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Abstract

Measurement studies of Internet topologies show that the degree distribution of the topologies exhibits a power-law attribute.
However, it is apparent that only degree distributions do not determine the structure of ISP topologies, where ISP designs router-
level topologies based on their own design policies. Other structural properties than degree distribution are important to generate
realistic Internet topologies. In this paper, we develop a modeling method for generating realistic ISP Internet topologies that
obey a power-law degree distribution and have similar structural properties observed in the measurement studies. Our modeling
method adds nodes one by one, and each node connects to optimal nodes to minimize overall network-cost. Then we answer the
following question: what design factors are important to form realistic Internet topologies? Our results show that the answers are
node locations and traffic demands.
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1. Introduction

Measurement studies on Internet topologies have shown that
the degree distribution of the topologies obeys a power-law
for both Internet Service Provider (ISP) router-level and Au-
tonomous System (AS)-level topologies [1, 2, 3]. Power-law
degree distribution means that the probability that a node hask
links is proportional tok−γ, whereγ is a constant value called
degree exponent. In these topologies, a few nodes connect with
many nodes, while most nodes connect with a few nodes.

Models of realistic Internet topologies are essential to study
methods of network controls, such as routing control and con-
gestion control, because topologies sometimes have a major im-
pact on the performance of the network controls. A theoretical
foundation to form power-law networks has been introduced
[4], where Barab́asi and Albert presented their BA model in
which the topology increases incrementally and links are placed
based on the connectivities of the topologies.

However, even if the degree distributions of some topologies
are the same, more detailed characteristics are often quite dif-
ferent. Li et al. [5] enumerated various topologies with identi-
cal degree distributions and showed the relation between their
structural properties and performances. Li et al. pointed out
that with the technology constraints imposed by routers, the de-
gree of nodes limits the capacity of links that are connected to
the node. Thus, to maximize the performance of router-level
topologies, higher-degree nodes should be located at edges of
the topology. They then demonstrate in an Abilene-based topol-
ogy [5] that a power-law network can actually be constructed by
maximizing the network throughput with the technology con-
straints imposed by routers.

Results of Ref. [5] indicated that topology performance does
not only depend on the degree distribution. Actually, each
ISP constructs its own router-level topology based on strate-

gies such as minimizing the mileage of links, redundancies, and
traffic demands, rather than focusing on the degree distribution.
In a previous work [6], we showed that the structures of ISP
topologies are quite different from those obtained by conven-
tional modeling methods. More specifically, ISP topologies are
highly clustered; a node connects two or more nodes that are
also connected to each other. Thus, structural properties other
than the degree distribution are important to generate realistic
Internet topologies.

In Ref. [6], we developed a modeling method to generate ISP
topologies. When a new node joins the network, it probably
connects to the nearest nodes to minimize the mileage of links.
In addition, we added new links based on node utilization in the
topology that corresponds to enhance the performance of the
network equipment in ISP networks. However, that paper does
not discuss what design policies are crucial to form realistic ISP
topologies.

Since ISPs have their own design policies based on budget
constraints and customer satisfaction, it is important to unveil
the essential design policies to form realistic ISP topologies.
We therefore developed a modeling method where topologies
are generated based on network-cost optimization. With our
modeling method, important topology-related metrics such as
clustering coefficients and the number of node pairs passing
through links have almost the same as the actual ISP network
by appropriate parameter settings, while still keeping the degree
distribution of the topology to follow the power-law. We then
investigated the structural properties of the generated topolo-
gies by changing three design factors: cost function for opti-
mization, traffic demands, and node locations. The results show
that all three factors are necessary for realistic clustering coeffi-
cients. We also show that the cost function and traffic demands
differ by the distribution of the number of node pairs passing
through links, while the node locations differs by the average
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shortest path length.
This paper is organized as follows. In Section 2, we explain

conventional modeling methods to generate topologies and dis-
cuss the issues of these methods when we use the generated
topologies to evaluate methods of network control. In Section
3, we provide a new modeling method for ISP topologies based
on network cost. In Section 4, we evaluate the topologies gener-
ated by our method and investigate the impact of changing cost
function, traffic demands, and node locations on the structural
properties of the generated topologies. Finally, we conclude
this paper in Section 5.

2. Models of topologies

Many studies have focused on modeling methods for Internet
topologies. In this section, we explain the conventional model-
ing methods of Internet topologies and discuss their problems
when we apply the methods to evaluate methods of network
control. We first introduce a Barabási-Albert (BA) model [4]
in which the topology grows incrementally and links are placed
based on the connectivities of the topologies to form power-
law networks. We then introduce a Fabrikant-Koutsoupias-
Papadimitriou (FKP) model [7] that incorporates geographical
information to generate topologies.

2.1. Barabási-Albert (BA) model for power-law networks

Barab́asi and Albert proposed a BA model to generate
topologies having a power-law degree distribution. The BA
model is characterized by two features:Incremental Growth
andPreferential Attachment. The model starts with a topology
with a small number of nodes and works as follows:

Step 0 Make an initial topology that hasm0 nodes.

Step 1 Incremental Growth: Add a new node at each time
step.

Step 2 Preferential Attachment: Connect the new node tom
different nodes chosen with probabilityΠ:

Π(ki) =
ki∑
j k j
, (1)

whereki is the degree of nodei.

2.2. Fabrikant-Koutsoupias-Papadimitriou (FKP) model

Fabrikant et al. [7] also presented a FKP model for gener-
ating topologies having a power-law degree distribution. The
model also uses the incremental growth model, but the rules
for link attachment are different from the BA model. The FKP
model does not use preferential attachment to add links. In-
stead, it uses minimization-based link attachment. More specif-
ically, the FKP model works as follows:

Step 0 Randomly place an initial node in a Euclidean space

[0, 1]2.

Step 1 Add new nodei to the topology. Its location is also

random in the Euclidean space [0,1]2.

Step 2 Calculate the following equation for each nodej that
already exists in the network:

D ( j) = α · di j + h j , (2)

wheredi j is the Euclidean distance (i.e., physical dis-
tance) between nodesi and j, h j is the hop-count
distance between nodej and an initial node,α is a
constant value.

Step 3 Select nodej′ that minimizesD ( j). Then connect
nodesi and j′, and go back to Step 1.

The FKP model introduces two distance-related metrics for
attachment: the physical distance of nodesdi j and the hop-
count distance to the initial nodeh j . The cost of attachment
is the sum of these two metrics, but the physical distance is
weighted byα. Depending on the value ofα, the resulting
topology has different characteristics. Ifα is a lower value,
respective nodes seek to connect to higher-degree nodes. Espe-
cially whenα = 0, the resulting topology is star-like. Ifα is a
higher value, the new node tries to connect to its geographically
close nodes. In this case, the obtained topologies behave as an
Erdös-Ŕenyi (ER) topology that has a Poisson degree distribu-
tion [8]. A power-law attribute of degree distribution emerges
whenα is a medium value. The FKP model is further general-
ized in Ref. [9] so that AS-like topologies can be generated.

2.3. Structural properties by conventional models
In previous sections, we introduced two conventional models

to generate power-law topologies. However, several problems
exist when we use these models to generate Internet topologies.
For example, topologies by the BA model are different from
AS-level topologies in terms of the average shortest path length
and clustering coefficient [10]. Topologies by the FKP model
have many more nodes with single links than Internet topolo-
gies [11]. As a result, when we use the topologies generated by
these models, we can not correctly evaluate the performance of
network control methods like routing control [6]. These models
focus on the degree or distance metrics. However, it is insuffi-
cient to consider only these metrics when we obtain realistic
Internet topologies. Therefore, to correctly evaluate the per-
formance of the network control methods in the Internet, we
need realistic modeling methods for Internet topologies. Bu and
Towsley [10] developed a variant of the BA model to generate
topologies that have similar properties to the AS-level topology
in terms of the average shortest path length and clustering co-
efficient. In this paper, we focus on ISP’s router-level topology
instead of AS-level topology.

3. A modeling method for ISP topology

To develop a modeling method for Internet topologies, we
assume that Internet topologies are designed based on network-
cost optimization. In this section, we first define the network-
cost and design factors with which we were concerned in Sec.
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3.1 and then introduce a modeling method for ISP Internet
topologies in Sec. 3.2.

3.1. Designing topologies

We denote network-costC (V,E) for networkG (V,E). Here,
V represents the set of nodes andE denotes the set of links in the
network. Our design problem for topologies is to obtain a set of
links and to determine the link capacity to minimize network-
costC (V,E). To do this, we consider that the network cost is
the sum of link costs of each linkl. Since the link cost depends
on the length and the link capacity, we introduce a cost function
fD, defined as a function of link distancedl , and a cost function
fB, defined as a function of link capacitybl Then we regard the
product of fD and fB as the link cost. A formal description of
our design problem is as follows:

minimize C(V,E) =
∑
l∈E

fD(dl) × fB(bl),

s.t. X = R · T, (3)

bl = min
xl≤b∈B

b, (4)

where R is a routing matrix of the network represented as
|E| × |V|2. Rl,(i, j) = 1 if the traffic demand between nodesi
and j goes through linkl, otherwiseRl,(i, j) = 0. T is a traffic
demand matrix of the network with an order of|V|2 × 1, where
the((i, j) ,1)-th entry ofT is traffic demand between nodesi and
j. Equation (3) determinesX (= (x0, . . . , xl , . . . , x|E|)T), repre-
senting the amount of traffic on the links. Equation (4) deter-
mines link capacitybl that is adequate to accommodate amount
of traffic xl passing through linkl. In general, the link capacity
is discrete, and an upper bound exists due to technology con-
straints. We therefore define a set of candidates representing
link capacitiesB, and link capacitybl is selected fromB. In
our modeling method, we consider 1, 10, 100 Mbps, 1, 2.4, 4.8
Gbps, or 10 Gbps as set of link capacitiesB. Note that due to
this link capacity constraint, we may have to add more links to
accommodate the traffic in generating topologies (See Step. 3
of Sec. 3.2).

The above formulation includes three design factors for gen-
erating topologies: 1) cost functionsfD and fB, 2) node loca-
tions (that affect the value ofdl), and 3) traffic demands. In Sec.
4, we discuss the structural properties of the generated topolo-
gies by changing these three design factors.

3.2. A modeling method to generate realistic router-level topol-
ogy

We next explain our modeling method based on network-
cost optimization. The topology grows incrementally as the BA
model does: a new router is added to the network one-by-one.
Then we add links to minimize the network cost based on the
formulation described in Sec. 3.1.

Unlike previously known modeling methods, our method
takes the amount of traffic traversing links into consideration.
If we connect a new router to existing routers and more than 10
Gbps, the maximum element inB, traffic passes through a link,
and we add more links to divert the traffic to satisfy the link
capacity constraint. The details of our algorithm are as follows:

Step 0 Set the number of nodesN and the number of links
for each new nodem. Make an initial topology that
hasmnodes andm · (m− 1)/2 links.

Step 1 Add new nodei.

Step 2 Repeat this step until nodei is connected tomdiffer-
ent nodes.

Step 2.1 Calculate network-costC j and check
the link capacity constraint when node
i is connected to existing nodej:

C j = C(V,E ∪ (i, j)),

whereV andE are the sets of nodes and
links in the topology at this time.

Step 2.2 Select nodeu that minimizes network-
costC j from nodes that satisfy the link
capacity constraints, i.e., amount of
traffic at all links is less than the upper
bound of the capacities. If a node sat-
isfies the above, connect nodei to node
u, and go back to Step 2. Otherwise,
select nodeu that minimizes the net-
work cost from the existing nodes, and
connect nodei to nodeu. Then go to
Step. 3 to satisfy the link capacity con-
straints.

Step 3 Enhance the topology to reduce the amount of traffic
on the links. Repeat Step 3.1 until the link capacity
constraint on all links is satisfied.

Step 3.1 Select a link (u, v) that conveys the
largest traffic in the network. Calcu-
late each network cost when nodeu (v)
is connected to one of the neighboring
nodes of nodev (u). Then find a node
pair that minimize the network cost and
connect them. If all node pairs are
already connected to themselves, per-
form this step for the link that conveys
the next largest traffic.

4. Evaluations

In this section, we evaluate our modeling method by compar-
ing structural properties of ISP topology with those of topolo-
gies generated by our method and show that our model can gen-
erate more realistic ISP topologies than the topologies by the
BA and FKP models. In addition, we discuss how the structural
properties of the topologies differ depending on the design by
changing the cost function, the traffic demands, and the node
locations.

For the experiment, we used a topology obtained by measur-
ing the Sprint network [3]. The Sprint topology has 467 nodes
and 1280 links, and thus we setN to 467 andm to 2. Then we
generate the topologies and add links between the nodes based
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on Step. 3 of our model until the topology has the identical
numbers of links with the Sprint topology.

We used the following metrics to compare the structural
properties of the topologies:

• Clustering coefficient: for a node, defined as

2Ei

ki (ki − 1)
,

whereki is the degree of nodei andEi is the number of links
between the neighbors of nodei

• Average shortest path length: for a node, average length of
shortest paths between nodei and all other nodes

• Betweenness centrality[12]: for a link, defined as the num-
ber of node pairs that passes through the link when minimum
hop routing with splittable flow is applied

• Amount of Traffic on a link: for a link and a given traffic
demand matrixT, defined as the amount of traffic that passes
through the link when minimum hop routing with splittable
flow is applied

For the node locations, we used geographical information
based on the DNS information of each router in the Sprint topol-
ogy. We normalized the node locations of the Sprint topology
into [0,1]2 space from the geographic latitudinal and longitudi-
nal information.

For the traffic demand matrix to generate the topologies in
this experiment, we applied a variation of the gravity model
[13] to obtain the traffic demand between nodes. The original
gravity model is commonly used by social scientists to model
the movement of people, goods, or information between geo-
graphic areas. In a geographic gravity model of cities, for ex-
ample, the relative strength of the interaction between two cities
is proportional to the product of the populations divided by the
squared distance. The model provides accurate estimates of
telephone traffic, whose fees increase depending on the commu-
nication time and communication distance exchanged between
the cities. In our method, since our ISP fee is becoming flat-
rate regardless of the communication traffic or distance, we use
a distance-independent gravity model to obtain traffic demands.
That is, the traffic demand between nodes are only proportional
to the product of the populations of the nodes [14] and are given
by the following equation:ti j = α · pi · p j , whereti j is the traf-
fic demand between nodesi and j, pk is the population of node
k, andα is a scaling parameter for a total amount of traffic in
the network. We use population informationpk from [15, 16]
and set scaling parameterα to a value so that the largest traffic
by a link in the Sprint topology becomes 10 Gbps. We assume
traffic between nodes passes through the shortest paths between
the nodes.

Unless explicitly stated, we use the above node locations and
traffic demand matrix to obtain the following results.

4.1. Structural properties of our modeling method
We first investigated the impacts of changing cost functions

fD and fB on the structural properties of the generated topolo-
gies. Figure 1 indicates the structural properties of the topolo-
gies by setting link-costfD × fB to dl logbl , d4

l logbl , d8
l logbl ,

anddlbl . We also investigated the other link-cost functions, but
the results of these functions have a similar tendency and thus
are not presented here to facilitate readability of figures.

Let us first discuss the impacts of cost functionfB on the
structural properties of the generated topologies. This can be
observed from the results ofdl logbl anddlbl in Fig. 1. Firstly,
changing cost functionfB does not give much impact on aver-
age shortest path length of the topologies. Secondly, the topol-
ogy using a logarithm function has high clustering coefficients
and a large variation of betweenness centrality as the Sprint
topology does, while the topology using a linear function has
low clustering coefficients.

This tendency is explained as follows. When a new node
joins the network, our method connects it and the existing nodes
based on the cost function. Suppose that by adding the new
node, the amount of traffic on link l increases byβ. Then the
network cost related to linkl increases by

fD(dl) × ( fB(bl + β) − fB(bl)) ,

where fD(dl) represents the cost for link distance andfB(bl +

β) − fB(bl) represents the cost for link capacity.
When fB is a logarithm function, capacitybl has more im-

pact on the increase of network cost than case whenfB is a lin-
ear function. Thus, the new node tends to connect with nodes
already having largerbl . Since the nodes having largerbl also
tend to be connected to each other, the generated topologies
have high clustering coefficients. In addition, as the amount
of traffic that traverses linkl increases, more links are added
around the link to divert the traffic (See Step. 3 of Sec. 3.2),
which also leads to higher clustering coefficients. On the con-
trary, whenfB is a linear function, the cost for link capacity in
the network cost isβ regardless ofbl . The increase ofdl has
more impact on the increase of network cost. Therefore, the
new node tends to be connected with near nodes. However,
closer nodes are not always connected; connectivity only de-
pends on the distance between the closer nodes. As a result, the
generated topologies lack such high clustering coefficients.

We next discuss the impact of cost functionfD on the struc-
tural properties by looking at the results ofdl logbl , d4

l logbl ,
andd8

l logbl in Fig. 1. Changing cost functionfD has less im-
pact on average shortest path length of the topologies, as chang-
ing cost functionfB does. The topology by settingfD to dl has
high clustering coefficients, while settingfD to d8

l creates topol-
ogy with low clustering coefficients because the cost for link
distance becomes dominant as the number of multiplications by
dl increases. Therefore, as the number of multiplications bydl

increases, new nodes tend to connect with near nodes to reduce
costs of long distance links. As a result, nodes are connected to
the nearest nodes that lead to low clustering coefficients, as the
number of multiplications bydl increases.

We next show the amount of traffic on links in Fig. 2. Ran-
domly generated traffic demand matrix is used to calculate the
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traffic on links for each topology. The figure shows that the re-
sult of d4

l logbl is close to the result of original topology, and
shows the same tendency as Fig. 1(c). We obtained the same
tendency for betweenness centrality and the amount of traffic
on links, so we omitted the result of the amount of traffic on
links in further evaluations.

As discussed above, changing cost functionsfD and fB also
changes the structural properties of the generated topologies.
However, our method can reproduce a topology that is close to
the Sprint topology, especially in terms of the clustering coeffi-
cients and betweenness centrality, by settingd4

l logbl as the link
cost. In Fig. 3, we show the degree distribution of the Sprint
topology and our topology withd4

l logbl as the link cost. In this
topology, the degree distribution obeys the power-law, as the
Sprint topology does. We apply this topology and cost function
to subsequent evaluations.

4.2. Comparison between modeling methods

Figure 4 compares our model with the BA and FKP mod-
els. For the results of the BA model, we generated 10,000 BA
topologies and showed their averaged results. In each BA topol-
ogy, we set parametermto 2 and generated the topologies. Then
we added links between nodes based on the probability of Eq.
(1) until the numbers of links are the same as the Sprint topol-
ogy. For the FKP model, we set 20 as weightα based on the
discussion in Ref. [7] and connected two other nodes to the new
node by repeating Step. 3 of the FKP model. We used the DNS
information of each node in the topology as the Sprint topology
and our topologies to the geographical information. After gen-
erating the topology, we added links between the nodes based
on minimizing Eq. (2) until the topology has the same number
of links as the Sprint topology.

We observe from Fig. 4 that our topology is similar to the
Sprint network in terms of the clustering coefficients and be-
tweenness centrality. However, the properties of the topolo-
gies by the BA and FKP models are much different from the
Sprint topology. For instance, the clustering coefficients are
completely dissimilar in Fig. 4(a), and the maximum between-
ness centrality is not also reproduced in Fig. 4(c). In addition,
in Fig. 4(b), the average shortest path length of the BA topolo-
gies is much shorter than the Sprint topology and the topologies
by the other modeling methods.

4.3. Effects of traffic demand matrix

To see the impact of the traffic demand matrix on our mod-
eling method, we show the results with our modeling method
using a uniform traffic demands in Fig. 5. Firstly, changing the
traffic demand matrix has less impact on the average shortest
path length of the topologies. However, the generated topology
using the uniform traffic demands has lower clustering coeffi-
cients and betweenness centrality. When the traffic demands
are uniform, there is no difference between the traffic demands
among the nodes, so the cost for link capacity has less impact
on the network cost than that for link distance. Therefore, new
nodes tend to be connected with near nodes. On the other hand,
when the traffic demands are given by the distance-independent

gravity model, nodes among which demand is large tend to be
connected with each other to prevent accommodating the large
traffic indirectly. For the distance-independent gravity model, a
new node tends to connect with nodes that have large popula-
tions. Since large-population nodes are also connected to each
other, the clustering coefficient tends to be high.

4.4. Effects of node locations

Finally, we show the effects of the node locations on the
structural properties of the topologies obtained by our model-
ing method. We generated 500 topologies by setting the node
locations randomly in the square space [0,1]2, and the averaged
results are shown in Fig. 6. The clustering coefficient and av-
erage shortest path length are much different from the Sprint
topology. For example, when the nodes are located at random,
the number of nodes whose clustering coefficient is 0 or 1 is
smaller than that in the Sprint topology. The average shortest
path length also increases when the nodes are located at ran-
dom.

The reasons for these results are explained as follows. For
the node locations based on the DNS information, the nodes of
a region (e.g., city) are closely located and connected with short
distance links. Among the nodes, one or few nodes become
“gateway” nodes that connect regions by long distance links
and accommodate the traffic between the regions to reduce the
network cost. The existence of such gateway nodes connecting
to the long distance links leads to a small-world property, as
discussed in Ref. [17]. Thus, the average shortest path length
of the topologies decreases in the case of the DNS-based node
locations. On the contrary, for the random node locations, the
nodes are uniformly distributed in the square space. In this case,
the topology has less chance of connecting two nodes with the
long distance links and therefore lacks the small-world prop-
erty.

In summary, the following three design factors all impact the
clustering coefficients of the obtained topologies and are im-
portant to generate realistic ISP topologies: 1) cost function, 2)
traffic demands, and 3) node locations. Moreover, node loca-
tions affect the average shortest path length, and traffic demand
matrix impacts the betweenness centrality for links.

5. Conclusion

In this paper, we developed a modeling method based on
network-cost optimization to obtain realistic ISP topologies
and investigated the crucial design policies to form realis-
tic ISP topologies and how the structural properties differ by
adding/removing the design policies. With appropriate param-
eter settings, our modeling method generated a topology with
similar structural properties compared to the real ISP network,
while still keeping the degree distribution of our topology to fol-
low the power-law as the real ISP network. We also pointed out
the importance of modeling cost function, traffic demands, and
node locations. These three design factors greatly affected the
clustering coefficients of the generated topologies. In addition,
we revealed that node locations impacted the average shortest
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path length and traffic demands affected the betweenness cen-
trality.
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Figure 1: Structural properties of our topologies
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Figure 2: Amount of traffic on links when randomly generated traffic demand
matrix is used. Total traffic demand is set toN · (N − 1) whereN is the number
of nodes (N = 467).
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Figure 3: Degree distribution of our topology
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(b) Average shortest path length
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(c) Betweenness centrality

Figure 4: Comparison between our method and existing modeling methods
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Figure 5: Effects of traffic demand matrix on structural properties

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450

C
lu

s
te

ri
n

g
 c

o
e

ff
ic

ie
n
ts

Rank (in ascending order)

Original

DNS-based
node location

Random
node location

(a) Clustering coefficient

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  3  4  5  6  7  8  9

C
o

m
p
lim

e
n

ta
ry

 c
u
m

u
la

ti
v
e
 d

is
tr

ib
u

ti
o

n

Average shortest path length

Original

DNS-based
node location

Random
node location

(b) Average shortest path length

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

B
e

tw
e
e

n
n
e

s
s
 c

e
n
tr

a
lit

y

Rank (in descending order)

Original

DNS-based
node location

Random
node location

(c) Betweenness centrality

Figure 6: Effects of node locations on structural properties
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