurement:

• Small number of packets used

Because our method uses TCP packets for the measurement, there is a limitation on

the number of packets available for transmission at any one time because of the TCP

– 13 –

2.2 Algorithm for inline available bandwidth measurement

window size. Since the TCP window size is relatively small and changes dynamically,

the measurement algorithm should use as small a number of packets as possible.

• Little effect on other traffic on the network

The measurement should not affect either the cross traffic the external TCP traffic.

The measurement may adversely affect the network in two ways: by sending numerous

probe packets and by sending probe packets at a high rate.

• Providing results continuously

Since the characteristics of the IP network changes constantly and dynamically, mea-

surement should provide periodic estimation results. Furthermore, the interval should

be as small as possible in order to provide an accurate depiction of the rapid network

change.

• Providing results quickly

The measurement should be performed quickly in order to obtain up-to-date infor-

mation of the IP network. In the proposed method, we therefore assign a higher

priority to measurement speed than to measurement accuracy.

As mentioned in Chapter 1, the existing measurement methods can be divided into

two groups: passive measurement methods and active measurement methods. The active

measurement methods inject probe packets into the network and collect the feedback infor-

mation from monitored results including transmission delay, packet arrival-interval time,

packet loss ratio, and so on. Therefore, we can expect a higher accuracy of measurement

results in an end-to-end fashion than what is possible by passive methods.

However, considering the requirements mentioned above, existing active measurement

algorithms for available bandwidth have fundamental disadvantages. One is that many

probe packets are sent at a high transmission rate. For instance, TOPP [42] sends 5000

packets to obtain only one measurement, and Cprobe [26] injects 100–200 probe packets at

the physical bandwidth speed of the link connected to the sender host. PathLoad sends sev-

eral 100-packet measurement streams for a measurement. PathChirp [38] is a modification

of PathLoad on the purpose of decreasing the number of probe packets. But the required

number of packets to be sent at one time in PathChirp is still large. The probe traffic

can affect other traffic along the path, for example by degrading traffic throughput and in-

creasing the packet loss ratio and packet transmission delay. Existing active measurement

– 14 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

algorithms also require a long time to obtain one measurement result (for example, 50–100

RTTs are necessary to obtain one estimation value in TOPP and Pathload). Long-term

measurement can provide an accurate result but cannot follow the dynamic changes on the

IP network.

Thus, the existing active measurement algorithms do not satisfy the requirements men-

tioned. In the next subsection, we introduce a measurement algorithm which satisfies the

requirements. Note that we do not attempt to replace the existing active measurement

approaches by the proposed measurement algorithm. Rather, the proposed measurement

algorithm is useful in the inline network measurement.

2.2.2 Proposed measurement algorithm

The proposed measurement algorithm is based on the concept of self-induced congestion,

which is introduced in [28]. It utilizes packet streams sent in various transmission rates for

network probing. It infers the available bandwidth of the network path by searching for the

change point in the arrival rate of the probe packet streams. The deployment of MPLS may

impact the measurement algorithm performance because MPLS can hide IP-level routes.

The algorithm requires a sender host transmit measurement packets to a receiver host,

which immediately sends received packets back to the sender host. The sender host adjusts

the transmission intervals of packets to form packet streams, that are group packets sent

at one time, for the available bandwidth measurements. The measurements are performed

repeatedly.

In every measurement, a search range is introduced for searching the value of the

available bandwidth. Search range I= (Bl, Bu) is a range of bandwidth which is expected to

include the current value of the available bandwidth. The proposed measurement algorithm

searches for the available bandwidth only within the given search range. The minimum

value of Bl, the lower bound of the search range, is 0, and the maximum value of Bu,

the upper bound, is equal to the physical bandwidth of the link directly connected to the

sender host. By introducing the search range, sending probe packets at an extremely high

rate, which seriously affects other traffic, can be avoided. The number of probe packets

for the measurement can also be kept quite small. As discussed later herein, even when

the value of the available bandwidth does not exist within the search range, the correct

value can be found in a few measurements. The following are the steps of the proposed

algorithm for one measurement of the available bandwidth A:

– 15 –

2.2 Algorithm for inline available bandwidth measurement

1. Set initial search range

First, the program sends a packet stream according to the Cprobe algorithm [26] to

find a very rough estimation of the available bandwidth. We set the search range to

(Acprobe/2, Acprobe), where Acprobe is the result of the Cprobe test.

2. Divide the search range

The search range is divided into k sub-ranges Ii = (Bi+1, Bi) (i = 1, 2..k). All

sub-ranges have the identical width of the bandwidth. That is,

Bi = Bu − Bu − Bl

k
(i− 1), i = 1, ..., k + 1. (2.1)

When k increases, the results of Steps 4 and 6 become more accurate, because the

width of each sub-range becomes smaller. However, a larger number of packet streams

is required, which results in an increase in the number of used packets and the

measurement time.

3. Send packet streams and check increasing trend

For each of k sub-ranges, a packet stream i (i = 1...k) is sent. The transmission

rates of the stream’s packets vary to cover the bandwidth range of the sub-range.

We denote the j-th packet of the packet stream i as Pi,j (1 ≤ j ≤ N , where N is the

number of packets in a stream) and the time at which Pi,j is sent from the sender

host as Si,j, where Si,1 = 0. Then Si,j (j = 2..N) is set so that the following equation

is satisfied:

M

Si,j − Si,j−1

= Bi+1 +
Bi − Bi+1

N − 1
(j − 1), (2.2)

where M is the size of the probe packet. Figure 2.1 shows the relationship between

the search range, the sub-ranges and the packet streams. In the proposed algorithm,

packets in a stream are transmitted with different intervals, for this reason the mea-

surement result may not be as accurate as the Pathload algorithm [28], in which all

packets in a stream are sent with identical intervals. However, the proposed algo-

rithm can check a wide range of bandwidth with one stream, whereas the Pathload

checks only one value of the bandwidth with one stream. This reduces the number

– 16 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

Bandwidth 0
Link capacity Search range

Sub-range

Transmission of
measurement stream i

Bl Bu

BuBl
Bi-1 Bi

Bi-1 Bi

Pi,N Pi,N-1 Pi,N-2 Pi,3 Pi,2 Pi,1

N packets

Figure 2.1: Relationship of search range, sub-ranges, streams, and probe packets

of probe packets and the time required for measurement. By this mechanism, the

measurement speed is improved at the expense of measurement accuracy.

The program then observes Ri,j, the time the ACK of packet Pi,j arrives at the

sender host, where Ri,1 = 0. We calculate the transmission delay Di,j of Pi,j using

the function Di,j = Ri,j − Si,j. We then check if an increasing trend exists in the

transmission delay (Di,j − Di,j−1) (2 ≤ j ≤ N) according to the algorithm used

in [28]. As explained in [28], the increasing trend of transmission delay in a stream

indicates that the transmission rate of the stream is larger than the current available

bandwidth of the network path.

Let Ti be the increasing trend of stream i as follows:

Ti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, increasing trend in stream i,

−1, no increasing trend in stream i,

0, unable to determine.

As i increases, the rate of stream i decreases. Therefore, Ti is expected to be 1 when

i is sufficiently small. On the other hand, when i becomes large, Ti is expected to

– 17 –

2.2 Algorithm for inline available bandwidth measurement

Transmission rate

Arrival rate

Available
bandwidth

(i)

(ii)

0

Figure 2.2: Finding the available bandwidth within a sub-range

become −1. Therefore, when neither of the successive streams m or m + 1 have an

increasing trend (Tm = Tm+1 = −1), the remaining streams are expected not to have

increasing trends (Ti = −1 for m+2 ≤ i ≤ k). Therefore, the program stops sending

the remaining streams in order to speed up the measurement.

4. Choose a sub-range

Based on the increasing trends of all streams, the algorithm chooses a sub-range

which is most likely to include the correct value of the available bandwidth. First,

it finds the value of a (0 ≤ a ≤ k + 1), which maximizes (
∑a

j=0 Tj − ∑k
j=a+1 Tj).

If 1 ≤ a ≤ k, it determines the sub-range Ia is the most likely candidate of the

sub-range which includes the available bandwidth value. That is, as a result of the

above calculation, Ia indicates the middle of streams which have increasing trends

and those which do not. If a = 0 or a = k + 1, on the other hand, the algorithm

decides that the available bandwidth does not exist in the search range (Bl, Bu). The

algorithm determines that the available bandwidth is larger than the upper bound

of the search range when a = 0, and that when a = k + 1 the available bandwidth is

smaller than the lower bound of the search range.

In this way, the algorithm finds the sub-range which is expected to include the avail-

able bandwidth according to the increasing trends of the packet streams.

5. Calculate the available bandwidth

The algorithm then derives the available bandwidth A from the sub-range Ia chosen

– 18 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

by Step 4. It first determines the transmission rate and the arrival rate of the packet

Pa,j (j = 2...N) as M
Sa,j−Sa,j−1

, M
Ra,j−Ra,j−1

, respectively. It then approximates the

relationship between the transmission rate and the arrival rate as two straight lines

using the linear regression method, as shown in Figure 2.2. Since it determines that

the sub-range Ia includes the available bandwidth, the slope of line (i) which consists

of small transmission rates is nearly 1 (the transmission rate and the arrival rate are

almost equal), and the slope of line (ii) which consists of larger transmission rates is

smaller than 1 (the arrival rate is smaller than the transmission rate). Therefore, it

determines that the highest transmission rate in line (i) is the value of the available

bandwidth.

On the other hand, when the algorithm has determined that the available bandwidth

value does not exist in the search range (Bl, Bu) in Step 4, it temporarily sets the

value of available bandwidth as follows:

A =

⎧⎨
⎩ Bl, a = 0,

Bu, a = k + 1.

6. Create a new search range

When the program have found the value of the available bandwidth from a sub-range

Ia in Step 5, we accumulate the value as the latest statistical data of the available

bandwidth. The next search range (B ′
l, B

′
u) is calculated as follows:

B ′
l = A−max

(
1.96

S√
q
,
Bm

2

)
,

B ′
u = A + max

(
1.96

S√
q
,
Bm

2

)
,

where S is the variance of stored values of the available bandwidth and q is the

number of stored values. Thus, we use the 95% confidential interval of the stored

data as the width of the next search range, and the current available bandwidth is

used as the center of the search range. Bm is the lower bound of the width of the

search range, which is used to prevent the range from being too small. When no

accumulated data exists (when the measurement has just started or just after the

accumulated data is discarded), we use the same search range as that of the previous

– 19 –

2.3 ImTCP: TCP with inline network measurement

measurement.

On the other hand, when we can not find the available bandwidth within the search

range, it is possible to consider that the network status has changed greatly. There-

fore, we discard the accumulated data because this data becomes unreliable as sta-

tistical data. In this case, the next search range (B ′
l, B

′
u) is set as follows:

B ′
l =

⎧⎨
⎩ Bl, a = 0,

Bl − Bu−Bl

2
, a = k + 1,

B ′
u =

⎧⎨
⎩ Bu + Bu−Bl

2
, a = 0,

Bu, a = k + 1.

This modification of the search range is performed in an attempt to widen the search

range in the possible direction of the change of the available bandwidth.

By this statistical mechanism, we expect the measurement algorithm to behave as

follows: when the available bandwidth does not change greatly over a period of

time, the search range becomes smaller and more accurate measurement results can

be obtained. On the other hand, when the available bandwidth varies greatly, the

search range becomes large and the measurement can be restarted from the rough

estimation. That is, the proposed algorithm can give a very accurate estimation of

the available bandwidth when the network is stable, and a rough but rapid estimate

can be obtained when the network status changes.

2.3 ImTCP: TCP with inline network measurement

2.3.1 Overview

The deployment of the proposed measurement algorithm requires a modification of the TCP

sender only, incurring a low deployment cost. We implement a program for inline network

measurement in the sender program of RenoTCP to create ImTCP. The program locates

at the bottom of TCP layer, as shown in Figure 2.3. When a new TCP data packet is

generated at the TCP layer and is ready to be transmitted, it is stored in an intermediate

FIFO buffer (hereafter called the ImTCP buffer) before being passed to the IP layer.

The timing at that the packets are passed to the IP layer is controlled by the program.

– 20 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

IPIP

TCPTCP

MACMAC

ApplicationApplication

TCP processingTCP processing

ImTCP bufferImTCP buffer
Bandwidth

Measurement
Bandwidth

measurement

TCP packets ACK packets

Figure 2.3: Placement of measurement program at ImTCP sender

When ImTCP performs a measurement, the program adjusts the transmission intervals of

some packets according to the measurement algorithm. When ImTCP is not performing a

measurement, it passes all TCP data packets arriving at the buffer immediately to the IP

layer. On the other hand, when an ACK packet arrives at the sender host, the measurement

program records the arrival time for measurement then passes the ACK packets to the TCP

layer for TCP protocol processing.

2.3.2 Packet storing mechanism

Available bandwidth fluctuations occur in different time scales, whose durations range from

the order of minutes to less than a microsecond. Therefore, we enable ImTCP to perform

measurements in as small intervals as possible. The measurement algorithm uses previous

measurement results to determine a search range for the next measurement. Therefore, it

is natural that only one measurement operation should be performed for one RTT. If the

TCP window size is sufficiently large, we can perform multiple measurements for one RTT

by introducing a quite complex mechanism. However, many difficulties must be overcome

to accomplish this, including interaction of measurement tasks, delays caused by multiple

streams. We therefore decided that ImTCP should perform at most one measurement

operation per RTT. One RTT is long enough for ImTCP to recover the transmission rate

after a measurement.

– 21 –

2.3 ImTCP: TCP with inline network measurement

The measurement program dynamically adapts to changes in the TCP window size. It

stores no data packets when the current window size is smaller than the number of packets

required for a measurement stream. This is because the TCP sender cannot transmit a

number of data packets larger than the window size. On the other hand, when the window

size is sufficiently large, the program creates all streams required for a measurement in

each RTT.

The measurement program consists of three units. The ImTCP Buffer unit stores TCP

data packets and passes each packet to the IP layer under control of the Control unit. It

informs the Control unit when a new TCP packet arrives. The Control unit determines

when to send the packets stored in the buffer. Details of the Measurement unit were

introduced in Section 2.2.

Here, we explain the operation of the Control unit. The Control unit has four functional

states, STORE PACKET, PASS PACKET, SEND STREAM and EMPTY BUFFER, as

shown in Figure 2.4. The Control unit is initially in the STORE PACKET state. In what

follows, we describe the detailed behaviors of the Control unit in each state;

• STORE PACKET state

– Start storing packets for the creation of measurement streams. Set the packet

storing timer to end packet storing after certain length of time T . The timer

value T is discussed in Subsection 2.3.3.

– Go to the SEND STREAM state if the number of stored packets equals to m.

The value of m is discussed in Subsection 2.3.3.

– Go to the EMPTY BUFFER state if the current TCP window size becomes

smaller than N or the packet storing timer expires. N is the number of packets

needed to create a measurement stream.

• EMPTY BUFFER state

– Pass currently stored packets to the IP layer until the buffer becomes empty.

– Return to the STORE PACKET state.

• SEND STREAM state

– Send a measurement stream. The transmission rate of the stream is determined

according to the measurement algorithm. During stream transmission, packets

arriving at the buffer are stored in the ImTCP buffer.

– 22 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

Last stream of

a measurement

sent

ACK packets return

SEND STREAMEMPTY BUFFER

Finish

Packet storing timeout

or

Window size < N
Buffer length = m

STORE PACKET PASS PACKET

One stream sent

(not the last one of measurement)

Figure 2.4: State transition in the Control unit

– After the transmission of the stream, if the stream is the last of a measurement,

go to PASS PACKET state, if not, go to the EMPTY BUFFER state.

• PASS PACKET state

– Pass every packet in the buffer immediately to the IP layer.

– Go to the STORE PACKET state when all ACK packets of the transmitted

measurement streams have arrived at the sender.

2.3.3 Parameter settings

Number of packets required to start a measurement stream (m)

The timing for sending packets in a measurement stream is determined by the measurement

algorithm. If N packets were stored prior to the beginning of transmission, the long storage

time would slow the TCP transmission speed. Instead, transmission begins when only a

partial number of packets (m out of N packets) have arrived in the ImTCP buffer. The

timing is such that the former part of the stream is being transmitted as the latter part

of the stream is still arriving at the buffer, and the latter packets are expected to arrive

in time for transmission. Thus, we reduce the effect of the packet storing mechanism on

TCP transmission.

– 23 –

2.3 ImTCP: TCP with inline network measurement

If we set m to a very small value, the latter part of the stream will not be available

when the former part of the stream has already been transmitted, in which case the stream

transmission fails. Therefore, m must be large enough to ensure successful transmission of

the measurement stream, but no larger. The algorithm for determining m is given below.

In the algorithm, m is adjusted according to whether or not transmission of the previous

measurement streams was successful.

• Set m = N initially. The minimum of m is 2, and the maximum of m is N .

• If F successive measurements are completed successfully, and m is greater than its

minimum of 2, then decrease m by 1. We set F to 2.

• If a stream creation fails, and m is less than its maximum of N , then increase m by

1 and create the stream again.

Packet storing timer (T)

We avoid degrading the TCP transmission speed, caused by storing data packets before

they are passed to the IP layer, by appropriately setting a timer to stop the creation

of a stream. Obviously, there is a trade-off between measurement frequency and TCP

transmission speed when choosing the timer value. That is, for large timer values, the

program can create measurement streams frequently so measurement frequency increases.

In this case, however, because TCP data packets may be stored in the intermediate buffer

for a relatively long period of time, TCP transmission speed may deteriorate. Following is

an example. An application temporarily stops sending data, but the measurement program

is still waiting for more packets to form a measurement stream. There is no new data packet

arriving at the ImTCP buffer so the packets currently in the buffer are delayed until the

application sends new data. In this situation, if the application does not send data within

1 sec, the TCP timeout will occur. On the other hand, for small timer values, the program

may frequently fail to create packet streams, leading a low frequency of measurement

success. In the following discussion, we derive the appropriate value for the packet storing

timer by applying an algorithm similar to the RTO calculation in TCP [46].

If we assume a normal distribution of packet RTTs with average ART T and variance

DRT T , ART T and DRT T can be inferred from the TCP timeout function [46]. We use the

following notation;

• X: RTT of a TCP data packet

– 24 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

Sender Router Receiver

K

Z

Y

X

Packet 1

Packet N

Ack 1

Ack N

Figure 2.5: Packet transmission times in TCP

• Y : The time since the first of N successive data packets is sent until the ACK of the

last packet arrives at the sender

• Z: The time necessary for N successive ACK packets to arrive at the sender

We illustrate X, Y and Z in Figure 2.5. We need to know the distribution of Z to determine

the appropriate value for the packet storing timer. From Figure 2.5, we can see that:

Z = Y −X. (2.3)

From the assumption mentioned above, X has a normal distribution N(ART T , DRT T). Note

that Y is the period of time from sending the first packet until the last packet is sent (we

denote the length of this period as K) plus the RTT of the last packet. That is, we can

conclude that the distribution of Y is N(ART T + K,DRT T). From Equation (2.3) we then

obtain the distribution of Z, as N(K, 2 ·DRT T).

Here, we provide a simple estimate of K. In a TCP flow, due to the self-clocking phe-

nomenon, the TCP packet transmission rate is a rough estimate of the available bandwidth

of the network link. The average time needed to send N successive TCP data packets is

K =
M

A
(N − 1), (2.4)

where M is the packet size and A is the value of available bandwidth which can obtain from

– 25 –

2.3 ImTCP: TCP with inline network measurement

the measurement results. From the distribution of Z and Equation (2.4), we determine the

waiting time for N ACK packets as below:

T =
M

A
(N − 1) + 4 ·DRT T .

Using this value for the timer, the probability of successfully collecting N packets reaches

approximately 98% due to the characteristics of the normal distribution. Thus, we use

a relatively short timer length that reduces additional processing delays caused by the

measurement program but provides a high probability of collecting a sufficient number of

packets for creating measurement streams.

2.3.4 Other issues

Effect of Delayed ACK option

When a TCP receiver uses the delayed ACK option, it sends only one ACK packet for

every two data packets. In this case, the proposed algorithm does not work properly since

it assumes the receiver host will send back a probe packet for each received packet. To

solve this problem, Step 3 in Subsection 2.2.2 of the proposed algorithm should be changed

so that intervals of three packets are used rather than intervals of two packets. That is,

we calculate the transmission delay (Di,2j′+2 − Di,2j′) (1 ≤ j′ ≤ �N/2�) for the probing

packets in stream i in order to check its increasing trend. This modification has almost the

same effect as halving the number of packets in one stream, resulting in a degradation in

measurement accuracy. Therefore, the number of packets in a stream should be increased

appropriately.

Effect of packet fragmentation

In the case where TCP packets are transmitted through a queue or node for which the

MTU (Maximum Transmission Unit) is smaller than the packet size, the packets will be

fragmented into several pieces in the network. The problem here becomes a question of

whether measurement result will still be accurate if the packets in measurement streams

become fragmented somewhere on the way to the receiver. We argue that fragmentation

has little effect on the measurement results. The measurement algorithm is based on the

increasing trend of the packet stream in order to estimate available bandwidth. Even

with fragmentation, the stream still shows an increasing trend when and only when the

– 26 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

transmission rate is larger than the available bandwidth. However, fragmentation does

increase the packet processing overhead, which may in turn raise the increasing trend of

packet streams if it occurs at a bottleneck link. This may lead to a slight underestimation

in the measurement results.

Effect of packet retransmission

When 3 dupACKs arrive and TCP packet retransmission occurs, the measurement program

transmits the retransmitted packet then immediately releases all packets stored in the

ImTCP Buffer. While the dupACKs arrive, the measurement program can not determine

the arrival intervals of the ACKs of the measurement streams, therefore, it can not deliver

measurement results. The program stops sending measurement streams and waits until a

new ACK, instead of dupACKs, arrives. This is done to that the network has recovered

from the congestion, and then measurements are restarted. Thus, packet retransmission

only interrupts the measurements for a while.

2.4 Simulation results

2.4.1 Effect of parameters

Number of packets in a measurement stream N

Figure 2.6 shows the network model used in the ns-2 [47] simulation. A sender host

connects to a receiver host through a tight link. The capacity of the tight link is 100

Mbps and the one-way propagation delay is 90 msec. All of the links from the end hosts

to the routers have a 100-Mbps bandwidth. There is cross traffic 1, 2 and 3 generated by

end hosts connecting to the routers. The cross traffic is made up of UDP packet flows,

in which various packet sizes are used according to the monitored results in the Internet

reported in [48], as shown in Table 2.1. We make the available bandwidth on the tight link

fluctuate by changing cross traffic 2’s rate. Cross traffic 1 and 3 are for adding noise to the

transmission delay of ACK packets.

To avoid counting on the effect from TCP behaviors, we investigate the results of the

measurement algorithm when the sender uses the UDP streams for the measurement. In

this case, the receiver simply echoes the UDP streams back to the sender. We show results

in which we turn off cross traffic 1 and 3 and change the available bandwidth as follows:

– 27 –

2.4 Simulation results

Cross
traffic 1

Cross
traffic 2

Cross
traffic 3

100 Mbps
Tight link

Sender Receiver

100 Mbps

Figure 2.6: Network model for evaluation of ImTCP

Table 2.1: Distribution of packet size of the cross traffic

Packet size (Bytes) Proportion of bandwidth (%)
28 0.08
40 0.51
44 0.22
48 0.24
52 0.45
552 1.10
576 16.40
628 1.50
1420 10.50
1500 37.10
40–80 (range) 4.60
80–576 (range) 9.60
576–1500 (range) 17.70

– 28 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Search Range
Result

A-bw

(a) N=3

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Search Range
Result

A-bw

(b) N=5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Search Range
Result

A-bw

(c) N=8

Figure 2.7: Results of the proposed measurement algorithm

– 29 –

2.4 Simulation results

Table 2.2: Number of measurement results when m changes

m (packets) 2 3 4 5 6 7 Proposed

N = 5 387 441 424 389 - - 424
N = 6 200 216 406 392 370 - 394
N = 7 77 173 277 279 348 349 359

from 0 sec to 50 sec, the available bandwidth is 60 Mbps; from 50 sec to 100 sec, decreases

to 40 Mbps; from 100 sec to 150 sec, increases to 60 Mbps; from 150 sec to 210 sec, decreases

to 20 Mbps; from 120 sec to 270 sec, increases to 60 Mbps; and from 270 sec to 300 sec the

available bandwidth is 60 Mbps. The simulation results are shown in Figure 2.7. These

figures indicate that when N is 3, the measurement results are far from the correct values.

That is because, when N is very small, we cannot determine the increasing trend of the

streams correctly in Step 3 in the proposed algorithm, which leads to the incorrect choice

of sub-range in Step 4. When N becomes larger than 5, on the other hand, the estimation

result accuracy increases.

With a large value of N , packet storing time for one measurement stream becomes

longer. Therefore, we want to keep the value as small as possible to avoid degrading the

TCP transmission rate. We use N = 5 as the default setting. In case the measurement

accuracy is required, the N much be set to a larger value. In the following simulations,

when there is no explicit mention, we use N = 5.

Effect of setting of m

We next examine number of measurement results yielded in 80 (s) of simulation by a

ImTCP connection when the available bandwidth is set to 3 Mbps. Our simulations now

uses the same topology as described in Figure 2.6 except that the UDP sender and receiver

are replaced by an ImTCP sender and an ImTCP receiver, respectively. Table 2.2 shows

the number of measurement results when N is set to different values. The results when

using the proposed setting are shown in the column “Proposed” of the table. We vary the

value of m to find at which value, the number of measurement results is almost the same

as that in case m = N (the underlined values). When N = 5, m = 2 is a good setting,

because the number of results maintain highly while the average packet storing time is

smallest. But when N = 6, the optimal value of m changes to 4 and m = 2 becomes a very

bad setting because it decrees the number of results. Thus, the ideal value of m depends

– 30 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

Table 2.3: Number of measurement results when T changes

T (s) 0.04 Proposed 0.01 0.004

A-bw = 4 Mbps 379 371 324 105
A-bw = 7 Mbps 486 488 423 298

0.7

0.8

0.9

1

0 0.01 0.040.02 0.03
Waiting time (s)

T=0.04 (s)Proposed

setting

T=0.01 (s)

T=0.004 (s)

C
D

F

Figure 2.8: CDF of the waiting time of the first packet in measurement streams

on the value of N . On the other hand, the dynamic setting always delivers large number

of measurement results while the average packet waiting time is kept low.

Packet waiting time T

We next examine the number of measurement results of ImTCP when we set T to 0.04 sec,

0.01 sec, 0.004sec. Table 2.3 shows the values when we set available bandwidth to 4 Mbps

and 7 Mbps. The “Proposed” column shows the correspondent values when we use the

proposed setting for T . When T takes small values such as 0.004 sec or 0.01 sec, ImTCP

often fails to create measurement streams, therefore, the number of measurement results

is small. On the other hand, as shown in Figure 2.8, when T takes a large values, such

as 0.04 sec, the waiting time of the packets for stream creation is long. As a result, we

found that the transmission rate of ImTCP when T = 0.04 sec is degraded. In contrast,

the proposed setting for T can eliminate the cases when the packet waiting time is long,

while maintaining the number of the measurement results.

– 31 –

2.4 Simulation results

2.4.2 Measurement accuracy

We next examine the measurement accuracy of ImTCP when all the parameters are set

to the values proposed above. We set cross traffic 1’s transmission rate to 5 Mbps, cross

traffic 3’s rate to 15 Mbps and changes cross traffic 2’ rate so that the available bandwidth

is 60 Mbps from 0 sec to 50 sec, 40 Mbps from 50 sec to 100 sec, 60 Mbps from 100 sec to

150 sec, 20 Mbps from 150 sec to 200 sec and 60 Mbps from 200 sec to 300 sec. Figures

2.9(a) and 2.9(b) show the measurement results of ImTCP when the number of packets

(N) in a measurement stream is five and eight, respectively. We also plot the correct

values of the available bandwidth in all figures. Comparing Figure 2.9(a) with Figure

2.7(b) and Figure 2.9(b) with Figure 2.7(c), we observe that our measurement method

can be successfully applied to TCP with no degradation in measurement accuracy. The

maximum relative error of the measurement results is 20.8% and 20.1%, when N is five

and eight, respectively. Experiments in high network environments in [44] have shown that

the error of Iperf [49] is 15%, Pathload [28] is 16% and Pathchirp [38] is 15–20%. An other

experiment in [27] shows that Spruce [27] has only 70% results that have the relative error

smaller than 30% and, in this case, Pathload and IGI experience larger errors. The results

mean that ImTCP with N=5 can perform measurement almost as well as existing active

measurement tools.

Figure 2.10 shows the changes in throughput of ImTCP in this simulation. For com-

parison, we also show the case of RenoTCP under the same network conditions. From the

figure, we can see that ImTCP performs the measurement with a throughput almost the

same as that of RenoTCP. An important point we can take from Figure 2.9 and 2.10 is

that ImTCP yields accurate results even when the current throughput is lower than the

available bandwidth. For example, from 0 sec to 50 sec in the simulation, although the

throughput of ImTCP is less than 60 Mbps, the available bandwidth value is still realized,

as shown in Figure 2.9.

2.4.3 Comparision with existing inline measurement methods

We compare the measurement accuracy of ImTCP with that of other inline measurement

methods. We examine the average measurement results of every 0.5 sec of ImTCP, West-

wood [16], the method proposed by Hoe [34] and TCP-Rab [35] in the network condition

described in Subsection 2.4.2. In fact, the method by Hoe’s performs only one measure-

ment right after the connection starts. To compare with other methods, we repeat the

– 32 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p
s)

Time (s)

Search Range
Result

A-bw

(a) N=5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

Search Range
Result

A-bw

(b) N=8

Figure 2.9: Measurement results of ImTCP

– 33 –

2.4 Simulation results

0

20

40

60

80

100

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

ImTCP N=5
ImTCP N=8

RenoTCP
A-bw

Figure 2.10: Throughput of ImTCP and RenoTCP

measurements in every RTT.

Figure 2.11(a) and 2.11(b) show that TCP-Rab can deliver accurate measurement re-

sults sometimes because the measurements do not interfered by the cross traffic 1 and

3. Hoe’s method is based on only 3 closely transmitted ACK packets so the affect from

cross traffic 1 and 3 is also small. Westwood performs worse in this condition because it

counts on the arrival intervals of all ACK packets. However, the methods are all passive

measurements so no one can detect the real value of available bandwidth if it changes fast

from low to high. In contrast, ImTCP can detect the changes of available bandwidth fast

because it actively adjusts the transmission rate of packets, even in the present of cross

traffic 1 and 3.

2.4.4 Effect of ImTCP on other traffic

We finally investigate the measuring accuracy in an environment where the cross traffic

fluctuates greatly. We use the network model depicted in Figure 2.6 with the cross traffic 1

and 3 turn off. Cross traffic 2 is changed to Web traffic involving a large number of active

Web document accesses. We use a Pareto distribution for the Web object size distribution.

We use 1.2 as the Pareto shape parameter with 12 Kbytes as the average object size. The

number of objects in a Web page is eight. The capacity of the tight link is set to 50 Mbps.

We run the simulation for 500 sec and find that the average throughput of ImTCP is

25.2 Mbps while that of Reno TCP is 23.1 Mbps. The results therefore show that data

transmission speed of ImTCP is almost the same as that of Reno TCP.

– 34 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Available bandwidth

ImTCP

Westwood

(a) ImTCP and TCP Westwood

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

Available bandwidth

Hoe’s method

TCP-Rab

(b) Method by Hoe and TCP-Rab

Figure 2.11: Average measurement results of inline measurement methods

– 35 –

2.4 Simulation results

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

C
D

F

Download time (s)

Web only
Reno

ImTCP

0

10

20

30

40

50

200 250 300 350 400

B
an

dw
id

th
 (

M
bp

s)
Time (s)

A-bw
Measurement result

Figure 2.12: Comparison of Web page download times

We compare the effect of ImTCP and Reno TCP on Web page download time in Figure

2.12. This figure shows cumulative density functions (CDFs) of the Web page download

time of Web clients. We can see that ImTCP and Reno TCP have almost the same effect

on the download time of a Web page. This indicates that inline measurement does not

affect other traffic sharing the link with ImTCP. Small graph in Figure 2.12 also confirms

that the ImTCP measurement result reflects the change in available bandwidth well.

2.4.5 Bandwidth utilization and fair share

Two important characteristics of the Internet transport protocol are full utilization of link

bandwidth and fair sharing of bandwidth among connections. We use the following simu-

lations to show that ImTCP has these two characteristics. We use the network topology

shown in Figure 2.13 with many ImTCP connections sharing a tight link. Using a small

buffer (200 packets) in the router at the tight link to force conflict among connections,

we vary the number of ImTCP connections while observing total throughput and fairness

among the connections.

In Table 2.4 we show the Jain’s fairness index [50] for the ImTCP connections as well

as the total transmission rate of ImTCP connections in Mbps when the capacity of the

tight link is set to 50, 60, and 70 Mbps. The number of connections is also varied. Also

shown are the transmission rates when ImTCP is replaced by Reno TCP.

This Jain’s fairness index takes a value from 0 to 1; a share is considered fair as its

index is near 1. We can see that the ImTCP connections share the bandwidth link fairly

– 36 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

 50 or 60 or 70 Mbps,

 50 ms

100 Mbps

 10 ms
100 Mbps

 10 ms

ImTCP senders TCP receivers

Figure 2.13: Network model for investigating bandwidth utilization and fair share

Table 2.4: Fairness and link utilization of ImTCP

Capacity #flows Jain’s index ImTCP Reno

2 0.999 44.4 45.6
50 10 0.997 46.7 46.0

24 0.986 47.6 46.1
2 0.999 53.2 53.1

60 10 0.992 55.3 54.0
24 0.995 56.7 54.11
2 0.999 59.9 60.6

70 10 0.992 63.7 61.9
24 0.992 65.9 62.0

because the index is always near to 1. Due to the small buffer size of the tight link, when

the number of connections are small the total throughput is not very high. When the

number of connections is large, total throughput increases. We can see that ImTCP and

Reno TCP have almost the same link utilization regardless of the number of connections.

2.4.6 TCP-friendliness and TCP-compatibility

ImTCP is TCP-friendly; it achieves the same throughput as Reno TCP under the same

condition. Simulation results shown in Table 2.4 confirm this. Although ImTCP buffers

packet stream at the sender host, the buffered packets is quickly transmitted after each

transmission of a packet stream (in the EMPTY BUFFER state). Therefore, there is

almost no degradation in transmission speed of data packets.

A network protocol is called TCP-compatible if the connections using this protocol

– 37 –

2.4 Simulation results

0

0.5

1

1.5

2

2 4 6 10 16 20 24 40 50

Im
T

C
P

 t
hr

ou
gh

pu
t/

R
en

oT
C

P
 t

hr
ou

gh
pu

t

#flow

Figure 2.14: Comparision of ImTCP and Reno TCP throughput

fairly share the bandwidth in an tight link with Reno TCP [51]. We examine the TCP-

compatibility of ImTCP by observing the throughput of ImTCP connections when they

coexist with Reno TCP connections and non-TCP traffic. The non-TCP traffic is indicated

by a 0.1 Mbps UDP flows with randomly varied packet size (300-600 bytes). All TCP and

non-TCP traffic conflict at the 50 Mbps tight link. We use the same number of ImTCP

and Reno TCP connections.

The ratio of the total throughput of ImTCP connections to that of Reno TCP connec-

tions is shown in Figure 2.14. When the ratio is around 1, ImTCP is TCP-compatible.

The horizontal axis shows the total number of the TCP connections. In the current version

of ImTCP, there is no time interval between 2 measurements. The result of this version is

shown by the line numbered 0. We can see that ImTCP receives lower throughput than

Reno TCP. The reason is as follows. Some of packets of ImTCP may not be transmitted in

burst due to the affect of packets buffering at the sender. On the other hand, traditional

TCP connections in competing environment have the trend to transmit packets in a bursty

fashion. When the packets of ImTCP collide with the bursts of packets of Reno TCP, they

have higher probability to be dropt. Therefore, ImTCP with high measurement frequency

may lost more packets when conflicting with Reno TCP, leading to a lower throughput.

The simple and effective way to overcome this problem is increasing the measurement

interval of ImTCP. We next consider the cases when the measurement intervals are 12, 15

and 20 RTTs, and show the results by the line numbered 12, 15 and 20, respectively, in

Figure 2.14. Note that the RTT in this case is 0.14 seconds and each measurement takes at

most 4 RTTs. Therefore, 12, 15 and 20 RTT interval means ImTCP releases measurement

– 38 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

results in 2.24(s), 2.66(s) and 3.36(s), respectively. When the measurement interval is

relatively small, ImTCP achieves lower throughput than Reno TCP. On the other hand,

when the measurement interval is equal to or larger than 20 RTTs, ImTCP is compatible

to Reno TCP. In other words, when the measurement frequency is smaller than a certain

value (in this simulation, that is 1/3.36 times per second) there is a trade-off relationship

between the TCP compatibility and the measurement frequency.

In such a heavy congested network that there is no available bandwidth even when

ImTCP does not exist, ImTCP must be TCP-compatible in order to gain the equal through-

put to other connections. Moreover, in this environment, the measurement results them-

selves usually do not bring so much valuable information so they will be not required

updated frequently. Therefore, in this case, ImTCP must take a low measurement fre-

quency. When the network is vacant, ImTCP will not conflict with other connections

so much. In this case, TCP-compatibility does not strictly required, because ImTCP is

TCP-friendly so that ImTCP will perform exactly like traditional TCP. Besides, the infor-

mation about the vacancy in the network will be of interest. In this case, ImTCP should

increase its measurement frequency. Thus, there should be a dynamic adjustment for the

measurement frequency according to the network status. We will consider the problem in

our future works.

2.5 Transmission modes of ImTCP

2.5.1 Background transmission

The transmission for backup data or cached data (background traffic) should not degrade

throughput of other traffic (foreground traffic), which may be more important. We intro-

duce an example showing that ImTCP successfully uses the results of bandwidth availability

measurements to prevent its own traffic from degrading the throughput of other traffic. We

call this type of ImTCP data transmission background mode.

The main idea is to set an upper bound on the congestion window size according to

estimated values so that the transmission rate does not exceed the available bandwidth.

This reduces the effect ImTCP has on other traffic in the same network links. We use the

following control mechanism. When

g ·RTT · A > m ·N,

– 39 –

2.5 Transmission modes of ImTCP

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

C
D

F

Download time (s)

Web only
RenoTCP

ImTCP background

0

10

20

30

40

50

120 140 160 180 200

B
an

dw
id

th
 (

M
bp

s)

Time (s)

A-bw
Measurement result

ImTCP background

Figure 2.15: Average of Web page download time

we set

MaxCwnd = g · RTT · A,

where A is the estimated value of available bandwidth, MaxCwnd is the upper bound of

the congestion window size and N is the number of packets for a measurement stream.

The parameter g can range from 0 to 1. When g is small, ImTCP uses less bandwidth

and interferes only very slightly with foreground traffic. When g is near 1, ImTCP uses

more bandwidth and its effect on foreground traffic grows. We set the upper bound of the

congestion window size (MaxCwnd) to g · RTT · A only when the value is large enough

for ImTCP to continue performing measurements well.

We examine the behavior of ImTCP in background mode when foreground traffic is

originated with Web document transfers. We replace the ImTCP connection in the simu-

lation in Section 2.4 with a background mode ImTCP connection. Figures 2.15 compare

the download time for Web pages under ImTCP and Reno TCP. We find that ImTCP has

only a very small effect on the download time of the foreground Web traffic. The average

throughput of ImTCP in this case is about 72% of that of Reno TCP. The small graph

in Figure 2.15 shows the measurement value and throughput of ImTCP connection as a

function of simulation time in this case. Note that the throughput of ImTCP does not

approach the actual value of available bandwidth. This indicates that ImTCP background

mode is successfully avoiding interference with Web traffic.

– 40 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

2.5.2 Full-speed transmission

We introduce another example of a modified congestion control mechanism to show that

ImTCP can enhance link utilization using its measurement results.

To improve TCP throughput in wireless or high-speed networks, we introduce an

available-bandwidth-aware window size adjustment. The idea is to use the measurement

result to adjust the increasing speed of the congestion window size. When the available

bandwidth is large, the window size increases quickly to make full use of available band-

width, and when the available bandwidth is small due to the existence of other traffic,

the window size increases slowly. We call this type of ImTCP data transmission full-speed

mode.

In the congestion avoidance phase, we do not increase the congestion window size

(Cwnd) by one in every RTT. Instead, we use the following adjustment:

Cwnd← Cwnd + max

(
1, h · (1− Cwnd

V
)

)
,

V = A · RTT.

In the equation, h (h ≥ 1) is a parameter that determines how fast the window size

increases. If h is large, ImTCP can successfully utilize the bandwidth link. When h is

small or equal to 1, ImTCP behaves the same as Reno TCP.

We perform the following simulation to investigate the performance of ImTCP in full-

speed mode. The ImTCP sender and ImTCP receiver is connected by two routers with

Gigabit links. The 500 Mbps link between the two routers becomes the bottleneck link in

the path. We assume the buffer of the TCP receiver is large so the TCP throughput can

achieve 500 Mbps.

Figure 2.16 shows the changes in the window size of ImTCP in full-speed mode, High-

Speed TCP (HSTCP) [52] and Reno TCP in the network. Reno TCP requires a long time

to reach a large window size. HSTCP increases the window size quickly to fully use the free

bandwidth; however, the increasing speed is non-sensitive to the available bandwidth such

that packet loss events occur frequently. Therefore, overall, the throughput of HSTCP is

not as large as expected. ImTCP increases the window size quickly when the window size is

small and decreases the speed when its transmission rate reaches the available bandwidth

to avoid packet losses. Therefore, the throughput of ImTCP is better than the others.

Finally, we compare the throughput of ImTCP in full-speed mode with Reno TCP in

– 41 –

2.5 Transmission modes of ImTCP

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

#p
kt

s

Time (s)

HSTCP

RenoTCP

ImTCP full-speed

Figure 2.16: Comparision of TCP window sizes

0

0.5

1

1.5

2

2.5

1 0.1 0.01 e-02 e-03 e-05 e-06 e-07

Th
ro

ug
hp

ut
 (M

bp
s)

Packet loss ratio

RenoTCPImTCP full-speed

TCP Westwood

Link Capacity

Figure 2.17: TCP throughputs in wireless network

a wireless network. We insert a 2 Mbps network link in the path between a TCP sender

and TCP receiver to simulate a wireless link. We vary the packet loss rate of the network

links and find that ImTCP can achieve a larger throughput than TCP Westwood and Reno

TCP when the loss rate is high, as shown in Figure 2.17.

Parameter h is set to 100 in this case. When the packet loss rate is high, a higher value

for parameter h can help ImTCP obtain higher available bandwidth. When the packet loss

rate is low, the value of h should be low so that ImTCP will share bandwidth fairly with

other traffic.

– 42 –

Chapter 2. ImTCP: TCP with an Inline Measurement Mechanism...

2.6 Conclusions

In this chapter, we introduced a method for measuring the available bandwidth in a network

path between two end hosts using an active TCP connection. We first constructed a new

measurement algorithm that uses a relatively small number of probe packets yet provides

periodic measurement results quickly. We then applied the proposed algorithm to an

active TCP connection and introduced ImTCP, a version of TCP that can measure the

available bandwidth. We evaluated ImTCP through simulation experiments and found

that the proposed measurement algorithm works well with no degradation of TCP data

transmission speed. We also introduced examples of ImTCP special transmission modes.

The evaluation of ImTCP performance in real network environments as well as the

Internet is performed in [15]. The source code of ImTCP implemented in BSD system is

openly available at ImTCP homepage [53].

In future projects, we will consider a dynamic adjustment for the measurement fre-

quency of ImTCP in order to make ImTCP compatible with traditional TCP. We will also

develop new transmission modes for ImTCP as well as evaluate the performance of the

modes introduced in this chapter.

– 43 –

Chapter 3

A Simultaneous Inline Measurement

Mechanism for Capacity and

Available Bandwidth

3.1 Introduction

The capacity of an end-to-end network path, which is considered to be the smallest capacity

of network links along a path, is the maximum possible throughput that the network path

can provide. Traffic may reach this maximum throughput when there is no other traffic

along the path. The available bandwidth indicates the unused bandwidth of a network

path, which is the maximum throughput that newly injected traffic may reach without

affecting the existing traffic. The two bandwidth-related values are obviously important

with respect to adaptive control of the network.

In many cases, both capacity and available bandwidth information are required at

the same time. For example, network transport protocols should optimize link utilization

according to available bandwidth. However, if a connection tends to fully using the available

bandwidth, other connections that join the network later will find it difficult in obtaining

bandwidth. Therefore, connections do not share the bandwidth fairly. In this case, if the

connections are aware of the capacity, they can quickly change the used bandwidth so

that the fairness with newly attended connections is maintained. One method of using

capacity and available bandwidth information to optimize both bandwidth utilization and

connection fairness for TCP is proposed in [14]. Another example is streaming multimedia

data. Capacity information can be used for the decision of the size and the quality of the

– 44 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

multimedia data. Because available bandwidth is normally highly variable, it is better to

use capacity information in this case. Available bandwidth information is then used to

improve the performance of the transmission of the data. Besides, the billing policy of the

Internet service provider may be based on both the capacity and the available bandwidth

of the access link that they are providing to the customer.

Several passive and active measurement approaches exist for capacity or available band-

width [26–29,33,37,42]. Although active approaches are preferred because of their accuracy

and measurement speed, sending extra traffic onto the network is a disadvantage that is

common to all active measurement tools. For example, Pathload [28] generates between 2.5

and 10 MB of probe traffic per measurement. The average per-measurement probe traffic

generated by Spruce [27] is 300 KB. For routing in overlay networks, or adaptive control

in transport protocols, these measurements may be repeated continuously and simultane-

ously from numerous end hosts. In such cases, the probes will create a large amount of

traffic that may degrade the transmission of other data on the network, as well as the

measurement accuracy itself.

We therefore propose an active measurement method that does not add probe traffic

to the network. The proposed method, named inline measurement, uses the concept of

plugging the new measurement mechanism into an active TCP connection. We have intro-

duced ImTCP (Inline measurement TCP) in Chapter 2, a Reno-based TCP that deploys

inline measurement for available bandwidth. The ImTCP sender not only observes the

ACK packet arrival intervals in the same manner as TCP Westwood [16], but also actively

adjusts the transmission interval of data packets, in the same way that active measurement

tools use probe packets. When the corresponding ACK packets return, the sender utilizes

the arrival intervals to calculate the measurement values.

The available bandwidth measurement algorithm for ImTCP is described in detail in

Section 2.2. For each measurement, the ImTCP sender searches for the available bandwidth

only within a given search range. The search range is a range of bandwidth that is expected

to include the current available bandwidth and is calculated statistically from the previous

measurement results. Without a search range, measurement tools (such as Pathload) must

send packet in many transmission rates, from 0 Mbps to the upper limit of the physical

bandwidth, to probe the network. The search range limits the range of the bandwidth that

the measurement tool should probe, therefore, probe packets will not be sent in a high rate

if not necessary. Thus, the measurements do not cause much effect on other traffic in the

network. The search range also allows the number of packets for the measurement to be

– 45 –

3.1 Introduction

kept small, so that measurement is still possible when the TCP window size is relatively

small. The search range is divided into multiple sub-ranges of identical width of bandwidth.

For each of the sub-ranges of the bandwidth, the sender transmits a group of TCP data

packets (a packet stream), the transmission rate of which varies to cover the sub-range.

The sender then determines whether an increasing trend exists in the transmission delay of

packets in each stream when the echoed (ACK) packets arrive at the sender host. Delayed

ACKs is supposed to be disabled at the receiver because the ImTCP sender will stop

measurement and perform like a normal TCP sender if it finds out that many expected

ACKs do not arrive. The increasing trend indicates that the transmission rate of the

stream is larger than the current available bandwidth of the network path [28]. This fact

allows the sender to infer the location of the available bandwidth in the search range. The

simulation results show that the ImTCP sender can perform periodic measurements at

short intervals, on the order of several RTTs and the measurements results reflect well the

changes in the available bandwidth of the network.

In the present chapter, we introduce an inline measurement algorithm for capacity for

ImTCP. The proposed algorithm utilizes the arrival intervals of the ACK packets of packet

pairs (PPs) that are sent back-to-back. Due to the characteristic of ImTCP that PPs are

available after the transmission of each measurement stream, the capacity measurements do

not require any further changes in ImTCP. With the proposed method, ImTCP measures

the capacity at the early stage of the connection and continues to collect data to improve

the measurement accuracy during the transmission. We do not intend to develop a new

capacity measurement tool that is better than the existing ones [22,37,39]. Rather, with

the effort of reducing the load over the network caused by probe traffic, our main focus

is on how we can extract capacity information from a TCP connection with the smallest

change in TCP.

The main concept of the proposed capacity measurement algorithm in ImTCP is that

the available bandwidth information, which can be yielded periodically due to the deployed

available bandwidth measurement mechanism, is exploited. In the existing PP-based ca-

pacity measurement algorithm [22,37,39], the PPs that are cut into by other packets from

cross traffic at the bottleneck link causes incorrect capacity estimation and are therefore

eliminated from the data used in the calculation. However, in the proposed method, the

available bandwidth information is used for estimation of the quantity of the cross traffic

that cuts in PPs at the bottleneck link. The interval of the PPs becomes usable for the

capacity measurement, which enables ImTCP to collect more information from PPs so

– 46 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

that faster and more accurate measurements can be expected. The proposed algorithm

also uses statistical analysis to calculate the confidence interval of the delivered results.

Through simulation validations, we show that ImTCP can deliver capacity measurement

results quickly, independent of the characteristics of the network. In addition, we find that

the capacity measurement algorithm works well in extremely high-load networks, in which

current measurement algorithms do not work well; ImTCP can deliver results with small

errors even when the network load is as high as 93% of the capacity.

The remainder of this chapter is organized as follows. In Section 3.2 we discuss PP-

based measurement techniques used for inline measurement. In Section 3.3, we introduce

the proposed measurement algorithm for network capacity. In Section 3.4, we evaluate its

performance through simulation experiments. Finally, in Section 3.5, we present concluding

remarks.

3.2 Packet-pair-based capacity measurement algorithms

Currently there are various approaches for measuring the capacity of an end-to-end net-

work path [24, 25, 54–56]. Some of these approaches use packets of various size to probe

the network and infer the network capacity from the difference in the transmission delays

of packets of various sizes [54]. Other approaches use the probe packets in different TTLs

(Time To Live) to measure all link bandwidth, rather than just the capacity of the bottle-

neck link [24,25,55,56]. However, the packet size in TCP is always set to path MTU, which

is the maximum size a packet can have to avoid fragmentation. A change in packet size

can therefore only be done by selecting smaller packets, which requires TCP to send more

packets. Setting small TLL values to TCP packets in order to dropt them along the path

causes packet retransmissions and reduction in TCP window size. Thus, changes in TCP

data packet size or TLLs for the purpose of measurement may cause severe deterioration

in the data transmission throughput of TCP so these approaches can not be used for inline

measurement.

We found that only PP-based measurement can be used for inline measurement because

no changes in packet size or TTL are required, whereas packets that are sent back-to-back

can be created with the current ImTCP structure without requiring any changes.

– 47 –

3.2 Packet-pair-based capacity measurement algorithms

Case A)

Case B)

Case C)

Gap

Sender Bottleneck link Receiver

Cross traffic

Figure 3.1: Three cases showing how the spacing between a pair of packets may change as
the pair travels along a path.

3.2.1 Packet pair technique

The intuitive rationale of capacity measurement using PPs is that if two packets are sent

close enough together in time to cause the packets to queue back-to-back at the bottleneck

link, then the packets will arrive at the destination with the same spacing as when they

left the bottleneck link [54]. The spacing is supposed to remain unchanged until the PPs

reach the receiver, as shown in Case A of Figure 3.1, which is a variation of a figure taken

from [22].

In this case, the capacity of the bottleneck link (C) can be calculated by the equation:

C =
P

Gap
, (3.1)

where P is the size of the PPs, and Gap is the time spacing of the two packets when

arriving at the receiver.

However, when a PP travels along the path, two more situations can occur. As shown

by Case B in Figure 3.1, the two packets may be cut into by other packets from cross

traffic at the bottleneck link. The result is that, the spacing between the two packets

becomes larger than expected. In this case, Equation (3.1) leads to an under-estimation

of the capacity. In another case, indicated by Case C in Figure 3.1, the PPs may pass

back-to-back through the bottleneck link, but in a link downstream of the bottleneck link,

the pairs again get in queue, and the spacing between the two packets is shortened. In this

case, Equation (3.1) leads to over-estimation.

Current PP-based measurement techniques use only the PPs described in Case A to

calculate capacity. These techniques have various mechanisms for determining the Case-A

– 48 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

t2 t1
Time

Bottleneck
link

Direction of packet
transmission

Cross
traffic

Arrival
time

Average amount = L

P2 P1

Figure 3.2: Arrival time at the bottleneck link of PPs and cross traffic

PPs from all of the received PPs. Some tools assume a high frequency of appearance of

Case-A PPs and so search for these PPs from a frequency histogram (Pathrate [39]) or a

weighting function (Nettimer [22]). CapProbe [37] repeatedly sends PPs until it discovers

a Case-A PP, based on the transmission delay of the packets.

When the network path is almost empty, Case-A PPs may appear with the highest fre-

quency. However, when other traffic appears in the network, there is a high probability that

the cross traffic on the tight link (the link having smallest available bandwidth) stretches

the PPs so that their intervals become large; the PPs then become Case-B. Case-C PPs

do also exist, but some probing results from the Internet in [39] show that they are much

fewer than Case-B ones. In this case, because Case-B PPs occur more often, CapProbe

will spend an extremely long time for capacity searching, and Pathrate and Nettimer will

deliver incorrect estimations.

Unlike those existing techniques, we propose a new technique by which to calculate

capacity that can use both Case-A PPs and Case-B PPs. This is possible because of the

available bandwidth information that is available in ImTCP.

3.2.2 Capacity calculation

Let us consider the timing of the arrival at the bottleneck link of a PP (Figure 3.2). We

assume that the first packet arrives at t1 and the second packet arrives at t2. During

– 49 –

3.3 Inline measurement algorithm for capacity

the interval from t1 to t2, packets from other traffic may arrive at the bottleneck link.

The second packet (P2) must wait in the queue for the processing of the cross packets.

Therefore, the time spacing (Gap) of the PP after leaving the bottleneck link is the total

of the queuing time and the processing time of the second packet. That is:

Gap =
P + L

C
, (3.2)

where L is the amount of the cross traffic that arrives at the bottleneck link during the

interval (t1, t2). Supposing that the bottleneck link of a network path is the link having

the smallest available bandwidth, we can then calculate the total transmission rate of the

cross traffic at the bottleneck link as: C −A, where A is the current available bandwidth.

Let δ be the time spacing of the PP upon arrival at the bottleneck link (δ = t2− t1). Then,

the average value of L is:

L = δ(C − A), (3.3)

from Equations (3.2) and (3.3), we can write:

C =
P + δ(C −A)

Gap
,

or

C =
P − δ · A
Gap− δ

. (3.4)

Equation (3.4) enables the calculation of capacity from the PPs for both Case A and Case

B. In the next section, we propose the new capacity calculation algorithm based on the

equation.

3.3 Inline measurement algorithm for capacity

3.3.1 Overview

We introduce an inline PP-based measurement algorithm for capacity that utilizes avail-

able bandwidth to improve the measurement accuracy. The available bandwidth infor-

mation can be used because an inline packet stream-based measurement mechanism for

it already exists in ImTCP. Some existing available bandwidth measurement tools, such

as IGI/PTR [29], take the reverse approach, that is obtaining capacity information first,

then using it together with PP probing results to find available bandwidth. Moreover,

– 50 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

TOPP [42] measures both available bandwidth and capacity at the same time using PPs.

However, as shown in recent experiments in real networks [44], measuring available band-

width with packet streams is more valid than using packet pairs. Therefore, we think that

the approach that we take in ImTCP is better.

The proposed capacity measurement mechanism has the following characteristics:

• The mechanism does not require any change in the current structure of ImTCP.

Therefore, it does not affect the data transmission performance of ImTCP.

• The measurement starts and is able to provide results at the early stage of the

connection. Unlike other methods such as the work by Hoe [34], the measurement

also continues during the transmission. When the connection lasts for a long time,

the measurement exploits the accumulated data to improve its accuracy.

3.3.2 Implementation of packet pairs in ImTCP

As introduced in Chapter 2, a measurement program is inserted into the sender program

of TCP Reno to create an ImTCP sender. The measurement program is located at the

bottom of the TCP layer, as shown in Figure 2.3. When a new data packet is generated at

the TCP layer and is ready to be transmitted, the packet is stored in an intermediate FIFO

buffer. The measurement program waits until the number of packets in the intermediate

buffer becomes sufficient and then decides the time at which to send the packets in the

buffer in order to create measurement streams. When no measurement stream is needed,

the program immediately passes all of the data packets to the IP layer. In the previous

version of ImTCP, we decided that the program forms and sends one measurement stream

for the available bandwidth in each RTT in order to maintain fairness with respect to

traditional TCP Reno.

During the transmission of a measurement stream, which includes five packets, there is

a high probability that more than two packets arrive at and are stored in the intermediate

FIFO buffer. Making use of the fact that after the transmission of a stream, ImTCP sends

all stored packets in a bursty fashion, the capacity measurement program considers the

first two packets in the burst as a PP to perform the measurement. Thus, there is no effect

on the performance of ImTCP by introducing the capacity measurement mechanism. The

creation of PPs is illustrated in Figure 3.3.

In ImTCP, 2–4 measurement streams are required in order to determine the available

– 51 –

3.3 Inline measurement algorithm for capacity

ImTCP sender Receiver

Measurement

stream

Packet pair

Normal data packets

Normal data packets

Time

Figure 3.3: Creation of PPs in ImTCP

bandwidth. As mentioned above, each PP is formed and transmitted after each measure-

ment stream. Therefore, 2–4 results for PPs can be obtained during the interval of two

consecutive measurement results for available bandwidth.

3.3.3 Proposed measurement algorithm

We next explain the procedure for determining the capacity from the measurement results

of PPs using Figure 3.4. The procedure involves the following steps:

• Grouping of PPs: PPs that sent when the measured available bandwidth remains

unchanged are placed in the same group. The average value of arrival interval of

PPs in a group, denoted by Gap, is then calculated. To obtain a good average value,

the number of PPs in each group should be enough large i.e. larger than or equal to

3, as determined herein. Therefore, after grouping, a group having only one or two

PPs will be merged with the group that is collected right after that.

• Calculation: Based on the Gap value of a group, a sample of capacity is calculated

using the following functions. If A
P/δ

> λ we use

C =
P

Gap
, (3.5)

– 52 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

Calculation

Final
result

1:1 N:1

All:1

Grouping

Observation

Observation

Statistical

analysis

statistical

analysis

PP

PP

PP

PP

PP

PP

PP

PP

Sample

Sample

Sample

Sample

Group

Group

Group

PPs in the same available

bandwidth : 1

Figure 3.4: Proposed algorithm for inline capacity measurement

otherwise, we use

C =
P − δ · A
Gap− δ

, (3.6)

where λ is the threshold showing the relation between the available bandwidth and

the rate of the PPs upon arriving at the bottleneck link, that is defined as P/δ . We

assume that the links before the bottleneck link do not have a noticeable effect on

the time space, so that δ is approximated by the time interval in which the sender

sends the packets. When the available bandwidth is approximately equivalent to the

rate of the PPs upon arriving at the bottleneck link, which is considered as A
P/δ

> λ,

the packets may pass through the link without being cut into by other packets (Case

A). In this case, Equation (3.5) (based on Equation (1)) is used. On the other hand,

since when the arrival rate of the PPs is much higher than the available bandwidth,

which is considered as A
P/δ
≤ λ, the probability is high that the PP is a Case-B

PP, Equation (3.6) (based on Equation (3.4)) is used. The changes in δ before the

PP arriving at the bottleneck link make the calculation for sample of capacity using

Equation (3.4) incorrect. However, we believe that the changes are small and do not

occur so often. The task of grouping N samples in the next step of the algorithm is

is an effort to reduce the effects of the changes.

– 53 –

3.4 Simulation experiments

Cross
traffic 1

Cross
traffic 2

Cross
traffic 3

100 Mbps
Bottleneck
link

Sender Receiver

100 Mbps

Figure 3.5: Simulation topology for evaluation of capacity measurement

• Statistical analysis:

– We form observations, each of which is the average value of N samples. N

should be large enough so that each observation has high accuracy. But when

N is too large, the time required to finish an observation is long. This means

that the proposed algorithm can not deliver the measurement results quickly.

In the present paper, based on empirical experiments, we recommend N = 10.

– The average value of the observations are calculated as the final result.

The 90% confidence interval is also calculated to show the degree of fluctuation

of the capacity.

3.4 Simulation experiments

In this section, we examine the measurement results of the proposed capacity measurement

algorithm through ns-2 [47] simulations. We also compare the proposed algorithm with two

existing algorithms, CapProbe [37] and Pathrate [39]. We compare the algorithms in the

scope of inline measurement, because we only focus on how to extract capacity information

from a TCP connection without introducing any extra probe traffic in to the network.

We use the simulation topology shown in Figure 3.5. The transmission rate of cross

traffic 1 is fixed to 5 Mbps and that of cross traffic 3 is fixed to 15 Mbps. The packet size

distribution of cross traffic is set to the statistical results for the Internet traffic reported

– 54 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

ImTCP’s results
Capacity (90 Mbps)

(a) λ = 0.9

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

ImTCP’s results
Capacity (90 Mbps)

(b) λ = 0.8

Figure 3.6: Measurement results for ImTCP when cross traffic 2 is 5 Mbps

in [48], as shown in Table 2.1. This mixture has an average packet size of 404.5 bytes and

has a correlation value of 0.999 when compared to realistic Internet traffic.

3.4.1 Effect of parameters

• Value of λ

We set the bottleneck link capacity to 90 Mbps and the transmission rate of cross

traffic 2 to 5 Mbps and examine the measurement results when λ = 0.9 (Figure

3.6(a)) and λ = 0.8 (Figure 3.6(b)). These figures show the changes of the capacity

measurement results as the number of PPs sent for the measurement increases. The

errors bars show the 90% confidence interval of the correspondent results. For the

first some PPs, there is at most one observation is delivered therefore ImTCP can

not calculate the confidence interval. In this case, the load on the bottleneck link is

low, so the Equation (3.5) should normally be used. The setting λ = 0.9 does not

allow the Equation (3.5) to be used so frequently and therefore leads to a bad result,

that can be seen in large confidence intervals. We see that in this case λ = 0.8 (or

lower than 0.8) is a better setting.

We next show the case when the capacity is 80 Mbps and the rate of cross traffic 2 is

set to 20 Mbps in Figure 3.7(a) (λ = 0.5) and 3.7(b) (λ = 0.8). In this case, the rate

of the cross traffic is high, so Equation (3.6) should normally be used. Therefore,

– 55 –

3.4 Simulation experiments

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(a) λ = 0.5

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(b) λ = 0.8

Figure 3.7: Measurement results for ImTCP when cross traffic 2 is 20 Mbps

a small value of λ, such as 0.5, gives incorrect results for the capacity, and, again,

λ = 0.8 is a good setting in this case. Thus, λ = 0.8 is a suitable setting for the two

cases above, and we found that it is a good setting in many other cases. Therefore,

in the following simulations, we used λ = 0.8.

In general, for longer connections, because a larger number of PPs are sent, ImTCP’s

results approach nearer to the right value. However, we can see that the measurement

results of ImTCP are sometimes not exactly the right value (for example results in

Figure 3.6(b)) even when the connection lasts for along time. The reason for this is

that, we suppose that the amount of the traffic that cut in every PPs is the average

value of that (L = δ(C − A)), but the amount of traffic that cut in a certain PP is

sometimes too large or too small in comparison with L. In these cases, the Sample

calculated from these outstanding values (using Equation (3.6)) is far from the right

value of Capacity, this leads to a slight inaccuracy in the final result of ImTCP.

• Value of N

N is the number of samples to form an observation. We set the bottleneck link

capacity to 80 Mbps and the rate of cross traffic 2 to 40 Mbps. Figures 3.8(a), 3.8(b)

and 3.8(c) show the measurement results when N is set to 1, 10 and 50, respectively.

We can see that in Figure 3.8(a), the results are yielded after only 20 PPs are sent,

while in Figure 3.8(b), the number is 70, and in Figure 3.8(c), it is 260. The large

– 56 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

0
20
40
60
80

100
120
140
160
180

20 500 1000 1500 2000

M
bp

s

Number of PPs

ResultsCapacity (80 Mbps)

(a) N = 1

0
20
40
60
80

100
120
140
160
180

70 500 1000 1500 2000

M
bp

s

Number of PPs

Results
Capacity (80 Mbps)

(b) N = 10

0
20
40
60
80

100
120
140
160
180

260 500 1000 1500 2000

M
bp

s

Number of PPs

Results
Capacity (80 Mbps)

(c) N = 50

Figure 3.8: Measurement results for the proposed algorithm when N changes

– 57 –

3.4 Simulation experiments

confidence interval in Figure 3.8(a) indicates that a small value of N (N = 1) is not

suitable. On the other hand, Figure 3.8(c) indicates that a value of N (N = 50),

that is too large, is unsuitable as well, because in this case the time required for

the results to be yielded is long. Figure 3.8(b) shows the results with the proposed

setting (N = 10), which can provide faster and better results. Unlike the results in

Figure 3.6 and 3.7, the measurement results in Figure 3.8(a), 3.8(b) and 3.8(c) are

all accurate from the first values. We can not expect the results to be better, as

we have explained in Section 4.1 Therefore we could not see an improvement in the

measurement accuracy in the figures, as the number of PPs increases.

We use N = 10 for the following simulations. In fact, N must be set by applications

or programs for that the measurement results are collected, depending on its uses.

For example, if the application needs the measurement results to be updated in short

intervals, it may choose a small value for N .

3.4.2 Comparison with CapProbe

We implement the CapProbe algorithm in TCP in order to compare the performance with

the greatest possible impartiality. The difference from the original CapProbe algorithm

proposed in [37] is that the packet size remains unchanged over the “runs” in the algorithm,

because in TCP connections, changing the data packet size may have a bad effect on the

TCP performance. The restriction on the packet size may be the reason for the poor

performance of CapProbe in the following simulations. This means that CapProbe is not

suitable for inline measurement.

Small capacity, low network load scenario

The capacity is set to 10 Mbps, and the rate of cross traffic 2 is set to 4 Mbps. Figures

3.9(a) and 3.9(b) show the measurement results for the proposed algorithm and CapProbe,

respectively. Both of the measurement results are good. Moreover, we can see that the

results obtained by CapProbe have high accuracy, because when CapProbe successfully

finds the PP in Case A, the capacity can be calculated exactly. Another advantage of

CapProbe is that, compared with the proposed algorithm, CapProbe is simple because it

requires no complicated calculations. Howerver, CapProbe only delivers a measurement

result after sending a large number of PPs. Table 3.1 shows the number of PPs sent until

the proposed algorithm and CapProbe deliver the first measurement result. Here, the

– 58 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

0

5

10

15

20

0 200 400 600 800 1000 1200

M
bp

s

Number of PPs

ImTCP's Results
Capacity (10 Mbps)

(a) ImTCP

0

5

10

15

20

0 200 400 600 800 1000 1200

M
bp

s

Number of PPs

CapProbe’s results
Capacity (10 Mbps)

(b) CapProbe

Figure 3.9: Measurement results for ImTCP and CapProbe in small capacity, low network
load scenario

Table 3.1: Number of PPs required for the first measurement of ImTCP and CapProbe

Capacity (Mbps) Cross traffic 2 (Mbps) Proposed Alg. (PPs) CapProbe (PPs)
10 1 60 87
10 2 60 85
10 4 60 92
10 5 60 159

capacity of the bottleneck is kept unchanged while the cross traffic 2 is varied from 1 Mbps

to 5 Mbps. The table shows that, CapProbe only delivers a measurement result after 85

PPs or more are sent. The required number of PP is larger as the network load increases.

In contrast, the proposed algorithm delivers good measurement results faster, after sending

60 PPs.

Small capacity, high network load scenario

We next change the cross traffic 2 to 9 Mbps to form a high network load environment.

In this case, ImTCP still delivers good measurement results, as shown in Figure 3.10(a).

On the other hand, CapProbe, as can be seen in Figure 3.10(b) introduces fewer results.

It also delivers one incorrect measurement result. The reason for this is that, when the

bottleneck link is crowded, many PPs are cut into by cross traffic so most of PPs are in

– 59 –

3.4 Simulation experiments

0

5

10

15

20

0 100 200 300 400 500 600 700 800

M
bp

s

Number of PPs

ImTCP’s results
Capacity (10 Mbps)

(a) ImTCP

0

5

10

15

20

0 100 200 300 400 500 600 700 800

M
bp

s

Number of PPs

CapProbe’s results
Capacity (10 Mbps)

(b) CapProbe

Figure 3.10: Measurement results for ImTCP and CapProbe in small capacity, high network
load scenario

Case-B. It is easy for CapProbe to mistake a Case-A PP for a Case-B PP.

Large capacity, high network load scenario

The capacity is set to 80 Mbps, and the rate of cross traffic 2 is set to 60 Mbps. In a

network with such a heavy load, the proposed algorithm can perform well (Figure 3.11(a)),

whereas CapProbe can not deliver accurate results (Figure 3.11(b)), because, in this case,

most of the PPs are cut into by other traffic so there are few Case-A PPs. In Figure 3.11(b)

we also show the measurement results of CapProbe when the cross traffic 2 is decreased

to 50 Mbps. These measurement results are still far from the correct value. We believe

that CapPobe will perform better if the size of PPs is adapted appropriately, instead of

being unchanged in the simulations, but changing packet size is not suitable with inline

measurement.

3.4.3 Comparison with Pathrate

In order to accommodate the Pathrate algorithm into TCP, we use the interval of PPs

delivered in ImTCP to form the histogram to be used in Pathrate. Pathrate also requires

the measurement results of packet trains, referred to as the Average Dispersion Rate (ADR)

in the Pathrate algorithm [39]. However, integrating the packet train into TCP is difficult

because this has an adverse effect on the performance of TCP. Therefore, we perform the

– 60 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000

M
bp

s

Number of PPs

ImTCP’s results
Capacity (80 Mbps)

(a) ImTCP

0

20

40

60

80

100

120

140

160

180

1000 2000 3000

M
b
p
s

Number of PPs

CapProbe's result (Cross traffic 2 = 60 Mbps)
CapProbe's result (Cross traffic 2 = 50 Mbps)

Capacity (80 Mbps)

(b) CapProbe

Figure 3.11: Measurement results for ImTCP and CapProbe in high network load scenario

packet train measurement separately from TCP connection, in the same environment as

that in the simulation with the ImTCP connection. The result of ADR is then used to find

the measurement result for Pathrate.

We use the same network topology as that for the above-described simulations. The

capacity is set to 80 Mbps and the transmission rate of cross traffic 2 is variable. We

show the case when the cross traffic contains mainly packets of small size, by randomly

varying the packet sizes of the cross traffic within the range of 400 to 600 B, because in this

environment the difference between the proposed algorithm and Pathrate appears clearly.

The performance of the proposed program in this environment is also examined, and the

measurement results are listed in Table 3.2. In this case, since most PPs are cut into by

cross traffic packets, Pathrate should not work very well. On the other hand, the proposed

can yields good measurement independent on the value of cross traffic. ImTCP always

delivers results with the relative error smaller 2% of the capacity even when cross traffic

2 is 75 Mbps (the network load is 93% of the capacity). However, when the cross traffic

is small, (cross traffic 2 is 10 Mb/s), many PPs are not stretched at the bottleneck link so

they do not become Case-B PPs. Instead, they become Case-C PPs due to the effect of

cross traffic 3. Because the number of Case-B PPs decreases, the measurement algorithm

introduces larger confidence intervals.

We explain in detail the respective behaviors of these two algorithms in Figures 3.12(a)

and 3.12(b). In Figure 3.12(a), the “Raw data” histogram indicates the measurement

– 61 –

3.4 Simulation experiments

1

10

100

0 20 40 60 80 100 120 140

#r
es

ul
ts

Bandwidth (Mbps)

Raw data

(a) Data collected for Pathrate algorithm.

1

10

100

0 20 40 60 80 100 120 140

#o
bs

er
va

tio
ns

Bandwidth (Mbps)

Proposed method

(b) Observation value calculated by the pro-
posed algorithm

Figure 3.12: Histograms collected by Pathrate and ImTCP in heavy load network

Table 3.2: Measurement results of ImTCP and Pathrate when cross traffic 2 changes

Cross traffic 2 (Mbps) ImTCP’s results (90% confidence interval) Pathrate
75 79.35 (18.26) 49.00
60 80.24 (23.03) 48.00
40 78.32 (26.04) 80.00
10 81.57 (46.98) 80.00

results calculated using Equation (1) that are used in Pathrate, and in Figure 3.12(b), the

“Proposed method” histogram shows the observation results obtained using proposed

algorithm, when the cross traffic 2’s rate is 75 Mbps. In this case, Pathrate fails to deliver

good measurement results because in this case number of Case-A PPs are fewer than Case-

B PPs. This can be seen in some high peaks near 50 Mbps (while the correct value of

capacity is 80 Mbps) in Figure 3.12(a). In contrast, the proposed algorithm can deliver

good results, because the observation values always concentrate at the correct value of

capacity, regardless of the network load.

3.4.4 Measurement in Web traffic environment

We finally investigate the measurement results for ImTCP in the network model depicted

in Figure 3.5 with the cross traffic 1 and 3 turn off. Cross traffic 2 is now changed to

– 62 –

Chapter 3. A Simultaneous Inline Measurement Mechanism for Capacity and...

0

10

20

30

40

50

200 250 300 350 400

M
bp

s

Time (s)

Available bandwidth
Measurement result

Capacity (50 Mbps)

(a) Available bandwidth measurement results for
ImTCP

0

25

50

75

100

0 1000 2000 3000 4000 5000 6000

M
bp

s

Number of PPs

ImTCP’s results
Capacity (50 Mbps)

(b) Capacity measurement results for ImTCP

Figure 3.13: Measurement in Web traffic environment

– 63 –

3.5 Conclusions

Web traffic involving a large number of active Web document accesses. We use a Pareto

distribution for the Web object size distribution. We use 1.2 as the Pareto shape parameter

with 12 Kbytes as the average object size. The number of objects in a Web page is eight.

The capacity of the bottleneck link is set to 50 Mbps.

Figure 3.13(a) shows the measurement results for available bandwidth given by ImTCP.

Also shown are the correct values of available bandwidth. We can see that the available

bandwidth fluctuates frequently, because of the changes in the number of TCP connections

in the crossing Web traffic. Figure 3.13(b) shows the measurement results for capacity also

introduced by ImTCP in this case. The results are always approximately 50 Mbps, the

correct value. The figure confirms that, even when the available bandwidth fluctuates

frequently, ImTCP can deliver good measurement results for capacity.

3.5 Conclusions

In this chapter, we have proposed a new capacity measurement technique that is suitable for

use in TCP connections. In contrast to existing techniques, the proposed mechanism uses

available bandwidth information that is available in ImTCP, which enables the utilization

of packet pairs that can not be used in existing techniques to calculate the capacity. The

simulation results have shown that, the proposed technique can deliver measurement results

quickly, even for a heavily loaded network, in which other techniques do not work well.

As our future works, we are currently implementing ImTCP using the proposed tech-

nique on a FreeBSD system. We will also consider a bandwidth measurement algorithm

that can be deployed at the TCP receiver.

– 64 –

Chapter 4

Inline Bandwidth Measurement

Techniques for Gigabit Networks

4.1 Introduction

Current efforts to improve TCP performance over high-speed networks can be divided into

two main approaches. The first one changes the AIMD (Additive-Increase-Multiplicative-

Decrease) congestion control of Reno TCP toward a faster increase of window size when

there is no congestion and a smaller decrease when packet loss occurs. The representatives

of this approach are HighSpeed TCP [52], Scalable TCP [57] and BIC (Binary Increase

Congestion) TCP [58]. They can perform better than Reno/NewReno TCP in high-speed

networks. However, these TCP versions do not have optimal speed for increasing the win-

dow size for all network environments because they still rely on network feedback, that is,

a packet loss event, for adjustment of the speed. The packet loss event requires TCP to

retransmit a certain amount of data, which can be large in high-speed networks. Therefore,

these TCP variants cannot fully utilize the bandwidth of a network path. The second ap-

proach tries to avoid packet loss by deploying a delay-based congestion control mechanism.

This approach uses queuing delay as a multi-bit congestion signal. The representative of

this approach is FAST TCP [59]. The difficulty with this approach is matching the delay

with the congestion signal because the relation is affected by the capacity of the network

path. A mismatch may cause oscillation of the congestion window size, leading to serious

performance degradation.

The effective way for transport protocols to achieve the desired throughput on a high-

bandwidth and long-delay network path is to observe the available bandwidth/capacity

– 65 –

4.1 Introduction

of an end-to-end network and adapt accordingly. Active measurement of the available

bandwidth/capacity of an end-to-end network path has been vigorously investigated [26–

29,33,37,42]. Compared with passive measurement, active measurement can deliver faster

and more accurate results because the network can be investigated in detail using probe

traffic. However, the sending of probe traffic is a drawback of active measurement. In

many cases, probe traffic may interfere with data transmission in the network, as well as

degrading the measurement itself.

We have proposed active measurement methods that overcomes the problem mentioned

above in Chapters 2 and 3. We proposed the concept of inline measurement, that is, the

idea of plugging the active measurement mechanism into an active TCP connection. This

method has the advantage of requiring no extra traffic to be sent on the network, and

provides fast and accurate measurement. When the sender transmits data packets, TCP

adjusts the transmission rate of some packets, and considering arrival intervals of the

corresponding ACK packets, the TCP sender estimates the available bandwidth/capacity

of the network path between the sender an the receiver of the TCP connection.

Inline measurement results enable TCP to optimize its bandwidth utilization. Study

in [14] has previously proposed a congestion control mechanism based on a logistic equation

and a Lotka-Volterra competition model, by which TCP can fully utilize the bandwidth

when the available bandwidth and capacity of the network path are provided. There also

is a new TCP version that sets the upper limit of the congestion window based on the

results of the inline network measurement [15]. In this case, TCP can provide background

data transfer without affecting the foreground traffic, whereas previous methods cannot

avoid network congestion essentially. Another study [60] shows the performance of TCP

by using the capacity information for congestion control in the Internet. The performance

of the TCP proposed by [60] is much better than that of Reno TCP, while the fairness with

Reno TCP is still maintained. Besides its use as a part of congestion control mechanism,

inline measurement can be used in many other cases, such as for routing or server selection

in grid or overlay networks,

In this chapter, we focus on the problem: Can TCP still perform inline measurement in

Gbps-level bandwidth? The problem arises because even stand-alone active measurement

tools such as Pathload and CapProbe still cannot work well in a Gbps network for two

reasons. First, measurement in fast networks requires short transmission intervals of the

probe packets (for example, 12 µs for a 1-Gbps link and 1500-byte packet). However, regu-

lating such short intervals causes a heavy CPU load. Second, network cards for high-speed

– 66 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

networks usually employ Interrupt Coalescence (IC) [40, 41], which rearranges the arrival

intervals of packets and causes bursty transmission, and, therefore, algorithms utilizing

packet arrival intervals do not work properly.

We introduce a new inline measurement mechanism that works well in high-speed net-

works. We call this ICIM (Interrupt Coalescence-aware Inline Measurement). Unlike other

active measurement tools which observe the inter-intervals of the packets, ICIM adjusts

the number of packets that are transmitted in a burst caused by IC and estimates the

capacity and available bandwidth by checking whether the inter-intervals of the bursts of

corresponding ACK packets are increased or not as they pass through the network. ICIM

does not set the sending interval of the packets, so the overhead for packet spacing at the

sender is eliminated.

The contributions of this chapter are as follows.

• We propose ICIM-abw, an inline measurement algorithm for available bandwidth that

works in a gigabit network. The simulation results show that ICIM-abw performs

accurate measurements in 1-Gbps and faster network. More than 94% of the results

delivered by ICIM-abw has the relative errors smaller than 20% when measuring a

5-Gbps network path. The measurement frequency is also about 60 times higher

than that of an existing algorithm. Meanwhile, TCP with ICIM can transmit data

with the same performance as Reno TCP.

• We introduce ICIM-cap, an algorithm for inline measurement of the capacity in a

gigabit network. Unlike current measurement algorithms, the ICIM-cap algorithm

works well in extremely high-load networks. However, the algorithm can work well

only when the tight link of the path, which has the smallest available bandwidth, is

identical to the bottleneck link, which has the smallest capacity. We then discuss the

range of errors if this supposition is not true, and show that the range of errors is

small.

• We implement ICIM-abw in the FreeBSD system to test its performance in a labo-

ratory environment. The measurement results show that ICIM-abw can work well in

a real system.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss the

problems of bandwidth measurement in high-speed networks and look at a number of

related studies. In Section 4.3, we introduce ICIM-abw and explain how to realize it in

– 67 –

4.2 Bandwidth measurement in high-speed networks

Reno TCP. We then evaluate the performance of Reno TCP that is utilizing ICIM-abw.

In Section 4.4, we introduce ICIM-cap and discuss the range of errors that may occur

with this algorithm. In Section 4.5, we validate the performance of ICIM-abw in a real

environment. Finally, in Section 4.6, we present concluding remarks.

4.2 Bandwidth measurement in high-speed networks

In this section, we discuss some of the difficulties encountered by existing active available

bandwidth/capacity measurement tools in high-speed networks (1 Gbps or higher). We

assume that the machines that run the measurement tools are general purpose machines,

for example, a x86-based CPU machine with a normal operating system (OS), such as 4.4

BSD or Gnu/Linux (or similar). The problems mentioned here may not occur in high-

performance machines that are designed especially for network bandwidth measurement.

4.2.1 Limitation of packet pacing in general-purpose machines

In current active measurement tools, probe packets must be sent at a rate higher than the

bandwidth of the network path, otherwise the packet space will not be expanded and the

tools will not be able to determine the bandwidth. When the bandwidth reaches 1 Gbps

or higher, the transmission intervals of the probe packets must be 12 µs (for measuring 1-

Gbps bandwidth) or smaller. As we discuss below, for a general-purpose machine, sending

packets in such small intervals causes high CPU overhead.

For pacing packets, there are two approaches. The first is to continuously check the

hardware clock (for example, using gettimeofday() in UNIX systems) and send the pack-

ets when the clock reaches a determined timing. In a Linux system with an x86-based CPU,

one access of the hardware clock requires approximately 1.9 µs (in the FreeBSD system,

one access requires 9 µs) [61]. The write() system call requires an average of 2 µs (in the

case of a Pentium III CPU). Therefore, a Linux system can only send packets in intervals

greater than 2 + 1.9 = 3.9 µs. This means that, the system can measure the bandwidth

up to 3 Gbps (for the case in which the probe packet size is 1,500 Bytes). However, in

order to send packets at 3 Gbps, the CPU has to spend most of the time checking the

hardware clock overhead. If the measurement is repeated continuously, then the CPU will

not be able to process tasks from other applications. The system performance then will be

– 68 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

deteriorated. Thus, checking the hardware clock to send packets in a high-speed network

is not a good approach.

The second approach is to register the packet sending program to an Interrupt Service

Routine (ISR) of the hardware clock interrupt. In a general-purpose UNIX OS, the ISR

hardclock() is provided for this purpose. In 4.4BSD OS and 2.4 LINUX kernels , the

hardclock() system call is called by the interrupt of hardware clock every 0.01 s. In the

2.6 LINUX kernels, it is called every 0.001 s. However, with this low interrupt frequency,

the program called by hardclock() can only send packets at the rate of up to 12 Mbps

(assuming that the packet size is 1,500 Bytes). To obtain a higher interrupt frequency, a

new interrupt schedule of the hardware clock can be implemented. However, one hardware

interrupt (in 4.4 BSD OS) normally requires more than 1 µs [62]. If the packet transmission

rate is 1 Gbps, then the sending interval is 12 µs. This means that, in this case, the

overhead of the hardware interrupt is as high as 1/12 of the total working time of the

CPU. In addition, a new interrupt schedule for the hardware clock requires many changes

in the OS.

4.2.2 Effects of Interrupt Coalescence

Another reason for the difficulty in the task of measurement in high-speed networks is

IC, which is deployed in most high-bandwidth Network Interface Cards (NICs). IC is

a technique in which NICs group multiple packets that arrive in a short time interval

and pass them to the OS in a single interrupt. IC reduces the CPU overhead when the

arrival intervals of packets become small. Because the inter-arrival intervals of the packets

observed by the kernel are changed, IC has an enormous impact on bandwidth measurement

tools, in which the arrival intervals of packets are utilized for bandwidth estimation.

There are a number of types of timer setting in IC. For example, Intel Gigabit Ethernet

Controllers [40] contains the following mechanisms for IC:

• Absolute timer: The absolute timer delays the assertion of an interrupt to allow the

controller to collect additional interrupt events before delivering them to software.

• Packet timer: The packet timers are inactivity timers, triggering interrupts when the

link has been idle for an appropriately long interval.

• Master timer for throttling all interrupt sources: An interrupt throttling mechanism

is used to set an upper bound for the interrupt rate.

– 69 –

4.2 Bandwidth measurement in high-speed networks

Interrupt generated

Packet arrival

Time

RxAbsIntDelay

Figure 4.1: Receive absolute timer

Under sustained loads, the absolute timers will be the primary source of device inter-

rupts [40]. We investigate the absolute timers in greater detail. There are two absolute

timers. One is for transmit interrupts, and the other is for receive interrupts. Because

transmit interrupts only inform the kernel as to the completion of packet sending, delays

in transmit interrupts do not affect the real transmission intervals of the packets. In con-

trast, delays in receive interrupts change the intervals of all receiving packets observed by

the kernel. As shown in Figure 4.1, the receive absolute timer starts to count down upon

receipt of the first packet. Subsequent packets do not alter the countdown. Once the timer

reaches zero, the controllers generate an interrupt to pass all of the packets to the OS in a

bursty manner. The length of the timer is decided by the parameter RxAbsIntDelay, which

is defaulted to 0.1312 ms in Intel Gigabit Ethernet Controllers. Thus, all packets that have

time intervals smaller than RxAbsIntDelay will belong either to the same burst, in which

case the time interval between the packets becomes zero, or to two successive bursts, in

which case the time interval becomes RxAbsIntDelay or larger. Therefore, the software

cannot detect packet intervals smaller than RxAbsIntDelay. With the default value of

0.1312 ms for RxAbsIntDelay, the software cannot perceive transmission rates larger than

100 Mbps (if the packet size is 1,500 Bytes).

Without IC, an OS interrupt occurs whenever a single packet arrives; this leads to a

high CPU overhead when the system performs high speed data transmission. Therefore, we

should not disable IC feature for the purpose of measurement. There are some studies that

have discussed measuring bandwidth using the existing IC. For example, one study [61]

suggests that in order to obtain the real arrival intervals of packets, the onboard timestamp

of some network cards (for example SysKonnect GigE NIC [41]) should be used. However,

the same study also concludes that this solution is not useful for general-purpose network

measurement tools, because very few NICs have an onboard timer. Furthermore, using an

onboard NIC timer requires modification of the device driver. This prevents the tool from

– 70 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

being easy to run on numerous systems.

Another study [63] reports that since the last packet in a burst formed by IC has the

smallest delay in the NIC buffer, the intervals of the last packets in the bursts can be

used for estimation of the available bandwidth, according to the Pathload [28] algorithm.

However, because only a small part of stream is used for the measurement, the stream must

be very long. This is not suitable in inline measurement, because making long measurement

streams in TCP badly affects the TCP transmission performance.

4.2.3 Bursty packet transmission in TCP

The behavior of TCP when the network cards enable IC has been investigated in previous

studies [62,63], and IC has been shown to be detrimental to TCP self-clocking. IC causes

the ACK packets to arrive at the sender in bursts, and this bursty arrival in turn causes

bursty transmission of data packets and, subsequently, bursty transmission of ACK packets

from the TCP receiver. According to one study [63], with IC, 65% of ACKs arrive with

intervals of less than 1 µs, because they are delivered to the kernel with a single interrupt.

Meanwhile, without IC, almost no ACK packets arrive with small intervals.

In the present chapter, we propose an algorithm that can exploit the burst of data

packets in TCP under the effects of IC to measure the available bandwidth/capacity of

the network path between TCP sender and receiver. The TCP sender adjusts the num-

ber of packets involved in a burst and checks whether the inter-intervals of the bursts of

corresponding ACK packets are increased or not to investigate the bandwidth. ICIM can

be employed into any version of TCP. Using previously reported results [63], ICIM first

checks to see if the network card has IC enabled. If the IC is enabled, ICIM continues

measurement based on the bursty transmission of TCP.

4.3 ICIM-abw: Interrupt Coalescence-aware inline mea-

surement for available bandwidth

4.3.1 Packet burst-based measurement algorithm

The basic idea of measuring bandwidth larger than 1 Gbps is that, we consider a burst of

packets as a big packet. Two consecutive big packets are then treated as a packet pair,

of which the time interval in large enought so that general purpose operating systems can

– 71 –

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available bandwidth

Burst 1
Burst 2

S

(N pkts)

At the TCP sender

Probing rate: NP/S

A >NP/S

A<NP/S

Burst 2

S

S

At the TCP receiver

Burst 1

Burst 2 Burst 1

Burst 2

S

At the TCP sender

AC K packets

Burst 1

Burst 2

S

Burst 1

Figure 4.2: Packet burst-based available-bandwidth measurement principle

read exactly. The measurement algorithm is described below. Though the algorithm can

work somehow when Delayed ACK in the TCP receiver is on, we recommend the Delayed

ACK is off so that the algorithm can works properly. Because the absolute timer (described

in Section 4.2) is the primary source of device interrupts in the high speed transmission,

we assume that the NIC uses the absolute timer when receiving packets.

As shown in Figure 4.2, we consider the situation in which two bursts of packets are

sent at the interval S. The number of packets in the first burst (Burst 1) is N . Assume

that C is the capacity of the tight link. CCross is the average transmission rate of cross

traffic over the tight link when the two bursts pass the link, and P is the packet size.

We suppose that CCross is not changed much by the TCP connection performing inline

measurement. Otherwise, the available bandwidth is not determined; the measurement

becomes meaningless. Then, the amount of traffic that enters the tight link during the

period from the point at which the first packet of Burst 1 reaches the link until the point

at which the first packet of Burst 2 reaches the link will be the sum of the packets in Burst

1 and the cross traffic packets arriving in S, i.e., CCross ·S + N ·P . If the amount is larger

than the transfer ability of the link during this period, considered to be C · S, then Burst

2 will go to the buffer of the link. This results in a tendency for the interval between the

two bursts to increase after leaving the tight link.

We can write that the burst interval will be increased if

CCross · S + N · P > C · S, (4.1)

– 72 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

or,
N · P

S
> C −CCross. (4.2)

Note that C−CCross is the available bandwidth (A) of the tight link. Therefore, Equation

(4.1) becomes
N · P

S
> A. (4.3)

Since we assume that the absolute timer is used, S is always larger than RxAbsIntDelay.

Therefore, at the NIC of the TCP receiver, since the arrival interval of the two bursts are

larger or equal to S, the two bursts are passed to the kernel in two different interrupts. The

TCP receiver then sends the ACK of the two bursts in the same intervals to the sender TCP.

Thus, by checking the arrival intervals of the corresponding ACK packets of the two bursts,

the TCP sender can determine if A > NP/S. By sending numerous bursts with various

values of NP/S (by changing N), we can search for the value of the available bandwidth

A. This is the measurement principle of the proposed inline measurement mechanism.

Note that the bursty transmission in TCP appears when IC is enables, as mentioned in

Section 4.2.3. ICIM-abw performing in reasonable measurement intervals do increase the

burstiness but the increase is not effect much the performance of TCP, as shown in the

simulation results in Subsection 4.3.3.

4.3.2 ICIM-abw

ICIM-abw inherits the concept of the search range from the available bandwidth mea-

surement algorithm in ImTCP described in Chapter 2. This is the idea of limiting the

bandwidth measurement range using statistical information from previous measurement

results rather than searching from 0 bps to the upper limit of the physical bandwidth for

every measurement. By limiting the measurement range, we can keep the number of probe

packets small.

At first, we explain how to search for the available bandwidth in a determined search

range and then we present an overview of the measurement algorithm.

Assume that the search range for a measurement is (Bl, Bu). The algorithm then check

k values in the range to determine which is nearest to the real available bandwidth. We

use k = 4 in the following simulations. The k points are:

Bi = Bl +
Bu − Bl

k − 1
(i− 1), i = 1, ..., k.

– 73 –

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available bandwidth

1N2N1-kN
k

N

ku BB =

1-kS 1S
kS

1-kB
2

B

lBB =1

Packet transmission direction

iii SPNB /=

Search range

Packet burst

(i=1..k)

Burst K Burst K-1 Burst 1

Figure 4.3: Probing a search range in ICIM-abw

The TCP sender then sends k consequence bursts and the number of packets are adjusted

so that the probe rate of Burst i is Bi;

Ni · P
Si

= Bi. (4.4)

We illustrate the setting in Figure 4.3.

Realization of Equation (4.4) requires the following:

• The value of Si is required at the timing of the transmission of Burst i.

Infact, Si is unknown until Burst i + 1 is transmitted. But we need the value at

the timing of the transmission of Burst i in order to guarantee Equation (4.4). We

therefore estimate the value of Si by assuming that the amount of data in Burst i is

proportional to the length of the interval as follow:

Si =
Ni · P

T
, (4.5)

where T is the average throughput of TCP.

• In case the number of packets in Burst i is smaller than Ni, additional packets must

be added to the burst so that the packet number becomes Ni.

ICIM-abw utilizes a buffer located at the bottom of the TCP layer in order to store

the packets temporarily before sending them to the IP layer, in the manner of ImTCP.

ICIM-abw stores all of the packets of the burst that preceded Burst 1 in the buffer.

– 74 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

Packets are added to Burst i (i = 1..k) when necessary in order to maintain the

desired number of packets (Ni) in these bursts.

ICIM-abw sends k bursts and checks the corresponding ACK of the bursts. If from

burst number j, j = 1..k, the arrival interval of the bursts becomes larger, then Bj

is considered to be the value of the available bandwidth in that measurement. Here,

the burst interval is consider to become larger if the arrival interval is larger then λ

times of the sending interval. We set λ to 1.01 in the following simulations.

ICIM-abw first checks whether IC is enabled for the network card. For the reasons

explained in Section 4.2.3, ICIM-abw checks the arrival intervals of the ACK packets. If

more than 50% of the intervals are less than 1 µs, then ICIM-abw decides that IC is

enabled. If the IC is enabled, then ICIM-abw continues the following measurement steps.

Otherwise, the measurement algorithm introduced in ImTCP is used.

The measurement algorithm of ICIM-abw is as follows:

1. Set the initial search range

We set the initial search range as (T, 2 · T) where T is the throughput of TCP.

2. Search for the available bandwidth in the decided search range.

ICIM-abw waits until the window size (cwnd) is larger than Cmin (large enough to

create bursts for measurement). We use Cmin = 50 in the following simulations.

Data packets are then sent in order to search the available bandwidth in the decided

search range, as described above.

3. Add the new measurement result to the database and calculate the new search range.

The measurement result in the last step is added to a dabatase of measurement

results. We then calculate the new search range (B ′
l, B

′
u) from the database. We use

the 95% confidential interval of the data stored in the database as the width of the

next search range, and the current available bandwidth is used as the center of the

search range. The search range is calculated as follows:

B ′
l = R−max

(
1.96

V√
q
,
R

10

)
, (4.6)

B ′
u = R + max

(
1.96

V√
q
,
R

10

)
, (4.7)

– 75 –

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available bandwidth

10 Gbps 10 Gbps

 connection

Sender with ICIM Receiver

Data pkts

ACK pkts

NIC:ACK pkts

are delayed

NIC:Data pkts

are delayed TCP

Cross traffic

Tight link

Figure 4.4: Simulation topology for evaluation of ICIM-abw

where R is the latest measurement result. V is the variance of stored values of the

available bandwidth and q is the number of stored values. R/10 is a value that ensures

that the search range does not become too small. Moreover, when measurement result

in Step 3 falls to Bl (Bu), it is possible to consider that the network has changed

greatly so that the real value of the available bandwidth is lower (higher) than the

search range. In this case, we discard the accumulated measurement results because

they become unreliable as statistic data and enlarge the search range (Bl, Bu) twice

towards the lower (higher) direction to create (B ′
l, B

′
u).

4. Wait for Q seconds then return to Step 2 and start the next measurement. During

the waiting time Q, TCP transmits packets in the normal manner. The waiting time

is needed for the TCP transmission to return to the normal state after the packets

store-and-forward process at Step 2.

4.3.3 Simulation experiments

Measurement results

We show the measurement results for ICIM-abw through ns-2 [47] simulations. We imple-

ment ICIM-abw via Reno TCP, the most popular version of TCP, and use the topology

shown in Figure 4.4 for the simulation. The sender and receiver of TCP are connected

through 10-Gbps access links and a tight link. The NICs of both the sender and receiver

host employ IC with an absolute timer. The cross traffic on the tight link is made up of

– 76 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

UDP flows in which various packet sizes are used, according to results monitored on the

Internet [48], as shown in Table 2.1. The capacity of the tight link is 5 Gbps, and the

available bandwidth (A-bw) is 2 Gbps (from 0 to 15 sec), 3 Gbps (from 15 to 35 sec) and

4 Gbps (from 35 to 50 sec).

Figures 4.5(a) and 4.5(b) show the measurement results for ICIM-abw when the interval

between two measurements is set to one RTT or two RTTs, respectively. Also shown are

the search ranges for each measurement. The search ranges, in most cases, successfully

cover the correct value of the A-bw. Therefore, ICIM-abw can quickly detect the A-bw,

even in such a high-speed network. When Q = 1, the throughput of TCP oscillates slightly,

the estimation of the burst interval in Equation (4.5) becomes incorrect. Therefore, the

probing rate of each Burst i may not be exactly equal to Bi (in Step 2 of Subsection 4.3.2).

This leads to a large dispersion of the measurement results in Figure 4.5(a); in this case,

for 9% of the measurements, the relative error is larger than 20%. When Q = 2, the

TCP sender creates fewer packet bursts so that the measurement results are nearer to the

correct value of the A-bw, as shown in Figure 4.5(b); only 6% of the measurements have

relative errors higher than 20%. However, the measurement frequency (16.7 results/second)

becomes half of that when Q = 1 (34.2 results/second).

Comparison with IC-aware Pathload

We compare ICIM-abw with the only measurement tool we have found that can work

in Gbps network. That is a version of Pathload that can detect and filter the effects of

IC [63]. We call this version IC-aware Pathload. For the comparison between ICIM-abw

and Pathload, the TCP sender and receivers are next replaced by the sender and receiver

of Pathload. To make the measurement of Pathload faster, we set the starting probing rate

to 200 Mbps (instead of the default setting of 1 Mbps). In addition, ω and χ are set to 200

Mbps and 150 Mbps, respectively, and the size of probing packets is set to 1,500 bytes.

The measurement results of IC-aware Pathload when the number of packets in a stream

K is set to 160 are shown in Figure 4.6(a). Because the default value of RxAbsIntDelay used

in NIC is 0.000132 (s) and the packet size is 1,500 bytes, the average number of packets in

a burst is 22 when the A-bw is 2 Gbps, 33 when the A-bw is 3 Gbps and 44 when the A-bw

is 4 Gbps. Therefore, when K = 160, there are approximately nine bursts in each stream

when the A-bw is 2 Gbps. This means that Pathload has approximately nine packets (the

last packet in the bursts) for measurement. The increasing trend in the stream in this

case can be well determined so Pathload can deliver good measurement results. However,

– 77 –

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available bandwidth

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5 10 15 20 25 30 35 40 45 50

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

Search range
Results

A-bw

(a) Q=1 RTT

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5 10 15 20 25 30 35 40 45 50

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

Search range
Results

A-bw

(b) Q=2 RTT

Figure 4.5: Measurement results for ICIM

– 78 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5 10 15 20 25 30 35 40 45 50

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

Pathload
A-bw

(a) K = 160 packets

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5 10 15 20 25 30 35 40 45 50

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

Pathload
A-bw

(b) K = 200 packets

Figure 4.6: Measurement results for IC-aware Pathload

– 79 –

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available bandwidth

when the A-bw becomes 3 Gbps or greater, the number of bursts becomes approximately

six or fewer. Then, Pathload does not have enough packets to detect well the increasing

trend in the stream. Therefore, as shown in Figure 4.6(a), Pathload fails to deliver good

measurement results when the bandwidth is equal to or greater than 3 Gbps.

Figure 4.6(b) shows the measurement results of Pathload when K is set to 200. In

this case, Pathload has a sufficient number of packets for detecting the increasing trend

of streams. Therefore, the measurement results are correct. However, since Pathload

searches for the A-bw from a low value, a long time is required to yield one result. The

measurement frequency is only 0.28 results/second, which is 60 times smaller than that of

ICIM-abw (with Q = 2 RTTs). Figure 4.6(b) shows that, if the A-bw changes during a

measurement, Pathload may not detect the change well. At 15 seconds, the A-bw changes

from 2 Gbps to 3 Gbps while Pathload is probing a rate smaller than 2 Gbps. When

the probing rate reaches 2 Gbps, the A-bw is already changed, therefore Pathload can

successfully detect the value of 3 Gbps. However, at 35 seconds, the probing rate of the

ongoing measurement reaches 3 Gbps before the change in the A-bw from 3 to 4 Gbps, so

Pathload assumes that the A-bw is smaller than or equal to 3 Gbps. Therefore, Pathload

delivers a value of approximately 3 Gbps at the end of that measurement, which is far from

the value of the A-bw at this timing.

Table 4.1 compares the number of packets used in the measurement of ICIM, and

Pathload. ICIM-abw sends four bursts of packets for each measurement. The average

number of total packets in four bursts is shown in the second column of the table. On the

other hand, Pathload probes 8, 9 and 10 times for one measurement result when the A-bw

is 2, 3 and 4 Gbps, respectively. Each probe requires 12 streams, the number of packets of

which is 200. We can see that the number of packets used by ICIM-abw is less than one

percent of that of Pathload.

Figures 4.5 and 4.6 show that the measurement results of ICIM-abw have a larger

dispersion compared to Pathload because, based on the nature of the algorithm, ICIM-

abw cannot increase the length of each measurement burst to obtain high accuracy, as

Pathload does. Instead, the accuracy can be improved by taking the exponential moving

average in suitable intervals.

Measurement results in Web traffic environment

We next investigate the measurement results for ICIM-abw in the network model depicted

in Figure 4.4. Cross traffic is now changed to Web traffic involving a large number of active

– 80 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

A-bw
Results (average)

(a) Average measurement results of ICIM-abw

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

Pathload
A-bw

(b) Measurement results for IC-aware Pathload. K =
160

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

Ba
nd

wi
dt

h
(M

bp
s)

Time (s)

Pathload
A-bw

(c) Measurement results for normal Pathload. K =
200

Figure 4.7: Measurement results in Web traffic environment
– 81 –

4.3 ICIM-abw: Interrupt Coalescence-aware inline measurement for available bandwidth

Table 4.1: Number of packets required for a measurement

A− bw (Gbps) ICIM-abw IC-aware Pathload
2 110 200 · 12 · 8 = 19 200
3 130 200 · 12 · 9 = 21 600
4 154 200 · 12 · 10 =24 000

Web document accesses. We use a Pareto distribution for the Web object size distribution

with 1.2 as the Pareto shape parameter and 12 Kbytes as the average object size. The

number of objects in a Web page is 20. The capacity of the tight link is set to 1 Gbps.

The access links are also set to 1 Gbps.

The available bandwidth is calculated as the capacity of the tight link minuses the total

amount of Web traffic passing the link. Figure 4.7(a) shows the changes of available band-

width and the average measurement results for each second. ICIM-abw under-estimates

the available bandwidth a little because the cross traffic, composed of so many connec-

tions, arrives at the tight link in a bursty fashion. The burst of cross traffic may enlarge

the intervals of the measurement bursts of ICIM-abw even when the probing rate is still

lower than the average available bandwidth. However, the measurement results deviate

only a little from the correct values and in general they can follow the changes of available

bandwidth.

Figure 4.7(b) shows the measurement results for IC-aware Pathload in the same envi-

ronment. We set K to 160 and the starting probing rate to 100 Mbps and ω and χ are

both set to 50 Mbps. Overall, the results have a trend of over-estimation. We think that

the problem can be solved if we adjust the PCT/PDT thresholds of Pathload appropri-

ately, instead of using the default values. Figure 4.7(c) shows the measurement of normal

Pathload. Because the probe packets are grouped at the NIC, the increasing trend in the

measurement streams becomes difficult to discover. Therefore, Pathload over-estimates in

most of the time. This frequent overestimation of bandwidth may lead to more aggressive

systems. A conservative system caused by frequent underestimation of ICIM-abw will give

less effect to the others sharing the same network environment.

TCP compatibility

We finally examine the data transmission performance of Reno TCP when it employs

ICIM-abw. We perform a simulation where a number of Reno TCP connections that have

– 82 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

10 Gbps

10 Gbps

TCP senders with ICIM

Bottleneck link

RenoTCP senders

TCP receivers

10 ms

10 ms

10 ms

10 Gbps

10 ms 10 ms

10 Gbps

RenoTCP receivers

Figure 4.8: Simulation topology for examining TCP compatibility

ICIM-abw conflict with the same number of Reno TCP connections that do not have

ICIM-abw through a 1 Gbps tight link, as shown in Figure 4.8. All the connections have

the same RTT (0.018 s) and the same access link’s bandwidth (10 Gbps). The number

of connections is set to 4, 8 and 12. For each value of connection numbers, simulation is

repeated 10 times, and the throughputs of the TCP connections that have and do not have

ICIM-abw (and the ratio of thereof) are calculated and compared.

Table 4.2 shows the results when Q of ICIM-abw is set to 1 RTT and 2 RTTs and when

ICIM-abw does not perform. In case ICIM-abw performs measurement in every RTT, the

TCP achieves lower throughput than TCP that does not perform ICIM-abw when conflicts

occur because ICIM-abw has to delay several data packets for measurement in this case.

As shown in Table 4.2, the ratio of throughput between TCP with ICIM-abw compared to

RenoTCP is always less than 1. When the number of connections increases, the ratio is

lower because conflicts between TCP connections are more intense. If ICIM-abw takes a

lower measurement frequency, for example, when Q = 2 RTT, then the TCP connections

performing ICIM-abw can obtain the same throughput as normal Reno TCP, as shown

in the third column of the table. We also disable ICIM-bw in all the TCP connections

and show the throughput in this case in the fourth column of the table. We can see that

that total throughput of TCP connection without ICIM-bw is almost the same of that

when ICIM-abw with Q = 2 RTT is enabled. This means that ICIM-abw with reasonable

measurement intervals does not effect the TCP connection performance.

– 83 –

4.4 ICIM-cap: Interrupt Coalescence-aware inline measurement for capacity

Table 4.2: Comparison on throughputs of Reno TCP with and without ICIM

#con. Q=1 RTT Q=2 RTTs No measurement
4 466.4 : 490.6 483.7 : 475.6 489.5 : 478.9

(0.95:1) (1.01:1) (1.02:1)
8 451.1 : 544.4 505.1 : 490.5 510.7 : 485.9

(0.82:1) (1.02:1) (1.05:1)
12 418.7 : 577.7 503.5 : 493.2 503.1 : 493.3

(0.72:1) (1.02:1) (1.02:1)

4.4 ICIM-cap: Interrupt Coalescence-aware inline mea-

surement for capacity

Together with available bandwidth, the end-to-end capacity of a network path is important

for adaptive control in a transport protocol. We have mentioned an inline measurement

algorithm for capacity in Chapter 3. In this section, we focus on measuring this metric in

high-speed networks.

4.4.1 Existing capacity measurement techniques and their prob-

lems

Many measurement techniques have been proposed for capacity measurement, such as

Bprobe [26], Pathrate [39], CapProbe [37]. All of these techniques utilize packet pairs for

measurement. However, because packets transmitting back-to-back are always grouped at

the NIC under the effect of IC, the receiver cannot read the correct inter-arrival intervals

of the packets. Thus, the packet pair-based techniques fail to perform the measurement

when IC is enabled.

The first algorithm that can work in an IC environment is an enhanced version of

Pathrate, suggested by [63]. The work of the algorithm is as follows.

The sender sends a measurement train (a group of packets) that is long enough that at

least two bursts are observed in the received train. Then the number of the packets in the

first burst (N) is used for the calculation of capacity:

C =
N · P

L
, (4.8)

– 84 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

At the sender At the receiver

InterruptsCross traffic

At the bottleneck link

Interrupts

At the sender At the receiverAt the bottleneck link

Figure 4.9: Enhanced Pathrate algorithm

Interrupts

At the sender At the receiverAt the bottleneck link

Ld

Figure 4.10: ICIM-cap algorithm

where L is the inter-arrival interval of the first and second burst (See the upper part of

Figure 4.9).

However, the approach can work only when there is no cross traffic in the network

path. If cross traffic exists, the cross traffic may cut into the measurement burst so that

the number of packets received in the first interrupt may not reflect the value of the capacity

correctly (See the lower part of Figure 4.9). This means the approach will not work well

when the traffic load on the network is high.

4.4.2 ICIM-cap

We propose a burst-based capacity measurement algorithm that can overcome the prob-

lems mentioned above. The main concept of the proposed algorithm is that the available

bandwidth information, which can be yielded periodically due to ICIM-abw (introduced

in the last section), is exploited. The available bandwidth information is used to estimate

the quantity of cross traffic that cuts into the first burst. In Figure 4.10, the top packets

of the bursts are drawn in blue. The sending interval of the two packets is d. The amount

– 85 –

4.4 ICIM-cap: Interrupt Coalescence-aware inline measurement for capacity

of traffic that arrives at the bottleneck link between the arrivals of the two packets is as

follow:

C · L = N · P + d · CCross, (4.9)

where CCross is the average arrival rate of the cross traffic at the bottleneck link. Existing

capacity measurement algorithms do not know the amount of CCross, so they cannot find

the exact value of C in the case shown in the lower part of Figure 4.9. To the contrary,

ICIM-cap can know the CCross, so it can perform well in such a case. That is the biggest

feature of this algorithm.

If we suppose that the bottleneck link, which has the smallest capacity, is identical to

the tight link, which has the smallest available bandwidth, we can write:

CCcross + A = C.

We can then calculate the capacity as follow:

C =
N · P − d · A

L− d
. (4.10)

The TCP sender sends the bursts for ICIM-abw alternately with the bursts for ICIM-

cap. The newest result of ICIM-abw is used for the next measurement of ICIM-cap. The

length of the burst of ICIM-cap must be decided properly. It must be long enough that

it can arrive in two interrupts. However, if it is too long, the TCP transmission will be

adversely affected. We, therefore, propose a dynamic setting for the length, as follows:

• Quickly determine the initiative value.

During the starting phase of the TCP connection, the TCP sender observes the

length of the burst of packets and records the length of the longest one (G). The

longest value is near the maximum number of packets that can be grouped in the

same interrupt. So, we set the initial length of the measurement burst L to 1.5G in

order to be sure that the burst can be divided into two small bursts at the receiver.

• Adapt the length dynamically to the changes of the environment.

If L is too short, which can be noticed when the measurement burst is not divided

into multiple bursts at the receiver, then the sender doubles the length. If L is too

long, which can be noticed when the measurement burst is divided into more than

– 86 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

two bursts, the sender sets the length to 1.5B, where B is the number of packets

passed to the receiver in the first burst.

4.4.3 Simulation experiments

Through simulation validations, we show that ICIM-cap can deliver capacity measurement

results quickly and correctly. Especially, it can deliver good results in extremely high-load

networks, where current measurement algorithms such as (enhanced) Pathrate do not work

well.

We repeat the simulation using the topology shown in Figure 4.4. This time, the

TCP sender performs both ICIM-abw and ICIM-cap. For comparison, we also show the

measurement results when we replace the ICIM-cap measurement algorithm by enhanced

Pathrate. The measurement results are shown in Figures 4.11(a) and 4.11(b). In these

figures, the measurement results of ICIM-abw are almost the same as those in Figure 4.5.

Figure 4.11(a) shows the measurement results of enhanced Pathrate. As we can see, when

the traffic load on the bottleneck link is heavy (when the available bandwidth is 2 Gbps

while the capacity is 5 Gbps), Pathrate underestimates the capacity. On the other hand,

as shown in Figure 4.11(b), ICIM-cap can deliver good measurement results regardless of

the load on the network.

4.4.4 Discussions

ICIM-cap relies on the supposition that the bottleneck link and tight link are identical. In

this session, we discuss the errors in the measurement results of ICIM-cap when the above

supposition is incorrect.

The case when the tight link is the upper link of the bottleneck link

Figure 4.12 shows the case when the tight link is the upper link of the bottleneck link.

In this case, we suppose that traffic on another link does not affect much of the probe

traffic. Moreover, the effect from the cross traffic on the bottleneck link is small. When

the supposed condition is not true, the curve showing the relation between Rin, Rout will

be more complex, but the tendency in general is unchanged. Rin, Rout are the sending rate

– 87 –

4.4 ICIM-cap: Interrupt Coalescence-aware inline measurement for capacity

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Search range
Results

A-bw
Pathrate
Capacity

(a) Measurement results for enhanced Pathload

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Search range
Results

A-bw
Proposed
Capacity

(b) Measurement results for ICIM-cap

Figure 4.11: Measurement results in gigabit network

– 88 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

Cross traffic C1
C 0

Probe traffic

Tight link

C Cross

R_in R_out

R_out

R_in

10 CCC out

1CCOut =

01

0

CC
CC Cross

-
A

0C

Bottleneck link

≤≤

Figure 4.12: The case when the tight link is the upper link of the bottleneck link

and arrival rate, respectively, of the probe traffic. From Equation (4.10), we can write:

C =
NP
L

NP
d

(
CCross +

NP

d

)
. (4.11)

Because NP
L

= Rin, NP
d

= Rout, we can rewrite this using Rin and Rout as follow:

C =
Rin

Rout

(CCross + Rout). (4.12)

We call Cout the result of the above calculation. Cout is the measurement result given by

ICIM-cap. In this case, we examine the relation between Cout and the real capacity value

(C0) as well as the capacity of the tight link (C1).

Figure 4.12 shows the changes of Rout when Rin increases. When Rin is smaller than

the available bandwidth (A), Rout increases in proportion to Rin. When Rin reaches A (but

is still smaller than (C0·CCross

C1−C0
), the probe traffic starts to conflict with the cross traffic, and

the increasing trend of Rout becomes slower. When Rin becomes larger than C0·CCross

C1−C0
, Rout

does not change regardless of the value of Rin. That happens because Rout is limited by

the bottleneck link C0 in this case. We summarize the results as follows:

• When A < Rin < C0·CCross

C1−C0
, the measurement result of ICIM-cap Cout will be C0 ≤

– 89 –

4.4 ICIM-cap: Interrupt Coalescence-aware inline measurement for capacity

Cross traffic C1

Probe traffic

Tight link

C 0

Bottleneck link

C Cross

R_in R_out

R_out

R_in

1CCR outout ≤≤

1CCOut =

CrossCC
CC

+0

10

0CA

Figure 4.13: The case when the bottleneck link is the upper link of the tight link

Cout ≤ C1,

• When Rin ≤ C0·CCross
C1−C0

, we also have C0 ≤ Cout ≤ C1.

The case when the bottleneck link is the upper link of the tight link

If the tight link is the upper link of the bottleneck link, with the same observations as the

above case, we can go to the following results (Figure 4.13):

• When A < Rin < C0, the result of ICIM-cap Cout is equal to C1 (Cout = C1),

• When C0 ≤ Rin, the result of ICIM-cap Cout is included in the range: Rout ≤ Cout ≤
C1.

4.4.5 Interpretation of the results

When a tight link and bottleneck link are not identical, ICIM-cap’s measurement result can

overestimate, but the measurement never gets higher than the capacity of the tight link. In

fact, a link with a large capacity does not often become a tight link, so the overestimation

will not be very large. The measurement results can be an underestimation, however, the

result is never smaller than Rout, which is the measurement result of enhanced Pathrate.

– 90 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

1 Gbps 1 Gbps

 connection

Sender with ICIM-abw
Receiver

Data pkts

ACK pkts

 TCP
Cross traffic

1 Gbps

Ethernet

switch
Ethernet

switch

Figure 4.14: Network topology of the experiment

Thus, the measurement results for ICIM-cap may not be correct when the supposition of

the tight link and bottleneck link is not true, but the error is not large.

4.5 Experiments in a real environment

In this section, we present the experiment result in a real environment to validate the

burst-based measurement algorithm. We implement the basic algorithm, ICIM-abw, in a

FreeBSD system and use the simple network shown in Figure 4.14 to examine whether

the algorithm works well. This network consists of two switches equipped with 1-Gbps

Ethernet ports; all links are 1 Gbps. Table 4.3 shows the specifications of the PCs. The

cross traffic is made up of UDP traffic sent by Iperf [49]. One TCP connection is established

between the sender and the receiver. In the TCP sender program, the ICIM-abw program

is implemented. In this case, the link connecting the two switches becomes the bottleneck

link. We control the Iperf flows so that the available bandwidth on the bottleneck link is

600 Mbps from 0 to 50 sec, 300 Mbps from 50 to 100 sec and 500 Mbps from 100 to 150

sec. Both NICs of the sender and the receiver enable IC; the RxAbsIntDelay parameter of

IC is set to 0.1312 ms.

In Figure 4.15, we plot the correct values of the available bandwidth. The measure-

ment results for ICIM-abw and the search ranges are shown in the same figure. We can

– 91 –

4.6 Conclusions

Table 4.3: Specifications of the PCs in the experiment

Sender Receiver
CPU Intel P4 3.0 GHz Intel P4 3.4 GHz
Mem. 1,024 MB 1,024 MB
OS Free BSD 4.10 FedoraCore 4
NIC Int. PRO/1000 Adapter Int. PRO/1000 Adapter

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

B
an

dw
id

th
 (M

bp
s)

Time (s)

Search range
Measurement result
Available bandwidth

Figure 4.15: Changes of the available bandwidth and the measurement results

see that ICIM-abw can suitably measure the available bandwidth in this experimental net-

work. Moreover, the measurement accuracy is as high as the evaluation of the simulation

experiments in Section 4.3.3. As future studies, we will perform an experiment on ICIM

algorithms in a large-scale network as well as on the Internet.

4.6 Conclusions

In this chapter, we introduced ICIM-abw and ICIM-cap, the methods that can measure

the available bandwidth and capacity on a 1-Gbps or higher network path. The proposed

measurement algorithms do not require regulation of packet transmission intervals and work

well with Interrupt Coalescence. The simulation experiments showed that the proposed

measurement algorithm works well in networks as high or higher than 1 Gbps.

– 92 –

Chapter 4. Inline Bandwidth Measurement Techniques for Gigabit Networks

As our future works, we will evaluate the performance of ICIM in a real Internet environ-

ment. We are also testing the performance of the congestion control mechanism proposed

by [14] when ICIM is used for bandwidth estimation, in the real network environments.

– 93 –

Chapter 5

Conclusions

In summary, in this thesis, we introduced measurement algorithms that can be applied

well in an active TCP connection. We refer to the proposed approach as inline network

measurement. Inline measurement algorithms for two important bandwidth-related metrics

of the end-to-end network path are proposed. In addition, special algorithms are also

proposed for gigabit networks. The proposed algorithms make ingenious use of the TCP

mechanism so that they can provides measurement results continuously and quickly while

interfering with a small number of TCP data packets and having no effect on other traffic

on the network. The algorithms are summarized below.

We first proposed a new measurement algorithm suitable for inline available bandwidth

measurement that generates periodic measurement results in short intervals, on the order

of several RTTs. The key concept in rapid measurement is to limit the bandwidth mea-

surement range using statistical information from previous measurement results. We then

introduced Inline measurement (TCP ImTCP), a Reno-based TCP that includes the pro-

posed algorithm. When the ImTCP sender transmits data packets, it first stores a group

of up to several packets in a queue and subsequently forwards them at a transmission rate

determined by the measurement algorithm. Then, considering the arrival intervals of the

ACK packets, the ImTCP sender perform bandwidth estimation. The simulation experi-

ments showed that the measurement function works well with the window-based congestion

control algorithm and has no effect on the traffic sharing the network path.

We next developed a new capacity measurement function and combined it with ImTCP

in order to enable simultaneous measurement of both capacity and available bandwidth

in ImTCP. The capacity measurement algorithm is a new packet-pair-based measurement

technique that utilizes the estimated available bandwidth values for capacity calculation.

– 94 –

Chapter 5. Conclusions

This new algorithm promises faster measurement than current packet-pair-based measure-

ment algorithms for various situations and works well for high-load networks, in which

current algorithms do not work properly.

Finally, we introduced inline measurement algorithms that overcome problems faced

by current measurement tools when measuring high-speed networks: ICIM-abw for avail-

able bandwidth measurement and ICIM-cap for capacity measurement. The proposed

algorithms utilize the data packets of an active TCP connection for measurement, as do

existing inline measurement methods. However, rather than adjusting the packet transmis-

sion intervals, the proposed algorithms adjust the number of packets involved in a packet

burst and utilize the inter-intervals of the bursts of the corresponding ACK packets for

bandwidth measurement. Simulations and results showed that the proposed algorithms

can measure the bandwidth in the network paths of 1 Gbps and higher.

For more than 40 years, TCP has successfully played the major role in data transmission

on the Internet. With the proposed built-in measurement techniques, TCP becomes much

more useful than just a transmission tool; TCP can act as an active measurement tool. The

wide deployment of new versions of TCP will provide a large infrastructure that monitors

the end-to-end bandwidth in real time for any network, and, most importantly, having no

adverse effect on the network. End-to-end bandwidth inferred in TCP can be then passed

to a higher network layer and utilized for adaptive control, optimal route selection, network

topology design, or isolating fault locations. In addition, TCP can use such bandwidth

information to optimize link utilization or improve the transmission performance of TCP

itself.

Implementation codes for some of the measurement algorithms proposed in this thesis

can be found on the Internet at the ImTCP homepage [53]. Currently, ImTCP with

the available bandwidth measurement function (released in March, 2005) and ICIM-abw

(released in December, 2005) are available. All of the implementations are for the BSD

4.10 [64] kernel system

There are several challenging tasks for future research. The first is the development of

special TCP types that make use of inline measurement. TCP can definitely react more

intelligently with changes in the bandwidth of an IP network when inline measurement

can report such changes in a timely manner. As a first step, TCP for background transfer

(ImTCP bg) [15], TCP for high-speed transfer (TCP symbiosis) [14], and a congestion

control mechanism of TCP for achieving predictable throughput [65], have been proposed.

We believe that the “intelligent” TCP versions are a new trend in the improvement of

– 95 –

Chapter 5. Conclusions

the network transport protocols. Second, in an effort to reduce the load over the network

caused by probe traffic, inline measurement techniques for streaming protocols, such as the

Real Time Streaming Protocol [66], are also of interest.

– 96 –

Bibliography

[1] G. Pierre and M. van Steen, “Design and implementation of a user-centered content

delivery network,” in Proceedings of the 3rd IEEE Workshop on Internet Applications,

June 2003.

[2] S. Chidlow, “Storage area networks,” JISC Technology and Standards Watch Report:

Storage Area Networks, Nov. 2003.

[3] P. Rodriguez, C. Gkantsidis, and J. Miller, “Comprehensive view of a live network

coding P2P system,” in Proceedings of Internet Measurement Conference 2006, Oct.

2006.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing

in structured P2P systems,” in Proceedings of the 2nd International Workshop on

Peer-to-Peer Systems (IPTPS 2003), Feb. 2003.

[5] M. Bishop, S. Rao, and K. Sripanidkulchai, “Considering priority in overlay multicast

protocols under heterogeneous environments,” in Proceedings of INFOCOM 2006, Apr.

2006.

[6] Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid information services for

distributed resource sharing,” in Proceedings of the 10th IEEE International Sympo-

sium on High-Performance Distributed Computing (HPDC-10), Aug. 2001.

[7] Y. Zhao and Y. Hu, “GRESS - a Grid replica selection service,” in Proceedings of

the 16th International Conference on Parallel and Distributed Computing Systems

(PDCS-2003), Aug. 2003.

[8] R. Gao, C. Dovrolis, and E. Zegura, “Avoiding oscillations due to intelligent route

control systems,” in Proceedings of IEEE INFOCOM 2006, Apr. 2006.

– 97 –

BIBLIOGRAPHY

[9] Akamai homepage, available at http://www.akamai.com/.

[10] Exodus homepage, available at http://www.exodus.com/.

[11] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin, “NPS: A non-interfering

deployable Web prefetching system,” in Proceedings of the 4th USENIX Symposium

on Internet Technologies and Systems (USITS 2003), Mar. 2003.

[12] M. Natu and A. Sethi, “Active probing approach for fault localization in computer

networks,” in Proceedings of the E2EMON Workshop 2006, Apr. 2006.

[13] TPTEST, available at http://tptest.sourceforge.net/about.php.

[14] G. Hasegawa and M. Murata, “TCP Symbiosis: Congestion control mechanisms of

TCP based on Lotka-Volterra competition model,” in Proceedings of Workshop on In-

terdisciplinary Systems Approach in Performance Evaluation and Design of Computer

and Communications Systems (Inter-Perf 2006), Oct. 2006.

[15] T. Isugawa, G. Hasegawa, and M. Murata, “Background TCP data transfer with inline

network measurement,” IEICE Transactions on Communications, vol. E89-B, no. 8,

pp. 2152–2160, Aug. 2006.

[16] M. Gerla, B. Ng, M. Sanadidi, M. Valla, and R. Wang, “TCP Westwood with adaptive

bandwidth estimation to improve efficiency/friendliness tradeoffs,” Computer Commu-

nication Journal, vol. 27, no. 1, pp. 41–48, Jan. 2004.

[17] R. Wang, G. Pau, K. Yamada, M. Sanadidi, and M. Gerla, “TCP start up performance

in large bandwidth delay networks,” in Proceedings of INFOCOM 2004, Mar. 2004.

[18] S. Asif, T. Nguyen, G. Xu, and B. Song, “Streaming video with bandwidth adaptation

and error concealment for lowbit rate live wireless applications,” in Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP

’05), Mar. 2005.

[19] Cisco Netflow, available at http://www.cisco.com/warp/public/732/Tech/netflow/.

[20] MRTG Web site, available at http://people.ee.ethz.ch/ oetiker/webtools/mrtg/.

[21] R. Anjali, C. Scoglio, L. Chen, I. Akyildiz, and G. Uhl, “ABEst: An available band-

width estimator within an autonomous system,” in Proceedings of IEEE GLOBECOM

2002, Nov. 2002.

– 98 –

BIBLIOGRAPHY

[22] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link bandwidth,” in

Proceedings of the USENIX Symposium on Internet Technologies and Systems, Mar.

2001.

[23] T. En-Najjary and G. Urvoy-Keller, “PPrat: A passive capacity estimation tool,” in

Proceedings of the E2EMON Workshop 2006, Apr. 2006.

[24] Pathchar, available at http://www.caida.org/tools/utilities/others/pathchar/.

[25] Pchar, available at http://www.ca.sandia.gv/ bmah/Software/pchar.

[26] R. Carter and M. Crovella, “Measuring bottleneck link speed in packet-switched net-

works,” Boston University Computer Science Department, Tech. Rep. TR-96-006,

Mar. 1996.

[27] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of available bandwidth

estimation tools,” in Proceedings of Internet Measurement Conference 2003, Oct. 2003.

[28] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement method-

ology, dynamics, and relation with TCP throughput,” in Proceedings of ACM SIG-

COMM 2002, Aug. 2002.

[29] N. Hu and P. Steenkiste, “Evaluation and characterization of available bandwidth

probing techniques,” IEEE Journal on Selected Areas in Communications, vol. 21,

no. 6, Aug. 2003.

[30] M. Gerla, Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, and S. Mascolo, “TCP

Vegas: New techniques for congestion detection and avoidance,” in Proceedings of the

SIGCOMM 1994, pp. 24–35, Aug. 1994.

[31] S. Savage, “Sting: A TCP-based network measurement tool,” in Proceedings of the 3rd

Usenix Symposium on Internet Technologies and Systems (USITS 1999), Oct. 1999.

[32] Sprobe, available at http://sprobe.cs.washington.edu.

[33] D. Antoniades, M. Athanatos, A. Papadogiannakis, E. Markatos, and C. Dovrolis,

“Available bandwidth measurement as simple as running wget,” in Proceedings of the

7th Passive and Active Measurement Workshop (PAM 2006), Mar. 2006.

– 99 –

BIBLIOGRAPHY

[34] J. C. Hoe, “Improving the start-up behavior of a congestion control sheme for TCP,”

in Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, vol. 26, no. 4, pp. 270–

280, Aug. 1996.

[35] T. Xu-hong, L. Zheng-lan, and Z. Miao-liang, “TCP-Rab: A receiver advertisement

based TCP protocol,” Journal of Zhejiang University SCIENCE, vol. 5, no. 11, pp.

1352–1360, 2004.

[36] A. Persson, C. Marcondes, L. Chen, Y. Sanadidi, and M. Gerla, “TCP Probe: A

TCP with built-in path capacity estimation,” in Proceedings of the 8th IEEE Global

Internet Symposium, Mar. 2005.

[37] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe: A simple and

accurate capacity estimation technique,” in Proceedings of ACM SIGCOMM 2004,

Aug. 2004.

[38] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “PathChirp: Efficient

available bandwidth estimation for network paths,” in Proceedings of the 4th Passive

and Active Measurement Workshop (PAM 2003), Apr. 2003.

[39] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet dispersion techniques and a

capacity-estimation methodology,” IEEE/ACM Transactions on Networking, vol. 12,

no. 6, pp. 963–977, Dec. 2004.

[40] Intel, “Interrupt moderation using Intel Gigabit Ethernet Controllers,” available at

http://www.intel.com/design/network/applnots/ap450.pdf (2003).

[41] Syskonnect, “SK-NET GE Gigabit Ethernet Server Adapter,” available at

http://www.syskonnect.com/syskonnect/technology/SK-NET GE.PDF (2003).

[42] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end probing and anal-

ysis method for estimating bandwidth bottlenecks,” in Proceedings of IEEE GLOBE-

COM 2000, Nov. 2000.

[43] J. Navratil and R. Cottrell, “ABwE: A practical approach to available bandwidth

estimation,” in Proceedings of the 4th Passive and Active Measurement Workshop

(PAM 2003), Apr. 2003.

– 100 –

BIBLIOGRAPHY

[44] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M. Fomenkov, and k claffy,

“Comparison of public end-to-end bandwidth estimation tools on high-speed links,”

in Proceedings of the 6th Passive and Active Measurement Workshop (PAM 2005),

Mar. 2005.

[45] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, “Resilient overlay net-

works,” in Proceedings of ACM Symposium on Operating Systems Principles (SOSP

2001), Oct. 2001.

[46] R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[47] NS homepage, available at http://www.isi.edu/nsnam/ns/.

[48] NLANR Web site, available at http://moat.nlanr.net/Datacube/.

[49] Iperf, available at http://dast.nlanr.net/Projects/Iperf/.

[50] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Exper-

imental Design, Measurement, Simulation, and Modeling. Wiley-Interscience, 1991.

[51] S. Jin, L. Guo, I. Matta, and A. Bestavros, “TCP-friendly SIMD congestion control

and its convergence behavior,” in Proceedings of the 9th IEEE International Confer-

ence on Network Protocols (ICNP 2001), Nov. 2001.

[52] S. Floyd, “Highspeed TCP for large congestion windows,” RFC 3649, Dec. 2003.

[53] ImTCP homepage, available at http://www.anarg.jp/imtcp/.

[54] K. Lai and M. Baker, “Measurering link bandwidths using a deterministic model of

packet delay,” in Proceedings of ACM SIGCOMM 2000, Aug. 2000.

[55] A. B. Downey, “Using Pathchar to estimate internet link characteristics,” in Proceed-

ings of ACM SIGCOMM 1999, Aug. 1999.

[56] M. Goutelle and P. Vicat-Blanc, “Study of a non-intrusive method for measuring the

end-to-end capacity and useful bandwidth of a path,” in Proceedings of the 2004 IEEE

International Conference on Communications, June 2004.

[57] T. Kelly and T. Ott, “Performance sensitivity and fairness of ECN-aware modified

TCP,” in Proceedings of Second International IFIP-TC6 Networking Conference, May

2002.

– 101 –

BIBLIOGRAPHY

[58] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control for fast long-

distance networks,” in Proceedings of INFOCOM 2004, Mar. 2004.

[59] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, architecture, algorithms, per-

formance,” in Proceedings of INFOCOM 2004, Mar. 2004.

[60] C. Marcondes, A. Persson, M. Sanadidi, M. Gerla, H. Shimonishi, T. Hama, and

T. Murase, “Inline path characteristic estimation to improve TCP performance in

high bandwidth-delay networks,” in Proceedings of the International Workshop on

Protocols for Fast Long-Distance Networks, Feb. 2006.

[61] G. Jin and B. Tierney, “System capability effect on algorithms for network bandwidth

measurement,” in Proceedings of Internet Measurement Conference 2003, Oct. 2003.

[62] M. Zec, M. Mikuc, and M. Zagar, “Estimating the impact of interrupt coalescing

delays on steady state TCP,” in Proceedings of the 10th SoftCOM Conference, Oct.

2002.

[63] R. Prasad, M. Jain, and C. Dovrolis, “Effects of interrupt coalescence on network

measurements,” in Proceedings of the 5th Passive and Active Measurement Workshop

(PAM 2004), Apr. 2004.

[64] FreeBSD homepage, available at http://www.freebsd.org/.

[65] K. Yamanegi, G. Hasegawa, and M. Murata, “Congestion control mechanism of TCP

for achieving predictable throughput,,” in Proceedings of Australian Telecommunica-

tion Networks and Applications Conference, Dec. 2006.

[66] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),”

RFC 2326, Apr. 1998.

– 102 –

