A modeling method for router-level topologies based on network-cost optimization

Naoto Hidaka, Shin’ichi Arakawa, Masayuki Murata

Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

Measurement studies of Internet topologies show that the degree distribution of the topologies exhibits a power-law attributi
However, it is apparent that only degree distributions do not determine the structure of ISP topologies, where ISP designs routt
level topologies based on their own design policies. Other structural properties than degree distribution are important to gener:
realistic Internet topologies. In this paper, we develop a modeling method for generating realistic ISP Internet topologies the
obey a power-law degree distribution and have similar structural properties observed in the measurement studies. Our model
method adds nodes one by one, and each node connects to optimal nodes to minimize overall network-cost. Then we answer
following question: what design factors are important to form realistic Internet topologies? Our results show that the answers a
node locations and tfiac demands.
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1. Introduction gies such as minimizing the mileage of links, redundancies, and
traffic demands, rather than focusing on the degree distribution.
Measurement studies on Internet topologies have shown thé a previous work [6], we showed that the structures of ISP
the degree distribution of the topologies obeys a power-lawopologies are quite fierent from those obtained by conven-
for both Internet Service Provider (ISP) router-level and Au-tional modeling methods. More specifically, ISP topologies are
tonomous System (AS)-level topologies [1, 2, 3]. Power-lawhighly clustered; a node connects two or more nodes that are
degree distribution means that the probability that a nodéhasalso connected to each other. Thus, structural properties other
links is proportional tk™, wherey is a constant value called than the degree distribution are important to generate realistic
degree exponentn these topologies, a few nodes connect withinternet topologies.
many nodes, while most nodes connect with a few nodes. In Ref. [6], we developed a modeling method to generate ISP
Models of realistic Internet topologies are essential to studyopologies. When a new node joins the network, it probably
methods of network controls, such as routing control and coneonnects to the nearest nodes to minimize the mileage of links.
gestion control, because topologies sometimes have a major ini addition, we added new links based on node utilization in the
pact on the performance of the network controls. A theoreticatopology that corresponds to enhance the performance of the
foundation to form power-law networks has been introducedhetwork equipment in ISP networks. However, that paper does
[4], where Barahsi and Albert presented their BA model in not discuss what design policies are crucial to form realistic ISP
which the topology increases incrementally and links are placetbpologies.
based on the connectivities of the topologies. Since ISPs have their own design policies based on budget
However, even if the degree distributions of some topologiegonstraints and customer satisfaction, it is important to unveil
are the same, more detailed characteristics are often quite dihe essential design policies to form realistic ISP topologies.
ferent. Li et al. [5] enumerated various topologies with identi-We therefore developed a modeling method where topologies
cal degree distributions and showed the relation between the#tre generated based on network-cost optimization. With our
structural properties and performances. Li et al. pointed outodeling method, important topology-related metrics such as
that with the technology constraints imposed by routers, the dezlustering cofficients and the number of node pairs passing
gree of nodes limits the capacity of links that are connected tthrough links have almost the same as the actual ISP network
the node. Thus, to maximize the performance of router-leveby appropriate parameter settings, while still keeping the degree
topologies, higher-degree nodes should be located at edges ditribution of the topology to follow the power-law. We then
the topology. They then demonstrate in an Abilene-based topolavestigated the structural properties of the generated topolo-
ogy [5] that a power-law network can actually be constructed bygies by changing three design factors: cost function for opti-
maximizing the network throughput with the technology con-mization, trdfic demands, and node locations. The results show
straints imposed by routers. that all three factors are necessary for realistic clusterinffieoe
Results of Ref. [5] indicated that topology performance doegients. We also show that the cost function anéfitalemands
not only depend on the degree distribution. Actually, eachdiffer by the distribution of the number of node pairs passing
ISP constructs its own router-level topology based on stratethrough links, while the node locationsfidirs by the average
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shortest path length. Step 1 Add new nodd to the topology. Its location is also
This paper is organized as follows. In Section 2, we explain random in the Euclidean space (7.

conventional modeling methods to generate topologies and dis-

cuss the issues of these methods when we use the generate@!€P 2 Calculate the following equation for each nodiat

topologies to evaluate methods of network control. In Section already exists in the network:

3, we provide a new modeling method for ISP topologies based

on network cost. In Section 4, we evaluate the topologies gener- D(j) = a-dj+h; (2)
ated by our method and investigate the impact of changing cost whered;; is the Euclidean distance (i.e., physical dis-
function, trafic demands, and node locations on the structural tance) between nodésand j, h; is the hop-count
properties of the generated topologies. Finally, we conclude distance between nodeand an initial nodegq is a
this paper in Section 5. constant value.

Step 3 Select nodg’ that minimizesD (j). Then connect
2. Models of topologies nodes andj’, and go back to Step 1.

Many studies have focused on modeling methods for Internet The FKP model introduces two distance-related metrics for
topologies. In this section, we explain the conventional model@ttachment: the physical distance of nodgsand the hop-
ing methods of Internet topologies and discuss their problem@ount distance to the initial nodg. The cost of attachment
when we apply the methods to evaluate methods of networlé the sum of these two metrics, but the physical distance is
control. We first introduce a Barabi-Albert (BA) model [4] Weighted bya. Depending on the value af, the resulting
in which the topology grows incrementally and links are placedfOPology has dterent characteristics. H is a lower value,
based on the connectivities of the topologies to form power!€SPective nodes seek to connect to higher-degree nodes. Espe-
law networks. We then introduce a Fabrikant-KoutsoupiasCially whena = 0, the resulting topology is star-like. df is a

Papadimitriou (FKP) model [7] that incorporates geographicahigher value, the new node tries to (;onnect to itg geographically
information to generate topologies. close nodes. In this case, the obtained topologies behave as an

Erdos-Renyi (ER) topology that has a Poisson degree distribu-
tion [8]. A power-law attribute of degree distribution emerges
whena is a medium value. The FKP model is further general-

Barathsi and Albert proposed a BA model to generatejzeq in Ref. [9] so that AS-like topologies can be generated.
topologies having a power-law degree distribution. The BA

model is characterized by two featurelsicremental Growth 2.3, Structural properties by conventional models
andPreferential AttachmentThe model starts with a topology  |n previous sections, we introduced two conventional models

2.1. Barabasi-Albert (BA) model for power-law networks

with a small number of nodes and works as follows: to generate power-law topologies. However, several problems
o exist when we use these models to generate Internet topologies.
Step 0 Make an initial topology that hasy nodes. For example, topologies by the BA model ardfelient from

AS-level topologies in terms of the average shortest path length
and clustering cd@écient [10]. Topologies by the FKP model
have many more nodes with single links than Internet topolo-

Step 2 Preferential AttachmentConnect the new node to gies [11]. As aresult, when we use the topologies generated by

Step 1 Incremental Growth Add a new node at each time
step.

~ different nodes chosen with probabillty these models, we can not correctly evaluate the performance of
network control methods like routing control [6]. These models
k; focus on the degree or distance metrics. However, it isfiiasu
T(k) = Sk (1) cient to consider only these metrics when we obtain realistic
o Internet topologies. Therefore, to correctly evaluate the per-
wherek; is the degree of node formance of the network control methods in the Internet, we

need realistic modeling methods for Internet topologies. Bu and
Towsley [10] developed a variant of the BA model to generate
topologies that have similar properties to the AS-level topology
Fabrikant et al. [7] also presented a FKP model for generin terms of the average shortest path length and clustering co-

ating topologies having a power-law degree distribution. Thesicient. In this paper, we focus on ISP’s router-level topology
model also uses the incremental growth model, but the rulegstead of AS-level topology.

for link attachment are éierent from the BA model. The FKP

model does not use preferential attachment to add links. In; _

stead, it uses minimization-based link attachment. More specié‘ A modeling method for ISP topology

ically, the FKP model works as follows: To develop a modeling method for Internet topologies, we
assume that Internet topologies are designed based on network-

Step O Randomly place an initial node in a Euclidean spacegost optimization. In this section, we first define the network-
[0,1]°. cost and design factors with which we were concerned in Sec.

2.2. Fabrikant-Koutsoupias-Papadimitriou (FKP) model




3.1 and then introduce a modeling method for ISP Internet Step O Set the number of nodé$ and the number of links
topologies in Sec. 3.2. ~ for each new noden. Make an initial topology that
hasmnodes anan- (m— 1)/2 links.
3.1. Designing topologies
We denote network-co§t (V, E) for networkG (V, E). Here,
V represents the set of nodes @hdenotes the setoflinksinthe  siep 2 Repeat this step until nodés connected ton differ-

Step 1 Add new nods.

network. Our design problem for topologies is to obtain asetof ——— ant nodes.
links and to determine the link capacity to minimize network-
costC (V, E). To do this, we consider that the network cost is Step 2.1 Calculate network-cos€; and check
the sum of link costs of each lifk Since the link cost depends the link capacity constraint when node
on the length and the link capacity, we introduce a cost function i is connected to existing node
fp, defined as a function of link distandg and a cost function C. =C(V.EU, )
fz, defined as a function of link capacity Then we regard the ! ’ e
product of fp and fg as the link cost. A formal description of whereV andE are the sets of nodes and
our design problem is as follows: links in the topology at this time.
P _ Step 2.2 Select nodai that minimizes network-
minimize C(.E) = gE: fo(d) x fa(b). costC; from nodes that satisfy the link
st X = R-T. ©) capacity constraints, i.e., amount of
. traffic at all links is less than the upper
b = XITAQB b, ) bound of the capacities. If a node sat-

isfies the above, connect nod® node

u, and go back to Step 2. Otherwise,
select nodeu that minimizes the net-
work cost from the existing nodes, and
connect node to nodeu. Then go to
Step. 3 to satisfy the link capacity con-
straints.

where R is a routing matrix of the network represented as
IE| x V|2 Rijy = 1 if the treffic demand between nodés
and j goes through linK, otherwiseR ;) = 0. T is a trdfic
demand matrix of the network with an order|9f? x 1, where
the((i, j), 1)-th entry ofT is traffic demand between nodiesnd

j. Equation (3) determineX (= (Xo, ..., X .., Xg)"), repre-
senting the amount of tfiac on the links. Equation (4) deter-
mines link capacityy that is adequate to accommodate amount Step 3 Enhance the topology to reduce the amount dfitra

of traffic x passing through link In general, the link capacity =~ on the links. Repeat Step 3.1 until the link capacity
is discrete, and an upper bound exists due to technology con- constraint on all links is satisfied.
straints. We therefore define a set of candidates representing
link capacitiesB, and link capacityb; is selected fronB. In Step 3.1 Select a link(u,v) that conveys the
our modeling method, we consider 1, 10, 100 Mbps, 1, 2.4, 4.8 largest tréfic in the network. Calcu-
Gbps, or 10 Gbps as set of link capacit®sNote that due to late each network cost when nod¢v)
this link capacity constraint, we may have to add more links to is connected to one of the neighboring
accommodate the tfiic in generating topologies (See Step. 3 nodes of node (u). Then find a node
of Sec. 3.2). pair that minimize the network cost and
The above formulation includes three design factors for gen- connect them. If all node pairs are
erating topologies: 1) cost functiorfs and fg, 2) node loca- already connected to themselves, per-
tions (that &ect the value ofl), and 3) tréfic demands. In Sec. form this step for the link that conveys
4, we discuss the structural properties of the generated topolo- the next largest tiféic.

gies by changing these three design factors.

. - 4. Evaluations
3.2. Amodeling method to generate realistic router-level topol-

ogy In this section, we evaluate our modeling method by compar-

We next explain our modeling method based on networking structural properties of ISP topology with those of topolo-
cost optimization. The topology grows incrementally as the BAgies generated by our method and show that our model can gen-
model does: a new router is added to the network one-by-onerate more realistic ISP topologies than the topologies by the
Then we add links to minimize the network cost based on th&A and FKP models. In addition, we discuss how the structural
formulation described in Sec. 3.1. properties of the topologiesftir depending on the design by

Unlike previously known modeling methods, our methodchanging the cost function, the fii@ demands, and the node
takes the amount of tfiac traversing links into consideration. locations.
If we connect a new router to existing routers and more than 10 For the experiment, we used a topology obtained by measur-
Gbps, the maximum element B) traffic passes through a link, ing the Sprint network [3]. The Sprint topology has 467 nodes
and we add more links to divert the fiia to satisfy the link and 1280 links, and thus we ddtto 467 andnto 2. Then we
capacity constraint. The details of our algorithm are as followsgenerate the topologies and add links between the nodes based
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on Step. 3 of our model until the topology has the identicald.1. Structural properties of our modeling method

numbers of links with the Sprint topology. We first investigated the impacts of changing cost functions
We used the following metrics to compare the structuralfp and fg on the structural properties of the generated topolo-
properties of the topologies: gies. Figure 1 indicates the structural properties of the topolo-
gies by setting link-cosfp x fg to d, loghy, d|4 loghy, dl8 loghy,
e Clustering cogicient for a node, defined as andd,b;. We also investigated the other link-cost functions, but
the results of these functions have a similar tendency and thus
2E; are not presented here to facilitate readability of figures.
m Let us first discuss the impacts of cost functihon the

structural properties of the generated topologies. This can be

observed from the results dflogly andd by in Fig. 1. Firstly,

changing cost functiorfig does not give much impact on aver-

age shortest path length of the topologies. Secondly, the topol-

ogy using a logarithm function has high clustering ftieéents

and a large variation of betweenness centrality as the Sprint

topology does, while the topology using a linear function has

) ] ) low clustering co#icients.

e Betweenness centralifg2]: for a link, defined as the num- g tendency is explained as follows. When a new node
ber of node pairs that passes through the link when minimuny,;s the network, our method connects it and the existing nodes
hop routing with splittable flow is applied based on the cost function. Suppose that by adding the new

) . ) node, the amount of tfiic on link | increases by. Then the
e Amount of Trgic on a link for a link and a given tiic  network cost related to linkincreases by

demand matrix, defined as the amount of ffiz that passes

through the link when minimum hop routing with splittable fo(d) x (fa(br + ) - fa(D)) ,

flow is applied where f5(d)) represents the cost for link distance afagb; +

B) — fa(by) represents the cost for link capacity.

For the node locations, we used geographical information \when fg is a logarithm function, capacity; has more im-
based on the DNS information of each router in the Sprint topolpact on the increase of network cost than case whés a lin-
ogy. We normalized the node locations of the Sprint topolog¥ear function. Thus, the new node tends to connect with nodes
into [0, 1]* space from the geographic latitudinal and longitudi- ajready having largeln. Since the nodes having largaralso
nal information. tend to be connected to each other, the generated topologies

For the tréfic demand matrix to generate the topologies inhave high clustering cdicients. In addition, as the amount
this experiment, we applied a variation of the gravity modelof traffic that traverses link increases, more links are added
[13] to obtain the tréic demand between nodes. The original around the link to divert the tfc (See Step. 3 of Sec. 3.2),
gravity model is commonly used by social scientists to modelvhich also leads to higher clustering édeients. On the con-
the movement of people, goods, or information between gearary, whenfg is a linear function, the cost for link capacity in
graphic areas. In a geographic gravity model of cities, for exthe network cost ig regardless ob. The increase ofl has
ample, the relative strength of the interaction between two citiegnore impact on the increase of network cost. Therefore, the
is proportional to the product of the populations divided by thenew node tends to be connected with near nodes. However,
squared distance. The model provides accurate estimates ¢lbser nodes are not always connected; connectivity only de-
telephone triic, whose fees increase depending on the commupends on the distance between the closer nodes. As a result, the
nication time and communication distance exchanged betweegenerated topologies lack such high clusteringiicients.
the cities. In our method, since our ISP fee is becoming flat- We next discuss the impact of cost functiémon the struc-
rate regardless of the communicationfi@or distance, we use tural properties by looking at the results ¢floghy, dloghy,
a distance-independent gravity model to obtaiffitalemands. andd®logb, in Fig. 1. Changing cost functiofy has less im-
That is, the tréiic demand between nodes are only proportionapact on average shortest path length of the topologies, as chang-
to the product of the populations of the nodes [14] and are giveihg cost functionfz does. The topology by settiniy to d, has
by the following equationtjj = a - p; - pj, wheret;; is the traf-  high clustering cofficients, while settindp to d® creates topol-
fic demand between nodeandj, p« is the population of node ogy with low clustering cofiicients because the cost for link
k, ande is a scaling parameter for a total amount officain  distance becomes dominant as the number of multiplications by
the network. We use population informatigg from [15, 16]  d, increases. Therefore, as the number of multiplicationd, by
and set scaling parameterto a value so that the largestfiia  increases, new nodes tend to connect with near nodes to reduce
by a link in the Sprint topology becomes 10 Gbps. We assumeosts of long distance links. As a result, nodes are connected to
traffic between nodes passes through the shortest paths betwaRs nearest nodes that lead to low clusteringfiicients, as the

wherek; is the degree of nodeandE; is the number of links
between the neighbors of node

e Average shortest path lengtlfor a node, average length of
shortest paths between nadend all other nodes

the nodes. number of multiplications by, increases.
Unless explicitly stated, we use the above node locations and We next show the amount of tfec on links in Fig. 2. Ran-
traffic demand matrix to obtain the following results. domly generated tfic demand matrix is used to calculate the



traffic on links for each topology. The figure shows that the re-gravity model, nodes among which demand is large tend to be
sult of d|4 loghy is close to the result of original topology, and connected with each other to prevent accommodating the large
shows the same tendency as Fig. 1(c). We obtained the sartraffic indirectly. For the distance-independent gravity model, a
tendency for betweenness centrality and the amount ffdra new node tends to connect with nodes that have large popula-
on links, so we omitted the result of the amount ofifttaon  tions. Since large-population nodes are also connected to each
links in further evaluations. other, the clustering céiécient tends to be high.

As discussed above, changing cost functifmand fg also
changes the structural properties of the generated topologies.4. Hfects of node locations
However, our method can reproduce a topology that is close to
the Sprint topology, especially in terms of the clusteringfioe
cients and betweenness centrality, by semzllﬁkg)g b as the link
cost. In Fig. 3, we show the degree distribution of the Sprin
topology and our topology witdl4 log b, as the link cost. In this
topology, the degree distribution obeys the power-law, as th
Sprint topology does. We apply this topology and cost function[
to subsequent evaluations.

Finally, we show the fects of the node locations on the
structural properties of the topologies obtained by our model-
ing method. We generated 500 topologies by setting the node
tIocations randomly in the square spacgl]8, and the averaged
results are shown in Fig. 6. The clustering €méent and av-
rage shortest path length are mucfiegdent from the Sprint
opology. For example, when the nodes are located at random,
the number of nodes whose clustering féie&éent is 0 or 1 is
smaller than that in the Sprint topology. The average shortest
path length also increases when the nodes are located at ran-
Figure 4 compares our model with the BA and FKP mod-dom.
els. For the results of the BA model, we generated 10,000 BA The reasons for these results are explained as follows. For
topologies and showed their averaged results. In each BA topothe node locations based on the DNS information, the nodes of
ogy, we set parametarto 2 and generated the topologies. Thena region (e.g., city) are closely located and connected with short
we added links between nodes based on the probability of Eglistance links. Among the nodes, one or few nodes become
(1) until the numbers of links are the same as the Sprint topol*gateway” nodes that connect regions by long distance links
ogy. For the FKP model, we set 20 as weighbased on the and accommodate the ffi@ between the regions to reduce the
discussion in Ref. [7] and connected two other nodes to the newetwork cost. The existence of such gateway nodes connecting
node by repeating Step. 3 of the FKP model. We used the DN® the long distance links leads to a small-world property, as
information of each node in the topology as the Sprint topologydiscussed in Ref. [17]. Thus, the average shortest path length
and our topologies to the geographical information. After gen-of the topologies decreases in the case of the DNS-based node
erating the topology, we added links between the nodes baséacations. On the contrary, for the random node locations, the
on minimizing Eg. (2) until the topology has the same numbemodes are uniformly distributed in the square space. In this case,
of links as the Sprint topology. the topology has less chance of connecting two nodes with the
We observe from Fig. 4 that our topology is similar to thelong distance links and therefore lacks the small-world prop-
Sprint network in terms of the clustering dbeients and be- erty.
tweenness centrality. However, the properties of the topolo- In summary, the following three design factors all impact the
gies by the BA and FKP models are muclifelient from the clustering co#icients of the obtained topologies and are im-
Sprint topology. For instance, the clustering ffiméents are  portant to generate realistic ISP topologies: 1) cost function, 2)
completely dissimilar in Fig. 4(a), and the maximum between-raffic demands, and 3) node locations. Moreover, node loca-
ness centrality is not also reproduced in Fig. 4(c). In additiontions dfect the average shortest path length, angitrdemand
in Fig. 4(b), the average shortest path length of the BA topolomatrix impacts the betweenness centrality for links.
gies is much shorter than the Sprint topology and the topologies
by the other modeling methods.

4.2. Comparison between modeling methods

5. Conclusion

4.3. Bfects of trgfic demand matrix In this paper, we developed a modeling method based on
To see the impact of the tifec demand matrix on our mod- network-cost optimization to obtain realistic ISP topologies
eling method, we show the results with our modeling methodand investigated the crucial design policies to form realis-
using a uniform trfic demands in Fig. 5. Firstly, changing the tic ISP topologies and how the structural propertie$ediby
traffic demand matrix has less impact on the average shorteatldingremoving the design policies. With appropriate param-
path length of the topologies. However, the generated topologgter settings, our modeling method generated a topology with
using the uniform triiic demands has lower clustering éibe  similar structural properties compared to the real ISP network,
cients and betweenness centrality. When th&itralemands while still keeping the degree distribution of our topology to fol-
are uniform, there is no fierence between the ffac demands low the power-law as the real ISP network. We also pointed out
among the nodes, so the cost for link capacity has less impatte importance of modeling cost function,firta demands, and
on the network cost than that for link distance. Therefore, newode locations. These three design factors gredibcted the
nodes tend to be connected with near nodes. On the other hardystering coéicients of the generated topologies. In addition,
when the tréfic demands are given by the distance-independente revealed that node locations impacted the average shortest
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path length and tfic demands féected the betweenness cen-
trality.
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Figure 4: Comparison between our method and existing modeling methods
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Figure 5: Htects of tréfic demand matrix on structural properties
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