Switch Architectures For Small-buffered Optical Packet Switched Networks

Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata
Osaka University

4 July 2007

Outline

- Buffering Problem in OPS networks
- Objective
- Proposed Solutions
- Simulation Results
- Conclusions

Buffering Problem in OPS Networks

- According to a rule-of-thumb, an output link of a router needs a buffer sized at \(B = RTT \times BW \)
 - Huge buffer size requirement due to ultra-high speed of optical networks
- Electronic RAM is not a feasible solution
 - O/E/O conversion is hard at ultra-high speed of optical networks
- FDLs (fiber-delay-lines) have limitations
 - FDLs can provide small amount of buffering with fixed delays
 - Bulky devices
- Optical RAM
 - Still under research
 - Do not expect it to have large capacity soon

Objective

- Designing an all-optical OPS network architecture that can achieve high utilization and low packet drop rate by using small FDL buffers
- Showing the buffer requirements

Proposed Solutions 1/2

- Preventing wavelength over-utilization
 - Apply XCP-based congestion control
 - XCP is a new congestion control algorithm specifically designed for high-bandwidth and large-delay networks.
 - Carefully select XCP parameters
 - Control maximum wavelength utilization ratio by XCP
- OPS Architecture
 - Time-slotted WDM OPS network
 - Variable length IP packets enter OPS domain without aggregation

Proposed Solutions 2/2

- Burstiness
 - Establish macro flows between edge nodes
 - Assign incoming TCP, UDP traffic to macro flows (similar to XCP-CSFG, TeXCP)
 - Apply leaky bucket pacing to macro flows according to XCP flow rate at edge node
 - Possible to use LSPs for controlling macro flows if GMPLS is available

Outline

- Buffering Problem in OPS networks
- Objective
- Proposed Solutions
- Simulation Results
- Conclusions

Buffering Problem in OPS Networks

- According to a rule-of-thumb, an output link of a router needs a buffer sized at \(B = RTT \times BW \)
 - Huge buffer size requirement due to ultra-high speed of optical networks
- Electronic RAM is not a feasible solution
 - O/E/O conversion is hard at ultra-high speed of optical networks
- FDLs (fiber-delay-lines) have limitations
 - FDLs can provide small amount of buffering with fixed delays
 - Bulky devices
- Optical RAM
 - Still under research
 - Do not expect it to have large capacity soon

Objective

- Designing an all-optical OPS network architecture that can achieve high utilization and low packet drop rate by using small FDL buffers
- Showing the buffer requirements

Proposed Solutions 1/2

- Preventing wavelength over-utilization
 - Apply XCP-based congestion control
 - XCP is a new congestion control algorithm specifically designed for high-bandwidth and large-delay networks.
 - Carefully select XCP parameters
 - Control maximum wavelength utilization ratio by XCP
- OPS Architecture
 - Time-slotted WDM OPS network
 - Variable length IP packets enter OPS domain without aggregation

Proposed Solutions 2/2

- Burstiness
 - Establish macro flows between edge nodes
 - Assign incoming TCP, UDP traffic to macro flows (similar to XCP-CSFG, TeXCP)
 - Apply leaky bucket pacing to macro flows according to XCP flow rate at edge node
 - Possible to use LSPs for controlling macro flows if GMPLS is available
Architecture

FDL Architecture
- Single stage FDL set with B delay lines
- FDL length distribution increases linearly \((x, 2x, 3x, 4x, \ldots)\) where \(x\) is FDL granularity
 - FDL granularity of 3 means a FDL set of \((3, 6, 9, 12, \ldots)\)
- Voids occur between packets inside FDLs when \(x>1\)

Output Buffering
- Switch size is large because all delay lines are connected to a single switch
- Fabrication of a single big switch may be costly

Input Buffering with FDLs
- Smaller Switches

Star Topology Simulations
- 12 links star topology
- Wavelength speed is 1Gbit/s
- Slot size is 52Bytes
- Each edge node sends traffic to all other edge nodes
- 30% XCP target utilization
- Realistic packet size distribution

Simulation Results
- Aggregate packet drop rate in the core
- Similar fiber delay line requirements
- Input buffering uses smaller switches

Recent Research and Preliminary Results
- Preliminary results show that
 - Shared buffering with XCP control further decreases the FDL requirements
 - FDL requirement decreases as slot size increases
 - However using bigger slot size decreases utilization efficiency due to padding for small packets
 - Trade-off
- Evaluating throughput of TCP with the proposed OPS architecture on mesh topology
Shared Buffering

- Only single circulation is allowed in the shared buffer.

TCP Traffic Simulation (Preliminary Results)

- NSFNET topology with 28 nodes (14 edge + 14 core) and 35 links.
- Wavelength speed 10Gbit/s.
- Slot size is 1500 bytes.
- Apply TCP traffic among all edge node pairs.
- TCP data packets are 1500 bytes, TCP ACK packets are 40 bytes.
- XCP target utilization 90%.
- Core nodes have Shared FDL buffering with only 7 delay lines per switch with granularity of 1 slot.
- Max. buffer capacity per link is 7 packets.
- Rule-of-thumb requires 20,834 packet buffer size per link.

Link Utilization (Without XCP control)

- Utilization of link from node 8 to node 7.
- Around 25% utilization.
- High packet drop rate.

Link Utilization (Our Architecture)

- Apply XCP controlled pacing to incoming TCP packets at edge nodes of OPS domain.
- Around 85% utilization.
- Lower packet drop rate.
- Nodal degree is 5 and switch has only 7 delay lines shared buffer, so delay line per link is only 1.4.

Conclusions

- Possible to decrease buffer requirements of OPS core routers by applying XCP pacing at edge nodes.
- XCP-based utilization control at core nodes in the OPS network.
- Input and output buffering have similar fiber delay line requirements when utilization is low.
- Shared buffering with proposed XCP based pacing may further decrease the buffer requirements.
- Possible to get more than 3 times higher TCP throughput with very small buffers.

Thank you