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Abstract

In this paper we propose to analyze a peer-to-peer (P2P) file sharing system by means of a so-called
level-dependent Quasi-Birth-and-Death (QBD) process. Weconsider the dissemination of a single file
consisting of different segments and include a model for theupload queue management mechanism
with peers competing for bandwidth. By applying an efficientmatrix-analytic algorithm we evaluate the
performance of P2P file diffusion in terms of the corresponding extinction probability, i.e., the probability
distribution that the sharing process ends.
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I. I NTRODUCTION

With the introduction ofpeer-to-peer(P2P) technology in networks for file-sharing and content dis-
tribution, the volume of transported traffic has recently enormously increased. The nodes participating
in the P2P network are calledpeersand form logical overlay structures on application layer above the
IP topology. One of the main advantages of using P2P networks for content distribution is their higher
scalability to a growing number of file requests, especially in the presence of flash crowd arrivals [12].
Unlike conventional client/server architectures, all peers act simultaneously as clients and servers, thus,
shifting the load from a single server to several peers sharing a specific file. Additionally, since the source
of a file is no longer stored at a single location, the P2P networkis more robust to failures.

However, there are also certain dangers on entirely relyingon P2P networks for file distribution. Firstly,
the data is no longer kept at a single trusted source, as each peer which hosts the file may modify the
data willingly or unwillingly, thus, causing the distribution of corrupt information. This is referred to as
poisoningor pollution [3]. Secondly, the existence of a sharing peer in the network can not be guaranteed
due tochurn, i.e., the process of peers entering and leaving the network. The sharing of files is controlled
by the peers’ behavior (willingness to share after downloading, patience, etc.) and they may arbitrarily
join or leave the network at any instant. If the peer, which has the last part of the file, leaves the network,
this information is lost and other peers can no longer retrieve this data. For this reason, specific P2P
architectures like Chord [14] employ mechanisms to maintain a certain number of replicas in the network.

In this work we study the probability that the diffusion of a file will eventually come to a halt in
an unstructured P2P file sharing network, which we define as theextinctionof the file. We extend our
previous model in [5] where we used aMarkovian Binary Tree(MBT) to model the file sharing network
and we formulated an algorithm to compute the extinction probability. However, the previous model
only considered the sharing of entire files. In this paper, we extend the model to include parts of the
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file being shared to show a more accurate sharing behavior. Thisis achieved by using a level-dependent
Quasi-Birth-and-Death(QBD) process. By adapting the logarithmic-reduction algorithm (see Latouche
and Ramaswami [7]), we actually compute the probability that file diffusion ends due to the lack of peers
sharing a part of the file.

This paper is organized as follows. First, we will briefly summarize related work on modeling of P2P
file sharing mechanisms for content distribution in Section II. This is followed by the formulation of our
basic assumptions on the file sharing network in Section III. Wewill not specifically focus on any existing
P2P protocol, but use a rather generic specification which roughly resembles the eDonkey protocol. In
Section IV we will formulate two analytical models corresponding to two different systems in which
either the sharing process stops when the entire file is lost, or when any of the segments is missing.
Accordingly, we construct the corresponding level-dependent QBD process and we develop algorithms
necessary to obtain the extinction probability in both settings. Finally, we provide some numerical results
on the impact of the system parameters on the performance of the system in Section V.

II. RELATED WORK

Most studies on the evaluation of the performance of P2P systems as content distribution networks
rely on measurements or simulations of existing P2P networks. For example, Saroiuet al. [13] conducted
measurement studies of content delivery systems that were accessed by the University of Washington.
The authors distinguish between traffic from P2P, WWW, and the Akamai content distribution network,
and they found that the majority of volume is transported over P2P. Hoßfeldet al. [6] provide a simulation
study of the well-known eDonkey network and examine the file diffusion properties under constant and
flash crowd arrivals.

An analytical model for performance evaluation of a generalized P2P system is given by Geet al. [4].
On the other hand, other published work consider specific existing network types. For example, Qiuet
al. [10] use a fluid model for BitTorrent and investigate the performance in steady state. They studied the
effectiveness of the incentive mechanism in BitTorrent andprove the existence of a Nash equilibrium.
Rubenstein and Sahu [12] mathematically show that unstructured P2P networks have good scalability and
are well suited to cope with flash crowd arrivals. A fluid-diffusive P2P model from statistical physics is
presented by Carofiglioet al. [2]. Both, the user and the content dynamics are included, but this is only
done on file level and without pollution. These studies show that by providing incentives to the peers for
sharing a file, the diffusion properties are improved. Yang and de Veciana [15] investigate the service
capacity of P2P networks by considering two models, one for the transient state with flash crowds and
one in steady state.

Christin et al. [3] measured content availability of popular P2P file sharingnetworks and used this
measurement data for simulating different pollution and poisoning strategies. They show that only a small
number of fake peers can seriously impact the user’s perception of content availability. In [8] a diffusion
model for modeling eDonkey-like P2P networks is presented based on a model from mathematical biology.
This model includes pollution and a peer patience threshold at which it aborts its download attempt and
retries later again. It is shown that an evaluation of the diffusion process is not accurate enough when
steady state is assumed or the model only considers the transmission of the complete file, especially in the
presence of flash crowd arrivals. That model is extended in [9] to analytically compare the performance
of P2P file sharing networks to that of client/server systems.

III. PEER-TO-PEER FILE SHARING MODEL

Let us now define the assumptions we make on the P2P file sharing model in this paper. We assume
an unstructured P2P network operating similar to the eDonkeynetwork. However, the model is not
restricted to eDonkey, but can in fact be applied to other file sharing networks as well. The sharing of a
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Fig. 1. File structure consisting of chunks, segments, and blocksFig. 2. Possible phases for downloading a chunk

file with sizeF is performed in units ofchunks, which is further split into smaller units calledblocks,
see Figure 1. In eDonkey, a chunk has the size of 9.28 MB and a block is 180 kB. After each chunk
has been downloaded, it is checked for errors and if the hash value is incorrect, all blocks of the chunk
are discarded and downloaded again. After all chunks of a file have been successfully downloaded, the
peer may decide if it keeps the file as aseederin the network for other peers to download or if it is
removed from sharing (leecheror free rider). In this work, we assume that the file consists of a single
chunk, corresponding, for example, to a single mp3 audio file,as this is enough to capture the basic
characteristics of the diffusion behavior.

A. Upload Queue Management

In order to manage the bandwidth for other peers requesting the file, an upload queue mechanism is
maintained. A peer requests individual blocks from other peers sharing the chunk containing the desired
block. All requests are appended to the waiting list of the sharing peer and a weighting mechanism
handles the scheduling of the upload queue requests for transmission. The detailed procedure of the
queue management takes several features into account that depend on the individual settings of the
sharing peer like upload bandwidth and number of simultaneous uploads.

In the original version of eDonkey, error detection is done after all blocks of a chunk have been received
and the complete chunk is discarded in the case of an error. However, this is not very effective and in more
recent versions of eDonkey clients, e.g. eMule, theIntelligent Corruption Handling(ICH) mechanism is
implemented that performs the error detection on smaller data units than chunks and which we define in
the following assegments. Instead of discarding the complete chunk when at least one corrupted block is
received, only all blocks of the damaged segment need to be re-requested. The specific size of a segment
depends on the settings of the ICH mechanism.

With the model for the upload queue mechanism and corruptionhandling, it is sufficient to assume that
a chunk only needs to be modeled consisting of few segments instead of individual blocks. In this study
we assume that a chunk consists of two segments, i.e.Ns = 2 and the size of a segment isZ = 4.64 MB,
the sizeF of the whole chunk being below or equal to9.28 MB.

B. Download Bandwidth

Let us define the upload and download rates asru andrd, respectively. For the sake of simplicity, we
use the same assumption as in [8] with homogeneous users withADSL connections, resulting in rates of
ru = 128 kbps andrd = 768 kbps. Further let us denote the number of peers sharing a certain segment
asS and the peers downloading it asD. Since eDonkey employs a fair share mechanism for the upload
rates, there are on averageS/D sharing peers for a single downloading peer and we multiply this value
with ru which gives us the bandwidth on the uplink. However, since the download bandwidth could be
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the limiting factor, the resulting effective transition rate consists of the minimum of both terms divided
by the size of a segmentZ. In the case ofNs = 2 segments, this results in the ratesµ1 andµ2 given in
Equation (1).

µ1(S, D) =
1

Z
min

{

S

D
ru, rd

}

µ2(S, D) =
1

F − Z
min

{

S

D
ru, rd

}

(1)

IV. A NALYTICAL P2P MODEL

Let us consider a chunk to be made up of two segments: segment 1 and segment 2. This provides a
three-phases system. A peer will be in phase 1 or 2 if it has only segment 1 or 2, respectively. If the
peer has both segments (i.e. the complete chunk), it will be in phase 3, see Figure 2. New peers appear
at random time in the system determined by an exponential random variable whose rate is defined by
Equation (1) and by the current state of the system which is expressed by the number of peersSi in
each phasei. For the sake of simplicity we can assume that the rates at which a peer stops sharing a
segment is independent of the segment number, and is equal tod.

Let us now define the stochastic process{(X(t), ϕ(t))}, whereX(t) represents the total number of
peers with segments 1 or/and 2 present in the system at timet, andϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t)) denotes
the number of peers in each phase present in the system at timet, with ϕ(t)1 = X(t). Here,1 denotes
a vector with ones.

We consider two views to measure the extinction probabilityof the file sharing process, anoptimistic
and apessimisticview. In the optimistic view, we assume that the sharing process ends when no more
segments are available in the system. In the pessimistic case, the file sharing process ends as soon as one
of the two segments is missing. We call this event acatastrophe. We now differentiate the two models
corresponding to the two views described above.

A. Level-Dependent QBD

In this first setting, recall that the sharing process ends when there is no more segment available in
the system. The stochastic process{(X(t), ϕ(t))} is anabsorbing level-dependent quasi-birth and-death
process, of which the generatorQ can be written as in Equation (2).

Q =

















0 0 0 0 0 0 . . .

A
(1)
2 A

(1)
1 A

(1)
0 0 0 0 . . .

0 A
(2)
2 A

(2)
1 A

(2)
0 0 0 . . .

0 0 A
(3)
2 A

(3)
1 A

(3)
0 0 . . .

...
...

...
...

...
...

...

















(2)

This process has been extensively studied in the past (see Latouche and Ramaswami [7] and references
therein). In this setting, time to extinction of the system is clearly equal to the time until absorption.
In the remainder of this section, we first elaborate on the content of theA

(j)
i matrices and then give

the algorithmic procedure in order to compute the absorption time in this level-dependent QBD with
generatorQ.

1) Level-Dependent QBD Generator Description:Let us recall that the state(S1, S2, S3) means that
we haveS1 peers in phase 1 (with only segment 1),S2 peers in phase 2 (with only segment 2), andS3

peers in phase 3 (with the complete file). We define the state sub-spaceL(k) as

L(k) = {(S1, S2, S3) : S1 ≥ 0, S2 ≥ 0, S3 ≥ 0; S1 + S2 + S3 = k} ,
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which gives all states of the system at levelk, that is whenk peers are present in the system and its
cardinality is

|L(k)| =
1

2
(k + 2)(k + 1).

In the following, we take the lexicographic order to enumerate the states of each level.

When the system contains a single peer (that is, when its state is in L(1)), the peer may stop sharing
the one segment it possesses with rated or another peer may start downloading the segment. This latter
occurs at a rate given by the matrixA(1)

0 . The transition matrices from the first levelA
(1)
2 andA

(1)
0 are

given by

A
(1)
2 =





d
d
d





A
(1)
0 =





µ1(1, S2 + 1) 0 0 0 0 0
0 0 0 µ2(1, S1 + 1) 0 0
0 0 µ1(1, S1 + S2 + 1) 0 µ2(1, S1 + S2 + 1) 0



 .

For example, if the system is in state(0, 1, 0), only a new peer with segment 2 may appear, i.e., the
system is in state(0, 2, 0). This happens at a rateµ2(1, S1 + 1), see Equation (1).

Usually, a peer may also change its phase (from 1 to 3 or from 2 to 3). Such a transition keeps the
level at 1 since no new peer arrives in the system. However, ifa peer in phase 1 (or phase 2) is alone
in the system, it will not be able to download the missing segment and to change into phase 3. Thus,
the transition rate from phase 1 (or from phase 2) to phase 3 isµi(0, 1) = 0 for i = 1, 2. The diagonal
elements ofA(1)

1 (and of allA(k)
1 , k ≥ 2) are such thatQ1 = 0.

The possible transitions from a state(S1, S2, S3) ∈ L(k) with k ≥ 2 are described below:

A
(k)
2 : The system may lose a peer in phasei with rated multiplied by the number of peers in phase

i, that isSi with i = 1, 2, 3.
A

(k)
0 : The two possible transitions listed in the table below may beinterpreted with a similar argument.

For the first transition, two events may happen: either the newpeer was downloading the segment
1 from one of theS1 peers, or it received it from one of theS3 peers.

Transitions Rates
(S1, S2, S3) → (S1 + 1, S2, S3) S1 µ1(1, S2 + 1) + S3 µ1(1, S1 + S2 + 1)
(S1, S2, S3) → (S1, S2 + 1, S3) S2 µ2(1, S1 + 1) + S3 µ2(1, S1 + S2 + 1)

A
(k)
1 : A peer in phase 1 changes into a peer in phase 3 with the rateµ2(S2 + S3, S1), sinceS1 peers

are competing for the(S2 +S3)× ru available bandwidth. The same argument holds for a peer
in phase 2 changing into a peer in phase 3. Let us recall that thediagonal elements are such
that Q1 = 0.

Transitions Rates
(S1, S2, S3) → (S1 − 1, S2, S3 + 1) µ2(S2 + S3, S1)
(S1, S2, S3) → (S1, S2 − 1, S3 + 1) µ1(S1 + S3, S2)

Diagonal element Parameter of the exponential
(S1, S2, S3) → (S1, S2, S3) −k d − S1 µ1(1, S2 + 1) − S2 µ2(1, S1 + 1)

−S3 µ1(1, S1 + S2 + 1) − S3 µ2(1, S1 + S2 + 1)
−µ2(S2 + S3, S1) − µ1(S1 + S3, S2)

2) Probability of Extinction:Our interest lies in computing the probability that the sharing process in
the particular system setting described in the previous section will terminate at some point. Letγ(0) be
the first time the system is in level 0, i.e., no more segments are available. Letei be a unit vector with a
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1 at thei-th entry and 0 elsewhere. We define(G1)i as the probability that the system, starting in level
1 with ϕ(0) = ei, will eventually reach level 0, that is

(G1)i = P [γ(0) < ∞|ϕ(0) = ei] i = 1, 2, 3.

It was proven in [11] that this vector is explicitly given by

G1 =
∞

∑

l=0

[

l−1
∏

i=0

U i
2i

]

Dl
2l (3)

where the matricesU l
k andDl

k are given by the following recursive equations.

U0
k =

(

−A
(k)
1

)

−1
A

(k)
0 (4)

D0
k =

(

−A
(k)
1

)

−1
A

(k)
2 (5)

U l
k =

[

I − U l−1
k Dl−1

k+2l−1 − Dl−1
k U l−1

k−2l−1

]

−1
U l−1

k U l−1
k+2l−1 l ≥ 1 (6)

Dl
k =

[

I − U l−1
k Dl−1

k+2l−1 − Dl−1
k U l−1

k−2l−1

]

−1
Dl−1

k Dl−1
k−2l−1 l ≥ 1 (7)

We use the logarithmic-reduction algorithm, adapted for level-dependent QBD in [11]. A nice inter-
pretation of this algorithm, as presented in [11], exists that we now recall. The matricesU i

2i andDl
2l in

(3) may be interpreted as

U i
2i = P

[

γ(2i+1) < γ(0) ∧ ϕ(γ(2i+1)) |X(0) = 2i
]

Dl
2l = P

[

γ(0) < γ(2l+1) ∧ ϕ(γ(0)) |X(0) = 2l
]

whereγ(k) is the first passage time to levelk, that isγ(k) = inf{t ≥ 0 : X(t) = k} with k ≥ 0. So,
the l-th term of the sum in (3) has the following interpretation.

[

l−1
∏

i=0

U i
2i

]

Dl
2l = P [γ(2l) < γ(0) < γ(2l+1) ∧ ϕ(γ(0)) |X(0) = 1] (8)

We clearly see that summing Equation (8) forl = 0 to infinity gives us the vectorG1.

B. Level-Dependent QBD with Catastrophes

The model in the previous section considered that the file dissemination terminates when no more
segments are available for sharing in the system. However, in reality when only an individual segment
or an incomplete file remains in the network, no peer is able to completely retrieve the file anymore.
Therefore, we now consider that a file is not available for sharing as soon as one of the segments is lost.
In this case, the process ends in an absorbing state belonging to levelL(0) which is defined in this new
setting as:

L(0) = {(0, 0, 0), (n, 0, 0), (0, n, 0); n ∈ IN0}

where IN is the set of natural numbers. We propose to gather all of these states{(n, 0, 0); n ∈ IN0}
and {(0, n, 0); n ∈ IN0}, respectively, into one state each labeled(k, 0, 0) and (0, k, 0), respectively.
The sub-spaceL(0) is thus composed of three states, that is{(0, 0, 0), (k, 0, 0), (0, k, 0)}. Other level
state-spaces are

L(k) = {(i, j, l) | i, j ∈ IN, l ∈ IN0 }∪ { (i, j, 0) | i, j ∈ IN0} k ≥ 1
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wherei + j + l = k. The time to extinction is thus equal to the time to absorptionand the generator of
this new level-dependent QBD is given in Equation (9).

Q =

















0 0 0 0 0 0 . . .

A
(1)
2 A

(1)
1 A

(1)
0 0 0 0 . . .

A
(2)
3 A

(2)
2 A

(2)
1 A

(2)
0 0 0 . . .

A
(3)
3 0 A

(3)
2 A

(3)
1 A

(3)
0 0 . . .

...
...

...
...

...
...

...

















(9)

The rates of catastrophe, determined byA
(k)
3 , are given by the transitions and corresponding rates.

Transitions Rates
S2 > 0 : (0, S2, 1) → (0, k, 0) d
S2 > 0 : (1, S2, 0) → (0, k, 0) d
S1 > 0 : (S1, 0, 1) → (k, 0, 0) d
S1 > 0 : (S1, 1, 0) → (k, 0, 0) d

(0, 0, 1) → (0, 0, 0) d

Accordingly, matrixA
(k)
2 becomes as shown below.

Transitions Rates
S1 > 1 or S3 > 0 : (S1, S2, S3) → (S1 − 1, S2, S3) S1 d
S2 > 1 or S3 > 0 : (S1, S2, S3) → (S1, S2 − 1, S3) S2 d

(S1 > 0 andS2 > 0) or S3 > 1 : (S1, S2, S3) → (S1, S2, S3 − 1) S3 d

The other transitions described in matricesA
(k)
0 and A

(k)
1 stay the same as previously described in

Section IV-A1 for the first model.

The probability of absorption can now be computed by extending the results in [1]. LetG(k)
0 be a

matrix whose(i, j)-th element is the probability that the process reaches level 0 for the first time in
phasej, given that the process starts in phasei of level k ≥ 1 and levels 1 tok − 1 are taboo. LetGk

be the matrix whose(i, j)-th element is the probability that the process reaches level k − 1 for the first
time in phasej given that the process starts in phasei of level k ≥ 1. The absorption probability is
then given byG1 which is here also equal toG(1)

0 by definition of this quantity. Moreover, we have for
k ≥ 2 that Gk is given by

Gk =
(

A
(k)
1

)

−1
A

(k)
2 +

(

A
(k)
1

)

−1
A

(k)
0 Gk+1 Gk. (10)

Starting from levelk, the QBD may directly move to levelk − 1 with probability
(

(A
(k)
1

)

−1
A

(k)
2 , or

it may move up to levelk + 1 with probability
(

A
(k)
1

)

−1
A

(k)
0 . Upon arrival in levelk + 1, it eventually

returns to levelk with probability Gk+1 and then to levelk − 1, with probability Gk. However, the
equation forG1 is slightly different and is given by

G1 =
(

A
(1)
1

)

−1
A

(1)
2 +

(

A
(1)
1

)

−1
A

(1)
0

[

G2 G1 + G
(2)
0

]

.

Indeed, if the process moves up to level2 (the second term in this sum), then to reach level 0, it may
first return to level 1, with probabilityG2, and then move to level 0 with probabilityG1. It may also
be directly absorbed in level 0 this time without returning to level 1 first. This happens with probability
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G
(2)
0 . Thus, to computeG1, we need to knowG2 andG

(2)
0 . More generally,G(k)

0 satisfies the following
recursive equation.

G
(k)
0 =

(

A
(k)
1

)

−1
A

(k)
3 +

(

A
(k)
1

)

−1
A

(k)
0

[

Gk+1 G
(k)
0 + G

(k+1)
0

]

(11)

Its interpretation follows directly from the definition ofG(k)
0 using the same argument as used before.

Thus, writingQ
(k)
i =

(

−A
(k)
1

)

−1
A

(k)
i , we have explicitly

G
(k)
0 =

[

I − Q
(k)
0 Gk+1

]

−1 [

Q
(k)
3 + Q

(k)
0 G

(k+1)
0

]

. (12)

This implies that to obtainG(2)
0 we needG

(3)
0 , and so on. So, we have to truncate the QBD after

some levelM to be able to start the recursion. We may computeGM with the logarithmic-reduction
algorithm as described in [11], that is

GM =
∞

∑

l=0

[

l−1
∏

i=0

U i
M−1+2i

]

Dl
M−1+2l (13)

where the matricesU l
k andDl

k are given by Equations (4–7). Accordingly, we obtain the matricesGM−1,
GM−2, . . . , G2 with Equation (10). Using Equation (12), we finally end up with the following system
which provides us the absorption probabilityG1.

G
(M)
0 = Q

(M)
3 (14)

G
(M−1)
0 =

[

I − Q
(M−1)
0 GM

]

−1 [

Q
(M−1)
3 + Q

(M−1)
0 G

(M)
0

]

(15)

...

G1 =
[

I − Q
(1)
0 G2

]

−1 [

Q
(1)
2 + Q

(1)
0 G

(2)
0

]

(16)

By truncating the QBD at levelM , we actually compute the absorbing probability under the taboo of
level M + 1, but a sufficiently largeM will provide us a good approximation of absorption probability.

V. NUMERICAL EVALUATION

Let us now consider some numerical evaluation of the proposedmodels, starting with the analysis
of the optimistic case. We assume that initially there is a single source sharing both segments in the
network, so the system starts at state(0, 0, 1). The accuracy of our proposed algorithm for computing
the extinction probabilities in Section IV-A depends on the term l, at which the infinite sum in Equation
(3) is truncated. Experiments show that in our case the accuracy for l = 3 is already sufficient.

The resulting extinction probability as function over the death rate is illustrated in Figure 3 for file
sizes ofF = 9.28 MB and F = 6.8 MB, with Z = 4.64 MB as defined earlier being the size of the
first segment. We can see that when the death rate approaches 1,the extinction probability increases
drastically to 1. The smaller file size has the effect that the second segment is transmitted faster and
thus more copies of it exist in the network, which reduces theoverall extinction probability slightly. In
general, this result can be interpreted as follows. The average death rated corresponds to the reciprocal
of the average sharing time of a peer in the system in seconds.Thus, in order for the content provider
to keep a low extinction probability of about 0.01, he shouldprovide incentives that peers stay in the
system for at least 100 s.

We now look at the more pessimistic case that the dissemination stops when at least one segment is no
longer available for sharing. This is shown in Figure 4 forF = 9.28 MB and a fixed death rated = 10−2.
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F = 9.28 MB

F = 6.8 MB

Fig. 3. Extinction probability for different file sizes
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Fig. 4. Influence of the truncation levelM on the accuracy

d

(0,0,0)

(0,k,0)

F = 9.28 MB

F = 6.8 MB

(k,0,0)

Fig. 5. Extinction probabilities with catastrophes (M = 5)

F

(0,0,0)

(0,k,0)

(k,0,0)

Fig. 6. Influence of file sizeF on extinction probabilities

For the probability that none of both segments are left in thesystem, i.e., case(0, 0, 0), we can see that
all probabilities are identical and are not affected by the truncation levelM . However, a slight difference
can be seen when we compare the probabilities where only one kind of segment becomes extinct. In
fact, Figure 4 shows that a value of aboutM = 5 proves to be accurate enough, so in the following
evaluations we will use this truncation point.

If we show the extinction probabilities from the second model with catastrophes over the death rate,
we can recognize in Figure 5 that the probabilities for(0, 0, 0) lie above the two curves(k, 0, 0) and
(0, k, 0). The reason why they are larger can be interpreted as follows.Initially, the system starts at state
(0, 0, 1), i.e., with exactly a single sharing peer. In order to reach the absorbing state(0, 0, 0), this peer
may either make a direct transition by leaving the system or an indirect path, by first giving birth to other
peers which then all leave after time. On the other hand, in order to reach one of the other absorbing
states(k, 0, 0) or (0, k, 0) at least one birth must take place to incrementS1 or S2, respectively. Thus,
a direct transition from(0, 0, 1) to an absorbing state of that type does not exist in this case causing a
reduction in the weight of the probability.

Additionally, when looking at the shape of the curves, we canrecognize that both curves for(k, 0, 0)
and(0, k, 0) are identical when we consider equal segment sizes and the probability for finding and sharing
both segments is equal. WhenF = 6.8 MB the second segment is only half in size of the first, which
results in a higher extinction probability of the first segment. The curves lie below the corresponding
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curves forF = 9.28 MB when the death rated is small. However, in both cases we can see that when
the death rate exceeds10−1 the extinction probabilities drop again. At this point it ismore likely that the
sharing process will stop before any segment is actually downloaded at all, i.e.,d ≫ µ1(1, 1) + µ2(1, 1),
whereµ1(1, 1) + µ2(1, 1) corresponds to the rate of observing a first new peer with any one of the two
segments.

The influence of the file sizeF and, thus, the different size of the second segment is illustrated in
Figure 6. We can recognize that for a death rate ofd = 10−2 the extinction probabilities increase with the
file size and that when the second segment is small, the difference between the extinction probabilities
of states(k, 0, 0) and (0, k, 0) is large. As expected, when both sizes are equal, both curvesapproach
the same value.

VI. CONCLUSION

We provided in this work an algorithmically tractable analysis of a level-dependent QBD process with
and without catastrophe, in terms of absorbing probability. We showed its applicability to the modeling
of file diffusion in unstructured P2P file sharing networks. Numerical results have confirmed that there is
a need for the content provider to offer incentives to the peers to encourage sharing and a long sojourn
time in the system in order to maintain a sufficiently low extinction probability.

In the future we will use this model to analytically derive further performance measures, especially
transient ones such as the distribution of the number of peers present in the system. Furthermore, we
would like to enhance the model to consider a more sophisticated peer behavior by including, e.g., their
willingness to share, impatient peers, and pollution.
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