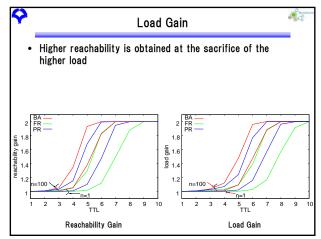
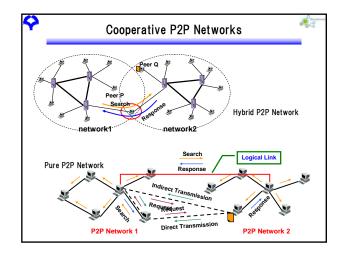

Objectives


- To achieve better cooperation
 - Topology: evolution mechanism
 - Preferential attachment of Barabasi and Albert
 - Random model
 - Hybrid of PA and random
 - Connection: selection of cooperative nodes
 - Degree-dependent
 - Random


Anal	ysis of Evolutio	n and Degree Distribution
Preferential Attachment	Evolution	$\frac{\frac{\partial k(i,t)}{\lambda(i,t)}}{\frac{\partial k(i,t)}{\partial t}} = m \left(\frac{k(i)^{\frac{\beta}{t}}}{s(t)} \right)$
	Degree Distribution	$P(k,t) = 2m^2k^{-3}$
Random	Evolution	$k(i,t) \stackrel{\partial k(i,t)}{\rightarrow} \underset{\partial t}{\overset{\partial h(i,t)}{\rightarrow}} \frac{m}{N(t)} \log i + m$
	Degree Distribution	$P(k,t) = \frac{1}{2}e^{1-\frac{k}{2}}$
Hybrid	Evolution	$\frac{\partial k(t,t)}{\partial t} = \frac{2 - \delta t(t) t}{\alpha S(t) t} \int_{t}^{t} \frac{\partial^{2}}{\partial t} \frac{(1 - \alpha)m}{\alpha N(t)}$
	Degree Distribution	$P(k,t) = \frac{2}{(2-\alpha)m} \left\{ \frac{(2-\alpha)m}{\alpha k + (1-\alpha)2m} \right\}^{1+\frac{2}{\alpha}}$

