On routing controls in ISP topologies: A structural perspective

Ryota Fukumoto, Shin'ichi Arakawa, Masayuki Murata
Graduate School of Information Science and Technology
Osaka University, Japan
r-fukumoto@ist.osaka-u.ac.jp

Contents
- Background
 - Structure of Internet topology
- Objectives
- A heuristic routing algorithm
- Simulation
 - Models
 - Results
 - Load distribution
 - Impact of parameter settings
- Conclusion and future works

Power-Law networks
- The connectivity of nodes in the Internet follows power-law
- The probability that a node is connected to \(k \) other nodes:
 \[
 P(k) \approx \alpha k^{-\gamma}
 \]
- A few nodes which have many links
- Most nodes which have only a few links

Related works
- Modeling power-law topology
 - BA (Barabasi-Albert) model
 - Nodes are added incrementally (Incremental growth)
 - Added nodes are connected to the larger degree nodes without considering physical distance (Preferential attachment)
- Evaluating the distributions of link/node load
 - BA model based
 - Minimum hop routing based
- Only the degree distribution does not determine the network structure
- Other various routings have been proposed

Modeling of Internet router level topology
- Power-Law arise [1]
 - For maximizing network throughput
 - Under the router’s technical constraints
- Modeled like Figure.
 - At smaller-degree nodes:
 - Links can have large capacity for backbone
 - At larger-degree nodes:
 - Links must have small capacity for aggregating

ISP networks
- Sprint network
 - Following power-law
 - 467 nodes
 - 1292 links
- Highly clustered [2]
 - The rectangles appear
 - Locally connected like a bottom Figure

Objectives

- Investigate
 - How structural characteristics of Internet's power-law topologies affect the performance of the routing mechanisms
 - Difference between ISP topology and BA model topology

- Evaluate the load distribution of Internet router level topologies from the view point of structural properties
 - Minimum hop routing
 - Optimal routing
 - takes huge time to calculate routes
 - Our heuristic routing

Heuristic routing method

- Select routes following two policies
 - Avoiding the higher-degree nodes
 - At larger-degree nodes, links have small capacity and traffic concentrates due to router's technology constraints
 - Selecting larger capacity links

- Incrementally determine the route of each node-pair
 - After we obtain the route of a node-pair
 - The remaining costs of all links are updated based on the selected routes
 - Added by following expression: $\alpha \frac{C_{max}}{C}$
 (α is parameter, C_{max} is maximum link capacity, and C is link capacity)

Simulation model

- Network models
 - ISP router level topologies
 - Sprint topology, AT&T topology
 - BA model topology
- Traffic model
 - Each node-pair generates the same amount of traffic
- Link capacity
 - Determined based on the technical constraint of router
 - Maximize the throughput with minimum hop routing
- Routing method
 - Minimum hop routing
 - Optimal routing
 - Minimum the maximum link utilization using flow deviation method
 - Heuristic routing

Comparison of network throughput

- The network throughput
 - The amount of traffic that the network can accommodate
- Optimal ratio
 - The ratio of Optimal routing to Minimum hop routing
- Results
 - ISP topologies have lower network throughput
 - ISP topologies have lower Optimal ratio

<table>
<thead>
<tr>
<th></th>
<th>Sprint</th>
<th>AT&T</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum hop</td>
<td>408.85</td>
<td>177.38</td>
<td>264.45</td>
</tr>
<tr>
<td>Proposed</td>
<td>405.82</td>
<td>249.95</td>
<td>244.75</td>
</tr>
<tr>
<td>Optimal</td>
<td>627.85</td>
<td>337.34</td>
<td>270.37</td>
</tr>
<tr>
<td>Optimal ratio</td>
<td>2.44</td>
<td>2.37</td>
<td>7.43</td>
</tr>
</tbody>
</table>

Comparison of link load distribution (1/2)

- Minimum hop routing (red line)
 - Some links are congested
- Optimal routing (green line)
 - The utilizations are significantly reduced
 - Most links have almost same utilization on the BA topology

Comparison of link load distribution (2/2)

- Our heuristic routing (blue line)
 - High utilization links are still different from optimal routing on Sprint topology
 - Similar distribution to the optimal routing
- Effects of optimal and heuristic routing
 - Not significant in the Sprint topology
 - ISP topology have following characteristics
 - Higher clustered
 - Locally connected

Congested Not Congested Reduced Almost same
The impact of parameter settings

- Parameter alpha gives priority for selecting routes
 - Large alpha causes shorter hop routes
 - Small alpha causes high bandwidth routes
- When the alpha is between 1 and 10
 - Maximum link utilization is much decreased
- Only on the BA topology and the Level3 topology
 - High maximum link utilization under large alpha

The relation between parameter alpha and maximum link utilization

- The BA topology and the Level3 topology
 - Large-degree nodes are located at “center” of the topologies
 - “Center” means where other nodes reach the nodes within a few hop count
 - Traffic concentrates to the larger degree nodes at center of topology

 - Maximum link utilization increases under large alpha

- The Sprint, AT&T, and Verio topology
 - Large-degree nodes are not located at center of the topologies
 - Average hop count from maximum degree node to the other nodes

Topology	Sprint	AT&T	Verio	Level3	BA
	2.89	3.99	3.60	2.22	2.15

Conclusion and future works

- Conclusions
 - We evaluated several routing methods on ISP topologies
 - Minimum hop routing
 - Optimal routing
 - Our heuristic routings
 - Effects of Optimal routing method are not significant in the Sprint topology
 - Since ISP topology have following characteristics
 - Higher clustered
 - Locally connected
 - Our heuristic routing method achieve the similar distribution of link/node load to optimal routing

- Future works
 - Evaluating with more realistic traffic demand
 - Evaluating scalability our heuristic routing method