Router buffer re-sizing for short-lived TCP flows

Takeshi Tomioka, Go Hasegawa, and Masayuki Murata
Osaka University, JAPAN

Research Backgrounds: Router Buffers

- Router buffer size affects:
 - Packet loss ratio in the network when the link is congested
 - Utilization of output link bandwidth
 - Packet transmission delay caused by queuing at the buffer

Two disciplines for router buffer size (1)

- Normal discipline
 - Based on Bandwidth-Delay Product (BDP) of the network
 - Bandwidth: Output link bandwidth
 - Delay: Average Round-Trip Time (RTT) of TCP connections passing through the link
 - Typical value: 250 msec
 - Determined from window size control mechanism of TCP
 - It increases window size additively when no packet loss occurs, and halves it when packet loss occurs
 - This buffer size can avoid the underutilization of the output link

Two disciplines for router buffer size (2)

- Problem in normal discipline
 - Large cost for implementing large buffers
 - 2.5Gbits buffer is necessary for a link of 10Gbps bandwidth and 250msec delay
 - Large power consumption, board size, and monetary cost
- sqrtN discipline
 - Buffer size can be decreased to bandwidth-delay product divided by the square-root of the number of TCP connections passing through the link
 - Without underutilization of output link bandwidth
 - When more than 500 TCP connections exists in the network
 - For example, buffer size decreases to 1/100 when 10,000 connections exist

Research Objectives

- Compare two disciplines (normal and sqrtN) by simulation experiments
 - Confirm the results in [2] in terms of link utilization
 - Performance of long-lived and short-lived TCP connections passing through the link
 - Evaluations in various network environment
 - Access link bandwidth
 - bottleneck link bandwidth, bottleneck link propagation delay
 - traffic volume (number of TCP connections)

Simulation environment

- Traffic models
 - P2P: each sender TCP has infinite data to transmit
 - Web: Transmission data size and transmission interval are determined by Web traffic model

Basic performance \((D=90\text{ msec}, C=100\text{ Mbps})\)

- Normal discipline provides high link utilization and small packet loss ratio
- sqrtN discipline also provides high utilization when number of flows is large enough
 - Conformance to results in [2]
 - But, packet loss ratio is significantly large

Performance of short-lived TCP connections \((C=100\text{ Mbps})\)

- Packet loss ratio in sqrtN discipline is always larger than that in normal discipline
- When propagation delay is small, larger packet loss ratio in sqrtN discipline does not affect the transmission time
- When propagation delay is large, however, the transmission delay is significantly deteriorated

Effect of access link bandwidth \((D=90\text{ msec}, C=100\text{ Mbps})\)

- Large access link bandwidth increases packet loss ratio, especially in sqrtN discipline
 - Transmission time in sqrtN discipline is up to 50% larger
 - However, small data (<100KB) transmission is not affected by the large packet loss ratio

Effect of bottleneck link bandwidth

- In sqrtN discipline, packet loss ratio never decreases to zero, although the link is underutilized
 - Because bursty packet arrival can not be absorbed at the smaller buffer
- Link utilization of sqrtN discipline is smaller than that of normal discipline
 - Using small buffer in non-congested network decrease the link utilization

Conclusion

- We tested the performance of sqrtN discipline for router buffer sizing
 - It can maintain the link utilization when there is enough traffic volume
 - But, it degrades the link utilization in non-congested network
 - It would degrade short-lived TCP performance due to large packet loss ratio
 - It may be useful only when the transmission data size is 50~100 Kbytes or when the propagation delay between the sender and the receiver hosts is significantly small
 - Otherwise, we should use large buffers
- Future work
 - The effect of pacing TCP on the buffer sizing problem