
Self-Adaptive Communication Mechanisms

for Cooperative Information Networks

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2008

Yoshiaki TANIGUCHI

List of Publications

Journal Papers

1. Y. Taniguchi, N. Wakamiya, and M. Murata, “A traveling wave based communication

mechanism for wireless sensor networks,” Journal of Networks (JNW), Vol. 2, No. 5,

pp. 24–32, Sept. 2007.

2. Y. Taniguchi, N. Wakamiya, and M. Murata, “A proxy caching system for MPEG-

4 video streaming with a quality adaptation mechanism,” WSEAS Transactions on

Communications, Vol. 6, No. 10, pp. 824–832, Oct. 2007.

3. Y. Taniguchi, N. Wakamiya, and M. Murata, “Quality-aware cooperative proxy caching

for video streaming services,” submitted to Journal of Networks (JNW), Apr. 2008.

Refereed Conference Papers

1. Y. Taniguchi, A. Ueoka, N. Wakamiya, M. Murata, and F. Noda, “Implementation

and evaluation of proxy caching system for MPEG-4 video streaming with quality

adjustment mechanism,” in Proceedings of the 5th AEARU Workshop on Web Tech-

nology, pp. 27–34, Oct. 2003.

2. Y. Taniguchi, N. Wakamiya, and M. Murata, “Implementation and evaluation of

cooperative proxy caching mechanisms for video streaming services,” in Proceedings

of SPIE’s International Symposium on the Convergence of Information Technologies

and Communications (ITCom 2004), pp. 288–299, Oct. 2004.

3. Y. Taniguchi, N. Wakamiya, and M. Murata, “A distributed and self-organizing data

gathering scheme in wireless sensor networks”, in Proceedings of the 6th Asia-Pacific

. i .

Symposium on Information and Telecommunication Technologies (APSITT 2005),

pp. 299–304, Nov. 2005.

4. Y. Taniguchi, N. Wakamiya, and M. Murata, “A self-organizing communication mech-

anism using traveling wave phenomena for wireless sensor networks,” in Proceedings

of the 2nd International Workshop on Ad Hoc, Sensor and P2P Networks (AHSP

2007), pp. 562–569, Mar. 2007.

5. Y. Taniguchi, N. Wakamiya, and M. Murata, “A communication mechanism using

traveling wave phenomena for wireless sensor networks,” in Proceedings of the 1st

Annual IEEE International Workshop: From Theory to Practice in Wireless Sensor

Networks (t2pWSN 2007), June 2007.

6. Y. Taniguchi, N. Wakamiya, and M. Murata, “Demo abstract: a traveling wave-based

self-organizing communication mechanism for WSNs,” in Proceedings of the 5th ACM

Conference on Embedded Networked Sensor Systems (SenSys 2007), pp.399-400, Nov.

2007.

7. Y. Taniguchi, N. Wakamiya, M. Murata, and T. Fukushima, “An autonomous data

gathering scheme adaptive to sensing requirements for industrial environment moni-

toring,” submitted to the 2nd International Conference on New Technologies, Mobility

and Security (NTMS 2008), June 2008.

Non-Refereed Technical Papers

1. Y. Taniguchi, M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, “Implemen-

tation and evaluation of proxy caching mechanisms with video quality adjustment,”

Technical Report of IEICE (CQ2002-72), Vol. 102, No. 191, pp. 41–46, July 2002.

(in Japanese)

2. Y. Taniguchi, A. Ueoka, N. Wakamiya, M. Murata, and F. Noda, “Implementation

and evaluation of proxy caching system for MPEG-4 video streaming with quality

adjustment mechanism,” Technical Report of IEICE (NS2003-45), Vol. 103, No. 122,

pp. 45–48, June 2003. (in Japanese)

3. Y. Taniguchi, N. Wakamiya, and M. Murata, “Implementation and evaluation of

cooperative proxy caching system for video streaming services,” Technical Report of

. ii .

IEICE (IN2003-190), Vol. 103, No. 650, pp. 13–18, Feb. 2004. (in Japanese)

4. Y. Taniguchi, N. Wakamiya, and M. Murata, “A distributed and self-organizing com-

munication mechanism based on traveling wave phenomena for wireless sensor net-

works,” Technical Report of IEICE (NS2006-48), Vol. 106, No. 167, pp. 17–20, July

2006. (in Japanese)

5. Y. Taniguchi, N. Wakamiya, and M. Murata, “Implementation and evaluation of trav-

eling wave based communication mechanism for wireless sensor networks,” Technical

Report of IEICE (NS2007-40), Vol. 107, No. 146, pp. 1–6, July 2007. (in Japanese)

6. Y. Taniguchi, N. Wakamiya, M. Murata, and T. Fukushima, “A traveling wave based

data gathering scheme adaptive to sensing requirements,” to be presented at IEICE

USN Workshop, July 2008. (in Japanese)

. iii .

Preface

The Internet has evolved into an important social infrastructure over the recent years.

Future information networks are expected to offer a wide variety of network services, for

instance, by allowing various types of devices to anytime and anywhere interact and connect

to a network topology. In such an environment, the number of nodes and their locations,

the amount of traffic and their communication patterns, the availability and quality of com-

munication links, the application/user requirements on network services, as well as their

behavior become unpredictable and subject to dynamic changes. Therefore, future infor-

mation networks should be adaptive to the heterogeneity of connected devices and dynamic

changes in the network environment. Furthermore, the number of connected devices may be

very large, which makes a centralized control and management of the entire network impos-

sible. Thus, it is essential that cooperation among nodes is performed by taking only local

exchange of information into account. Therefore, the communication mechanism in future

cooperative networks should operate in an adaptive and fully-distributed, i.e. self-adaptive,

manner.

In this thesis, we focus on two very different types of information networks to illustrate

the need for adaptation from various perspectives. In our first scenario, we consider a video

streaming system that is adaptive to the dynamically changing requirements on the quality

of video data provided to heterogeneous users in terms of the available bandwidth, end-

system performance, and user preferences on the perceived video quality. Video servers in

video streaming systems should operate cooperatively to provide users with a continuous

and high-quality video streaming service. The second scenario considers wireless sensor

networks that are very limited in their processing capabilities, but must be adaptive to var-

ious and dynamically changing communication patterns and frequencies of data gathering.

Sensor nodes in wireless sensor networks should cooperate to gather or diffuse information

in an energy-efficient, robust, fully-distributed, and self-organizing manner.

. v .

We begin this work by proposing, designing, and implementing a video proxy caching

system that serves as the basis for our further investigations. An adaptation scheme of the

video quality through the proxy caching system is implemented to provide heterogeneous

clients with a continuous and high-quality video streaming service. The proxy caching

system is then evaluated for an MPEG-4 video streaming service, taking into account the

limitations in commercial and widely used client/server applications by employing off-the-

shelf and common hardware and software for the server and clients. The practicality of our

proposed system is verified through experimental evaluations. Furthermore, it is shown that

our proxy caching system can dynamically adapt the quality of video streams to the network

conditions while providing users with a continuous and high-quality video streaming service.

We also verify that our system can provide 50 clients with smooth video streaming while

the CPU usage of the proxy is less than 8%.

In order to provide a more scalable, efficient, and high-quality video streaming service,

we extend the caching mechanism by taking cooperation among proxies into account. The

mechanism itself consists of three parts: block provisioning, block prefetching, and cache

replacement. The main benefits of our proxy cooperation mechanism include a reduction of

the perceived network latency and a higher degree of content availability through cooper-

ative caching among proxies. Simulation experiments verify that our proposed cooperative

mechanism can provide users with lower delays and higher quality video streaming services

in comparison with the independent caching mechanism. In addition, we implement the

proposed collaborative proxy caching mechanism in our previously established prototype

environment of a real system for MPEG-4 video streaming. Through experimental evalua-

tions, it is shown that by introducing collaborative behavior, our proxy caching system is

improved in terms of providing users with a continuous video streaming service even under

dynamically changing network conditions.

The second part of this thesis deals with wireless sensor networks, which are an entirely

different type of information networks compared to the high-performance video streaming

system. To emphasize that especially devices with low processing abilities can benefit from

collaborative actions, we consider a mechanism adaptive to various types of communica-

tion. In our case, two different communication strategies, diffusion of information from

a source node to all other nodes and gathering of data from all nodes to a specific sink

node are considered, as they represent the most common cases found in sensor network

. vi .

applications. Both forms of communication require a coordinated information dissemina-

tion strategy, basically forming a kind of traveling wave. This is realized by a theoretical

model of pulse-coupled oscillators that stimulate or inhibit each other by local interactions

through firing of pulses. We study the conditions that lead to a desired form of travel-

ing wave regardless of the initial phase of the oscillators and propose a fully-distributed,

self-organized communication mechanism for wireless sensor networks. Through simulation

experiments, we confirm that our scheme delivers sensor information to/from designated

nodes in a more robust and energy-efficient manner than other methods. Our mechanism

can extend the network lifetime by a factor of up to 12.8 compared to the directed diffusion

method, which is a well-known reference model found in the lifetime. However, due to

the underlying biological model, we experience a slight delay until the data dissemination

process is completed. Implementations using commercial MICAz sensor units give further

evidence of the applicability of our approach. Through experimental evaluations, we con-

firm that data delivery ratio of about 95 % is accomplished where 16 nodes are located in

a 4×4 grid layout.

Finally, we study the timing intervals of sensing and data gathering periods in more

detail, since this interval is greatly influenced by the application requirements and environ-

mental conditions of the wireless sensor network. We propose a data gathering mechanism

that is adaptive to the different sensing requirements in networks composed of sensor nodes

with multiple sensing capabilities. To accomplish a self-organizing and collaborative con-

trol, we adopt the response threshold model for adaptive sensing task engagement and

the pulse-coupled oscillator model for energy-efficient transmission and sleep scheduling in

an industrial application scenario. Through simulation experiments, we confirm that au-

tonomous and energy-efficient data gathering can be accomplished well by a collaborative

scheme in spite of dynamically changing sensing requirements. In the simulation scenario,

our mechanism can further reduce the energy consumption per node.

. vii .

Acknowledgments

First of all, I would like to express my sincere appreciation to my supervisor, Professor

Masayuki Murata, Graduate School of Information Science and Technology, Osaka Univer-

sity, for his encouragement, valuable discussions, and meaningful advices. He introduced

me to the area of information network and has inspired me to aim for higher goals.

I would like to thank to Professor Koso Murakami, Professor Makoto Imase, and Pro-

fessor Teruo Higashino, Graduate School of Information Science and Technology, Osaka

University, and Professor Hirotaka Nakano, Cybermedia Center, Osaka University, for their

valuable comments, technical guidances, and reviewing of this thesis.

I greatly acknowledge Associate Professor Naoki Wakamiya, Graduate School of In-

formation Science and Technology, Osaka University, for his critical comments, unerring

guidance, and continuous support. This work would not have been possible without him.

I would also thank to President Hideo Miyahara, National Institute of Information and

Communications Technology, Associate Professor Masashi Sugano, Osaka Prefecture Uni-

versity, Associate Professor Ken’ichi Baba, Associate Professor Hiroyuki Ohsaki, Associate

Professor Go Hasegawa, Osaka University, Associate Professor Shingo Ata, Osaka City

University, Assistant Professor Shin’ichi Arakawa, Assistant Professor Masahiro Sasabe,

Assistant Professor Yuichi Ohshita, Osaka University, for their helpful advices and com-

ments of this work.

I also wish to thank Mr. Atsushi Ueoka and Mr. Fumio Noda, Systems Development

Laboratory, Hitachi, Ltd., for their help, encouragement and suggestions for the implemen-

tation of the proxy caching system for MPEG-4 video streaming services in this thesis. I

would also like to thank Dr. Takashi Fukushima, Kobe Steel, Ltd., for his valuable comments

and helps from industrial viewpoint in wireless sensor networks.

Thank you to all of past and present professors, researchers, postdoctorals, secretaries,

. ix .

and students of Advanced Network Architecture Laboratory in Graduate School of Infor-

mation Science and Technology, Osaka University, for their detailed and valuable advices,

suggestions, and encouragement. Specially, I would like to thank Specially Appointed Asso-

ciate Professor Kenji Leibnitz for his suggestions, encouragement, corrections of this work.

I wish to thank Assistant Professor Tomoya Kitani, Assistant Professor Yoshitaka Naka-

mura, Nara Institute of Science and Technology, Associate Professor Hiroyuki Hisamatsu,

Osaka Electro-Communication University, and all my friends for their suggestions and en-

couragement during my undergraduate and graduate life.

Finally, I deeply thank my parents and my elder sister for their invaluable support and

encouragement in my life. This work would not have been possible without them.

. x .

Contents

List of Publications i

Preface v

Acknowledgments ix

1 Introduction 1

1.1 Background . 1

1.2 Outline of Thesis . 4

2 Proxy Caching with MPEG-4 Video Quality Adaptation 9

2.1 Introduction . 9

2.2 A Proxy Caching System with Video Quality Adaptation 11

2.2.1 Basic Behavior . 12

2.2.2 Block Retrieval . 14

2.2.3 Rate Control with TFRC . 14

2.2.4 Video Quality Adaptation . 15

2.2.5 Block Prefetching . 17

2.2.6 Cache Replacement . 17

2.3 Experimental Evaluation . 18

2.3.1 Rate Control with Video Quality Adaptation 19

2.3.2 Effectiveness of the Caching Mechanism 21

2.3.3 Evaluation with Many Clients . 24

2.4 Conclusion . 25

. xi .

3 Cooperative Proxy Caching with Video Quality Adaptation 27

3.1 Introduction . 27

3.2 A Cooperative Proxy Caching Mechanism with Video Quality Adaptation . 28

3.2.1 Overview of the Mechanism . 29

3.2.2 Block Provisioning . 30

3.2.3 Block Prefetching . 34

3.2.4 Cache Replacement . 35

3.3 Simulation Experiments . 36

3.4 Implementation and Experimental Evaluation 40

3.4.1 Overview of the Implemented System 41

3.4.2 Information Sharing Among Proxies 43

3.4.3 Cooperative Proxy Caching . 43

3.4.4 Experimental Configuration . 44

3.4.5 Experimental Results . 45

3.5 Conclusion . 47

4 Traveling Wave-based Communication Adaptive to Application Require-

ments for WSNs 49

4.1 Introduction . 49

4.2 Analysis of Mathematical Model . 52

4.2.1 Pulse-Coupled Oscillator Model . 52

4.2.2 Generation of Various Traveling Waves 55

4.2.3 Condition of PRC to Generate Traveling Waves 62

4.3 A Traveling Wave-based Communication Mechanism 65

4.3.1 Basic Behavior . 66

4.3.2 Power-Saving Mode . 67

4.3.3 Addition and Removal of Sensor Nodes 68

4.3.4 Multiple Core Nodes . 68

4.3.5 Node Failures . 69

4.4 Simulation Experiments . 70

4.4.1 Basic Behavior . 70

4.4.2 Effectiveness of the Mechanism . 73

4.5 Implementation and Experimental Evaluation 76

. xii .

4.5.1 Implementation of the Mechanism 76

4.5.2 Experimental Evaluation . 78

4.5.3 Improvement and Evaluation of the Mechanism 80

4.6 Conclusion . 82

5 Data Gathering Adaptive to Sensing Requirements for WSNs 85

5.1 Introduction . 85

5.2 A Data Gathering Mechanism Adaptive to Sensing Requirements 87

5.2.1 Adaptive Sensing using Response Threshold Model 88

5.2.2 Data Gathering with Adaptive Intervals 89

5.2.3 Overhead of the Mechanism . 92

5.3 Simulation Experiments . 92

5.4 Conclusion . 95

6 Conclusion 97

Bibliography 99

. xiii .

List of Figures

2.1 Modules constituting system . 11

2.2 Basic behavior of our proxy caching system 12

2.3 Video structure after frame dropping . 16

2.4 Adapted video rate by frame dropping filter 17

2.5 Priority of cached blocks . 17

2.6 Configuration of experimental system to evaluate rate control 19

2.7 Reception rate at clients . 20

2.8 RTT and packet loss probability at client 1 20

2.9 Configuration of experimental system to evaluate the caching mechanism . 22

2.10 Evaluation of the caching mechanism . 22

2.11 Configuration of experimental system to evaluate with many clients 24

2.12 Average memory usage and CPU usage for the number of clients 24

3.1 Cooperative video streaming system . 28

3.2 Basic behavior of our cooperative proxy caching system 29

3.3 Worst-case delay due to waiting for the preceding request 33

3.4 Sample order of block replacement . 36

3.5 Configuration of simulation experiments . 37

3.6 Relationship between quality and block size 37

3.7 Simulation evaluations against average inter-arrival time τ 39

3.8 Simulation evaluations against cache buffer size 40

3.9 Overview of the implemented system . 41

3.10 Basic behavior of the implemented system 42

3.11 Configuration of experimental system . 44

. xv .

3.12 Cache tables . 44

3.13 Experimental evaluation of block provisioning mechanism 46

4.1 Global synchronization and traveling wave 51

4.2 PRC examples . 53

4.3 Global synchronization and phase-lock . 54

4.4 Phase transition . 54

4.5 Traveling wave in two oscillators . 55

4.6 Ring-type traveling wave . 56

4.7 Line-type traveling wave . 57

4.8 Line-type multiple traveling wave . 58

4.9 Concentric circle-type traveling wave . 60

4.10 Radar-type traveling wave . 61

4.11 Oscillators in tandem . 62

4.12 PRC Δs from Eq. (4.12) . 64

4.13 Phase transition of oscillator 1 . 64

4.14 Two-dimensional arrangement of oscillators 65

4.15 Node behavior on message reception . 67

4.16 Sensor distribution in the simulation experiments 71

4.17 Timing of message emissions . 71

4.18 Distribution of the time to establish the phase-lock condition 72

4.19 Timing of message emissions with dynamic deployment 72

4.20 Response time and topology time in gathering 74

4.21 Response time and topology time in diffusion 75

4.22 Data gathering ratio against packet loss probability 76

4.23 Number of available nodes . 76

4.24 Diagram of attachment module for MICAz 77

4.25 Packet format . 78

4.26 Experimental topology . 79

4.27 Experimental evaluation of the mechanism 79

4.28 Timing of message emissions in the improved mechanism 81

4.29 Simulation evaluation of the improved mechanism 82

4.30 Experimental evaluation of the improved mechanism 82

. xvi .

5.1 Monitoring of shaft furnace of steel plant 86

5.2 Broadcast timing of proposed mechanism 87

5.3 An example of message reduction . 91

5.4 Node distribution and snapshot at 1200 seconds in simulation experiments . 93

5.5 Timing of message emissions . 94

5.6 Number of nodes in frequent state . 94

. xvii .

List of Tables

4.1 Consumption current of MICAz . 77

4.2 List of parts for attachment module of MICAz 78

. xix .

Chapter 1

Introduction

1.1 Background

The Internet has evolved into an important social infrastructure over the recent years. Fu-

ture information networks are expected to offer a wide variety of network services, for exam-

ple, environmental monitoring, video streaming services, seamless internet access, building

automation, by allowing various types of devices to anytime and anywhere interact and

connect to a network topology. In such an ambient environment [1], the number of nodes

and their locations, the amount of traffic and their communication patterns, the availability

and quality of communication links, the application/user requirements on network services,

as well as their behavior become unpredictable and subject to dynamic changes. Therefore,

future information networks should be adaptive to the heterogeneity of connected devices

and dynamic changes in network environment [2, 3].

Traditional adaptive mechanisms are pre-programmed and pre-installed into a system

taking into account possible conditions predicted at the deployment phase, and achieve good

performance within their predicted range. However, once unexpected events happen or the

operation conditions go out of the intended range, the system may easily collapse. Since

it is expected that future information networks are likely to face unexpected events more

frequently than before due to the introduction of new technologies, a robust communication

mechanism has to achieve higher adaptability by being able to cope with the changing

environment [3].

Furthermore, since traditional client/server architectures lack scalability, distributed

and cooperative networks such as P2P networks, wireless ad hoc networks, and sensor

– 1 –

1.1 Background

networks have gathered much attention and are expected to be widely used in future in-

formation networks. In such networks, the number of connected devices/users may be very

large, which makes a centralized control and management of the entire network impossi-

ble. Thus, it is essential that cooperation among nodes is performed by taking only local

exchange of information into account. Therefore, the communication mechanism in future

cooperative networks should operate in an adaptive and fully-distributed, i.e. self-adaptive,

manner.

To contribute to the development of future cooperative information networks, we mainly

focus in this thesis on the principle of self-adaptive control. A lot of research has been

dedicated to self-adaptive control mechanisms for cooperative information networks. For

example, in routing mechanisms in mobile ad hoc networks [4, 5], nodes may join or leave

the network or move to other locations while sending or receiving data. To maintain

communication among each other, the routing mechanism must be adaptive to the location

and behavior of the nodes. On the other hand, in wireless sensor networks, coverage control

mechanisms [6] must adapt their sensing behavior to efficiently monitor their surrounding

target region through cooperation among nodes and without any centralized control.

Biologically-inspired approaches are known to have self-adaptive capabilities [2, 7]. It is

known that biological systems have the inherent feature of self-adaptability, although they

are rather slow to adapt to environmental changes [8, 9]. Some papers adopt biologically-

inspired approaches to achieve self-adaptive control in cooperative information networks [10-

12]. For example, [11] considers multi-path routing in overlay networks. The probability of

path selection is adaptive to the current environment in terms of available bandwidth and

latency by using attractor selection that is based on a biological model.

Since there are many types of information networks and different dynamic factors as

described above, we focus on two very distinct types of information networks, i.e. video

streaming systems and wireless sensor networks, in this thesis to illustrate the need for

self-adaptation from various perspectives.

Video Streaming Systems

In video streaming systems, a client receives a video stream from a video server over the

Internet and plays each block of the stream as it gradually arrives. With the increase

in computing power and the proliferation of the Internet, video streaming systems have

become widely deployed [13-15].

– 2 –

Chapter 1. Introduction

In the video streaming systems, requirements on the quality of video data provided

to clients are heterogeneous and dynamically changing, for the heterogeneity in clients in

terms of the available bandwidth, end-system performance, and user preferences on the

perceived video quality. Since there is no guarantee on bandwidth, delay, or packet loss

probability in the current Internet, which only provides best-effort packet delivery, it is

difficult to provide clients with continuous or reliable video streaming. Furthermore, most

of today’s streaming system is based on client/server architecture, which lack scalability

against increased clients.

To tackle the scalability problem, introducing cooperative intermediate nodes, i.e. prox-

ies, near the clients in the system, is effective and enables low-delay and high-quality video

streaming. In addition, by introducing adaptive video quality capabilities, i.e. video filters,

at the proxies, the system can handle heterogeneous and dynamically changing requirements

and provide users with a continuous and high-quality video streaming service.

There have been several publications on proxy caching mechanisms with capability of

video quality adaptation for video streaming systems [16-23]. However, they do not consider

cooperation among proxies, lack the scalability to rate and quality variations, or assume

proprietary and specially designed server/client applications which are not widely available.

Wireless Sensor Networks

A wireless sensor network is constituting of battery-powered sensor nodes to obtain infor-

mation on behavior, condition, and position of elements in a local or remote region [7,

24-30]. Each node in such a sensor network has a processor with limited computational

capability, small memory, and radio transceiver.

Due to several restrictions including limited battery capacity, random deployment, and

large number of fragile sensor nodes, wireless sensor networks should have cooperative

behavior and a mechanism should be energy-efficient, adaptive, robust, fully-distributed,

and self-organizing. Furthermore, application requirements on communication patterns,

sensing frequencies, and the number of nodes to monitor and report the phenomena are

various and dynamically changing.

As an example of dynamic change in communication pattern, a sensor node detecting

an emergency would distribute the information over the whole sensor network to alert the

other nodes and make them cooperatively react to the emergency whereas all sensor nodes

report sensing data to a central node, called sink, at regular intervals in case without

– 3 –

1.2 Outline of Thesis

emergency. On the contrary, a sensor node detecting an uncertain condition would collect

and aggregate sensor information of other neighboring nodes to have a more precise view

of the environment by conjecturing from the collected information.

As another example of cases where the number of nodes to monitor and report the

phenomena should be regulated in accordance with its criticality and importance in this

thesis, we consider temperature and CO gas sensors deployed on the surface of shaft furnace

of a steel plant for industrial environment monitoring. Temperature changes slowly in the

order of hours and once it increases, it stays high for a long period of time. Therefore,

nodes are required to monitor temperature more frequently when temperature changes are

detected, while they can decrease the sensing frequency under stable conditions. On the

contrary, CO gas would suddenly leak and spread fast. Therefore, nodes are required to

monitor CO gas more frequently than temperature while CO gas exists.

To adapt to various types of communication patterns in accordance with application

requirements, sensing frequencies, and the number of nodes to monitor and report the

phenomena, sensor nodes should adapt their behavior in a fully-distributed and self-adaptive

manner.

1.2 Outline of Thesis

In this thesis, we propose self-adaptive communication mechanisms for video streaming

systems and wireless sensor networks where servers or nodes operate in a cooperative way

to satisfy heterogeneous and dynamically changing application/user requirements in a het-

erogeneous and dynamically changing environment. Each of these mechanisms is described

together with simulation or experimental results for evaluations.

A Proxy Caching System with Quality Adaptation for MPEG-4 Video

Streaming Services [31-33]

We first consider a video streaming systems scalable to number of clients and adaptive to

requirements on the quality of video data. To accomplish low-delay and high-quality video

distribution without imposing extra load on the system, we adopt as proxy mechanism

widely used in WWW systems.

In Chapter 2, we begin this work by proposing, designing, and implementing a video

proxy caching system that serves as the basis for our further investigations. In our proposed

– 4 –

Chapter 1. Introduction

system, a video stream is divided into blocks so that the cache buffer and the bandwidth can

be used efficiently. A proxy retrieves a block from the server, deposits it in its local cache

buffer, and provides requesting clients with blocks in time. It maintains the cache with a

limited capacity by replacing unnecessary cached blocks with a newly retrieved block. A

proxy cache server prefetches video blocks that are expected to be required in the near

future to avoid cache misses. It also adjusts the quality of a cached or retrieved video

block to the appropriate level through video filters to handle client-to-client heterogeneity

without involving the original video server.

We build a prototype of our proxy caching system for MPEG-4 video streaming ser-

vices [34] on a real current system. We employ off-the-shelf and common applications for

server and client programs to implement our system. On the contrary to other proposals,

our system does not need any modifications in server/client applications ore systems as far

as they conform to streaming standards. Our proxy caching system can be applied to envi-

ronments in which RTSP/TCP is used to control video streaming and RTP/UDP to deliver

them. We introduce a TFRC (TCP Friendly Rate Control) [35] mechanism to the system

for video streaming to share the bandwidth fairly with conventional TCP sessions. We use

a frame dropping filter to adapt the rate of video streams to the bandwidth available to

service. Through experimental evaluations, it is shown that our proxy caching system can

provide users with a continuous and high-quality video streaming service by introducing

video quality adaptation capability.

A Cooperative Proxy Caching Mechanism with Quality Adaptation for

Video Streaming Services [36-41]

Although the video streaming system proposed in Chapter 2 can provide users with a

continuous and high-quality service, the system is intended for only a single proxy. A proxy

always retrieves blocks from a video server at cache miss although there are other proxies

having low-delay and broadband links to the proxy.

In Chapter 3, in order to provide a more scalable, effective, and high-quality video

streaming service, we extend our caching mechanism by considering cooperation among

proxies. The new self-adaptive mechanism consists of three parts: block provisioning, block

prefetching, and cache replacement. The main benefits of our proxy cooperation mechanism

include reducing the perceived network latency and achieving a higher degree of content

availability by cooperative caching among proxies. Through simulation experiments, it is

– 5 –

1.2 Outline of Thesis

shown that our proposed cooperation mechanism can provide users with low-delay and

high-quality video streaming services in comparison with independent caching mechanism.

In addition, to verify the practicality and adaptability of our proposal to existing video

streaming services, we implement our cooperative proxy caching mechanism on a real sys-

tem for MPEG-4 video streaming services extending our implemented system described

in Chapter 2. Through experimental evaluations, it is shown that our cooperative proxy

caching system can provide users with a continuous video distribution under dynamically

changing network conditions.

A Traveling Wave-based Communication Mechanism Adaptive to Appli-

cation Requirements for Wireless Sensor Networks [42-48]

In Chapter 4, we change our attention to wireless sensor networks and we consider a self-

organizing communication mechanism adaptive to application requirements.

In wireless sensor networks, a communication mechanism should be able to handle var-

ious types of communication, i.e. diffusion and gathering, involving the whole network in

accordance with dynamically application requirements. To answer dynamically changing

application requirements, a communication mechanism should handle both types of com-

munication, especially in an self-adaptive and self-organizing manner. For this purpose, we

adopt a pulse-coupled oscillator (PCO) model based on biological mutual synchronization

such as that observed in flashing fireflies [49-53]. In a PCO model, synchronous behavior of

a group of oscillators is considered. Each oscillator operates on a timer. When the phase

of the timer reaches one, an oscillator fires. Oscillators coupled with the firing oscillator

are stimulated and they shift the phase of timers by a small amount. Through mutual in-

teractions by stimuli among oscillators, the global synchronization where all oscillators fire

synchronously, or a traveling wave, where oscillators behave synchronously keeping fixed

phase difference, appears.

In this chapter, in contrast to the other work [54-65], we focus on traveling wave phe-

nomena in a PCO model. By adjusting parameters and functions of a PCO model, we

can control the frequency, form, and direction of a wave. We first investigate conditions

of a phase response curve (PRC) with which a wireless sensor network reached a preferred

phase-lock condition where the phase differences among sensor nodes are kept constant from

arbitrary settings of the initial phase of sensor nodes. Then, we propose a self-adaptive

and self-organizing communication mechanism which generated concentric traveling waves

– 6 –

Chapter 1. Introduction

centered at a sensor node, which wanted to gather information from all sensor nodes or

diffuse information to all sensor nodes. Through simulation experiments, we confirm that

our scheme delivers sensor information to/from designated nodes in a more energy-efficient

manner than other method, although it takes time to generate a traveling wave. Further-

more, we implement our mechanism using commercial wireless sensor units, MICAz [66].

Since collisions among synchronized packet emissions affects the performance, we extend

the mechanism to distribute timing of packet emission and we confirm that data delivery

ratio of about 95 % is accomplished.

A Data Gathering Mechanism Adaptive to Sensing Requirements for Wire-

less Sensor Networks [67, 68]

In some class of applications, a node need to change its sensing frequency to monitor

the region or target more frequently when it detects unusual condition and phenomena.

Furthermore, the number of nodes which monitor and report the phenomena should be

regulated in accordance with its criticality and importance.

In Chapter 5, to tackle the above-mentioned problem, we propose a data gathering

mechanism adaptive to dynamically changing sensing requirements. In our mechanism,

nodes operate on traveling wave-based periodic data gathering at regular data gathering

intervals as described in Chapter 4. We assume that the regular sensing frequency is

the same among sensors of different types. When condition of sensing target, such as

temperature and gas concentration, changes at a certain point, surrounding nodes decide

whether to monitor the target more frequently or not depending on the need for sensing. To

regulate the number of nodes engaged in frequent monitoring of target in a self-organizing

way, we adopt a response threshold model [69], i.e. a mathematical model of division of

labor. Once a node considers to monitor the target more frequently, it changes its sensing

frequency higher. So that obtained sensor data are forwarded to a base station at the higher

frequency, nodes on the path to the base station also adapt to the new frequency. As a

result, two or more traveling waves emerge in part or as a whole in a wireless sensor network.

Through simulation experiments, we confirm that autonomous and energy-efficient data

gathering can be accomplished satisfying dynamically changing sensing requirements in a

energy-efficient manner.

– 7 –

Chapter 2

A Proxy Caching System with

Quality Adaptation for MPEG-4

Video Streaming Services

2.1 Introduction

With the increase in computing power and the proliferation of the Internet, video streaming

services have become widely deployed. Through these services, a client receives a video

stream from a video server over the Internet and plays it as it gradually arrives. However, on

the current Internet, only the best effort service, where there is no guarantee on bandwidth,

delay, or packet loss probability, is still the major transport mechanism. Consequently,

video streaming services cannot provide clients with continuous or reliable video streams.

As a result, the perceived quality of video streams played at the client cannot satisfy

expectations, and freezes, flickers, and long pauses are experienced. Furthermore, most of

today’s Internet streaming services lack scalability against increased clients since they have

been constructed on a client/server architecture, e.g., YouTube [13], Google Video [14],

GyaO [15], and so on. A video server must be able to handle a large number of clients,

which have diverse requirements on a received video stream for their heterogeneity.

Proxy mechanisms widely used in WWW systems offer low-delay and scalable delivery of

data by means of a “proxy server”. A proxy server caches multimedia data that has passed

through its local buffer, called the “cache buffer”, and it then provides the cached data to

– 9 –

2.1 Introduction

users on demand. By applying this proxy mechanism to video streaming systems, low-delay

and high-quality video distribution can be accomplished without imposing extra load on the

system [16-20]. In addition, the quality of cached video data can be adapted appropriately

at a proxy to support heterogeneous clients in terms of the available bandwidth, end-system

performance, and user preferences on the perceived video quality [21-23]. There have been

proposals for proxy caching mechanisms for video streaming services. However, they do

not consider the client-to-client heterogeneity, lack the scalability or adaptability to rate

and quality variations, or assume specially designed server/client applications which are not

widely available. We also proposed a proxy mechanism with the quality scaling capability

for MPEG-2 video streaming services and evaluated its effectiveness through simulation

and prototype-based experiments [70]. However, as the others, we had to build all of a

server, a proxy, and clients to realize their mechanisms.

In this chapter, we propose and design a proxy caching system for MPEG-4 video

streaming services to attain high-quality, continuous, and scalable video distribution. In

our system, a video stream is divided into blocks so that the cache buffer and the band-

width can be used efficiently. A proxy retrieves a block from the server, deposits it in

its local cache buffer, and provides requesting clients with blocks in time. It maintains the

cache with a limited capacity by replacing unnecessary cached blocks with a newly retrieved

block. A proxy cache server prefetches video blocks that are expected to be required in

the near future to avoid cache misses. It also adjusts the quality of a cached or retrieved

video block to the appropriate level through video filters to handle client-to-client hetero-

geneity without involving the original video server. These mechanisms are based on our

previous proposal [70], but we modify and improve them taking into account limitations in

commercial and widely used server/client applications.

We build a prototype of our proxy caching system for MPEG-4 video streaming services

on a real current system. We employ off-the-shelf and common applications for server and

client programs to implement our system. On the contrary to other proposals, our system

does not need any modifications in server/client applications or systems as far as they

conform to streaming standards. Our proxy caching system can be applied to environments

in which RTSP/TCP is used to control video streaming and RTP/UDP to deliver them.

We introduce a TFRC (TCP Friendly Rate Control) [35] mechanism to the system for video

streaming to share the bandwidth fairly with conventional TCP sessions. We use a frame

dropping filter to adapt the rate of video streams to the bandwidth available to service.

– 10 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

P
la

y
e
r

RTP

Receiver

RTCP

Receiver

RTP

Receiver

RTP

Sender

RTCP

Sender

RTCP

Sender

RTSP Client

Filter

Server ClientProxy

RTSP/TCP

RTP/UDP

RTP/UDP

RTCP/UDP

RTCP/UDP

Signal Data MPEG-4 Video MPEG-4 Audio Module

RTP

Sender

TFRC

C
a

c
h

e

M
a

n
a
g

e
r

RTSP Server

S
tr

e
a

m
in

g
 S

e
r
v

e
r

RTSP/TCP

RTP/UDP

RTP/UDP

RTCP/UDP

RTCP/UDP

RTCP

Receiver

CacheTable

Figure 2.1: Modules constituting system

Through evaluations from several performance points of view, we prove that our proxy

caching system could dynamically adjust the quality of video streams to fit to network

conditions while providing users with a continuous and high-quality service. We also verify

that our system can provide 50 clients with smooth video streaming.

The rest of this chapter is organized as follows. In Section 2.2, we describe our proxy

caching system and explains how it is implemented, and conduct several experiments to

verify the practicality of our system in Section 2.3. Finally, we conclude this chapter in

Section 2.4.

2.2 A Proxy Caching System with Video Quality Adaptation

Figure 2.1 illustrates modules that constitute our proxy cache server. Video streaming is

controlled through RTSP/TCP sessions. There are two sets of sessions for each client. The

first is established between an originating video server and a proxy to retrieve uncached

blocks. The other is between the proxy and the client. Each of video and audio stream is

transferred over a dedicated RTP/UDP session. The condition of streaming is monitored

over RTCP/UDP sessions. A proxy server has a cache to deposit video data and a filter

to adapt the quality of video to the TCP-friendly rate [35]. A video stream is coded

using an MPEG-4 video coding algorithm, and it is compliant with ISMA 1.0 [34]. In this

thsis, we employed the Darwin Streaming Server [71] as a server application, and RealOne

Player [72] and QuickTime Player [73] as client applications. However, other server or

– 11 –

2.2 A Proxy Caching System with Video Quality Adaptation

Server

Proxy

Client

Playout

1

2

Time

Signal Video data

3 4

5

O
PT

IO
N

S

Establishing
sessions

R
E

PL
Y

D
E

SC
R

IB
E

SE
T

U
P

R
E

PL
Y

(V
id

eo
)

SE
T

U
P

(A
ud

io
)

R
E

PL
Y

R
E

PL
Y

PL
A

Y

PL
A

Y
 (

3-
4)

R
E

PL
Y

R
E

PL
Y

Play-out delay

Cache miss

Cache Manager

RTP Receiver

RTP Sender
1

2 3 4

T
E

A
R

D
O

W
N

O
K

Closing
sessions

5

Cache hit

Figure 2.2: Basic behavior of our proxy caching system

client applications being compliant with standard [34] with no or small modification. If

other coding algorithm, e.g. MPEG-2, is used, the filtering module is only needed to be

changed, which adapts the video rate by manipulating the video data, as far as server and

client applications employ a set of the standard protocols, i.e. RTP/UDP, RTCP/UDP,

and RTSP/TCP.

2.2.1 Basic Behavior

Figure 2.2 illustrates the basic behavior of our system. In the proxy cache server, a video

stream is divided into blocks so that the cache buffer and the bandwidth can be efficiently

used. Each block corresponds to a sequence of VOPs (Video Object Planes) of MPEG-4.

A block consists of a video block and an audio block, and they are separately stored. The

number of VOPs in a block is determined by taking into account the overhead introduced in

maintaining the cache and transferring data block-by-block. The strategy used to determine

the block size is beyond the scope of this thesis. We used 300 in our empiric implementation.

Since an MPEG-4 video stream is coded at 30 frames per second, a block corresponds to

ten seconds of video. Segmentation based on VOP was reasonable since packetization based

on this is recommended in RFC3016 [74]. Furthermore, we could use the range field of the

RTSP PLAY message to specify a block, e.g. Range 20-30, because we could easily specify

the time that the block corresponded to.

First, a client begins by establishing connections for audio/video streams with the proxy

server using a series of RTSP OPTIONS, DESCRIBE, and SETUP messages. An OPTIONS

– 12 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

message is used to request communication options. A DESCRIBE message is used for media

initialization and a SETUP message is used for transport parameter initialization. These

RTSP messages are received by the Cache Manager through an RTSP Server module. The

proxy server relays these RTSP messages to the video server. Thus, connections between the

video server and the proxy server are also established at this stage. Then, the client requests

delivery of the video stream by sending an RTSP PLAY message. When a connection

between the video server and the proxy server is not used for the predetermined timeout

duration, the video server terminates the connection according to RTSP specification. In

our system, the proxy server maintains the connection for future use by regularly sending

an RTSP OPTIONS message after 90 seconds idle period.

A proxy maintains information about cached blocks in the Cache Table. Each entry in

the table contains a block identifier, the size of the cached block, and the flag. The size is

set at zero when the block is not cached. The flag is used to indicate that the block is being

transmitted. On receiving a request for a video stream from a client through the RTSP

Server, the Cache Manager begins providing the client with blocks. The request is divided

into blocks, and Cache Manager examines the table every interval of the block. If the

requested block is cached, i.e. cache hit, the Cache Manager reads it out and sends it to the

RTP Sender. The RTP Sender packetizes the block and sends the packet to the client on

time. The quality of video blocks is adapted to fit the bandwidth on the path to the client

by the Filter. Our proxy cache server adjusts the video rate to the bandwidth estimated

by the TFRC module to share the bandwidth among video sessions and conventional data

sessions in a friendly and fair manner.

When a block is not cached in the local cache buffer, the Cache Manager retrieves the

missing block by sending an RTSP PLAY message to the video server. To use bandwidth

efficiently, and prepare for potential cache misses, it also requests the video server to send

succeeding blocks that are not cached, by using the range field of the RTSP PLAY message.

Blocks 3 and 4 in Fig. 2.2 have been retrieved from the video server by sending one RTSP

PLAY message. Block identifiers are indicated beside the PLAY message in Fig. 2.2 for

easier understanding.

On receiving a block from the video server through the RTP Receiver, the Cache Man-

ager sets its flag to ON to indicate that the block is being transmitted, and it relays the

block to the RTP Sender VOP by VOP. When reception is completed, the flag is cancelled

– 13 –

2.2 A Proxy Caching System with Video Quality Adaptation

and the Cache Manager deposits the block in its local cache buffer. However if the re-

trieved block is damaged by packet loss, the Cache Manager doesn’t deposit it. If there is

not enough room to store the newly retrieved block, the Cache Manager replaces one or

more less important blocks in the cache buffer with the new block.

A client receives blocks from a proxy and first deposits them in a so-called play-out

buffer. Then, after some period of time, it gradually reads blocks out from the buffer and

plays them. By deferring the play-out as illustrated in Fig. 2.2, a client can prepare for

unexpected delay in delivery of blocks due to network congestion or cache misses.

When a proxy server receives an RTSP TEARDOWN message from a client, the proxy

server relays the message to the video server, and closes the sessions.

2.2.2 Block Retrieval

When a requested block is not cached in the local cache buffer, the Cache Manager should

retrieve the block. Since we adopt an off-the-shelf application for the video streaming server,

it cannot adjust the quality of video blocks. Therefore, in our system, the Cache Manager

always retrieves the missing block with the highest quality, i.e. the quality with which the

video stream was coded, from the video server. Of course, when we have a video server

capable of quality adaptation, our proposed scheme can attain more efficient and effective

control [70].

2.2.3 Rate Control with TFRC

There is a variety of mechanisms to measure the available bandwidth [75-78]. However,

it introduces additional traffic or causes delay to a video session. In addition, a selfish

behavior of a video session to occupy the whole available bandwidth would affect the others

and consequently the performance of network deteriorates. Therefore, our proxy cache

server adjusts the video rate to the bandwidth estimated by the TFRC.

TFRC enables a non-TCP session to behave in a TCP-friendly manner. The TFRC

sender estimates the throughput of a TCP session sharing the same path using following

equation.

X =
s

R
√

2bp
3 + tRTO(3

√
3bp
8)p(1 + 32p2)

, (2.1)

where X is the transmit rate in bytes/second. s is the packet size in bytes. R is the round

– 14 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

trip time in seconds. p is the loss event rate, between 0 and 1.0, of the number of loss events

as a fraction of the number of packets transmitted. tRTO is the TCP retransmission timeout

value in seconds. b is the number of packets acknowledged by a single TCP acknowledgment.

In the system we implemented, those information are obtained by exchanging RTCP

messages between the RTCP Sender of the proxy cache server and the client application.

A client reports the cumulative number of packets lost and the highest sequence number

received to a proxy. From those information, the proxy obtains the packet loss probability.

RTT is calculated from the time that the proxy receives LSR and DLSR fields of a RTCP

Receiver Report message and the time that the proxy receives the message. By applying an

exponentially weighted moving average functions, the smoothed values are derived for both.

The estimated throughput obtained by Eq. (2.1) is regarded as the available bandwidth,

which is taken into account in determining the quality of a block to retrieve and send.

To derive the TCP-friendly rate, the TFRC requires a client to send feedback messages

at least once per RTT. It means that a client application has to issue RTCP Receiver Report

messages at least once per RTT. According to the RTCP specifications, a sender can trigger

feedback by sending an RTSP Sender Report to a receiver. However, widely available client

applications such as used in the experiments in this thesis ignore this and issue RTCP

Receiver Report messages every three to six seconds by their own timing. To verify the

practicality and applicability of our proxy cache system, we used the client applications as

they are, without any modification. As a result, we observed large variation in the reception

rate as will be shown in Section 2.3.1. Problems inherent in public applications remains for

future research.

2.2.4 Video Quality Adaptation

We employed a frame dropping filter as a quality adaptation mechanism. The frame drop-

ping filter adapts the video quality to the desired level by discarding frames. The smooth-

ness of video play-out deteriorates but it is simpler and faster than other filters such as

low-pass and re-quantization [79]. Adopting layered or multiple-description coding is also

helpful to treat the client-to-client heterogeneity. However, no commercially or freely avail-

able client application can decode and display a media stream with multiple layers or

multiple descriptions.

We should take into account the interdependency of video frames in discarding frames.

For example, discarding an I-VOP affects P-VOPs and B-VOPs that directly or indirectly

– 15 –

2.2 A Proxy Caching System with Video Quality Adaptation

VOP
1original

1 VOP
dropped

3 VOP
dropped

7 VOP
dropped

VOP
2

VOP
3

VOP
4

VOP
5

VOP
6

VOP
7

VOP
8

VOP
9

VOP
10

VOP
11

VOP
12

VOP
13

VOP
14

VOP
15

VOP
1

VOP
2

VOP
3

VOP
4

VOP
5

VOP
6

VOP
7

VOP
9

VOP
10

VOP
11

VOP
12

VOP
13

VOP
14

VOP
15

VOP
1

VOP
2

VOP
3

VOP
5

VOP
6

VOP
7

VOP
9

VOP
10

VOP
11

VOP
13

VOP
14

VOP
15

VOP
1

VOP
3

VOP
5

VOP
7

VOP
9

VOP
11

VOP
13

VOP
15

Figure 2.3: Video structure after frame dropping

refer to the I-VOP in coding/decoding processes. Thus, unlike other filters, we cannot do

packet-by-packet or VOP-by-VOP adaptation. Therefore, in our proxy cache server, the

frame dropping filter is applied to a series of VOPs of one second. The Filter first buffers,

e.g. 15 VOPs in our system where the video frame rate is 15 fps. Then, the order for

discarding is determined.

To keep the smoothness of video play-out preferably, we propose an algorithm to decide

the frame dropping order. We first prepare a binary tree of VOPs and discard frames in

a well-balanced manner. The VOP at the center of the group, i.e. the eighth VOP in the

example, became the root of the tree and was given the lowest priority. Children of the

eighth VOP were the fourth and twelfth VOPs and respectively became the second and

third candidates for frame dropping. Figure 2.3 shows the resulting sequences of VOPs

after frame dropping. As shown Fig. 2.3, this algorithm makes the number of VOPs among

groups divided by gaps the same to have smooth video play-out. However, the order itself

does not take into account VOP types. Then, considering inter-VOP relationships, we first

discard B-VOPs from ones that have the lowest priority until the amount of video data fits

the bandwidth. If discarding all B-VOPs is insufficient to attain the desired rate, we move

to P-VOPs. Although we could further discard I-VOPs, they have been kept in the current

implementation for the sake of smooth video play-out without long pauses.

Figure 2.4 shows bit rate variation of filtered video streams generated aiming at 200, 500,

800 kbps from the original VBR video stream whose average rate is 1000 kbps. Although

our filtering algorithm is simple, resultant video rates are close to target rates with small

fluctuations. We can replace ours with any other better algorithm as far as an off-the-shelf

client application can decode a manipulated video stream.

– 16 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600

B
it

R
at

e
[k

bp
s]

Time [sec]

original
800kbps

500kbps

200kbps

Figure 2.4: Adapted video rate by frame dropping filter

High Priority Low

Sending Sending
Start End

Cached block with
the highest priority

Cached block with
low priority

12345 678Stream

Figure 2.5: Priority of cached blocks

2.2.5 Block Prefetching

To reduce the possibility of cache misses and avoid the delay in obtaining missing blocks

from a server, a proxy prefetches blocks that clients are going to require in the future. In a

case of a cache hit, the Cache Manager examines the Cache Table in succeeding P blocks.

Here, P is the size of a sliding window, called a prefetching window, which determines the

range of examination for prefetching. As long as blocks are cached, the Cache Manager

sequentially reads them out and sends them to the RTP Sender. If there exists any block

which is not cached in succeeding P blocks, the Cache Manager prefetches the missing

block by sending an RTSP PLAY message to the video server. The Cache Manager also

prefetches succeeding blocks that are not cached.

2.2.6 Cache Replacement

When a proxy cache server retrieves a block and finds the cache is full, it discards one or

more less important blocks to make room for the new block. With our cache replacement

algorithm, first, the Cache Manager selects a video stream with the lowest priority from

– 17 –

2.3 Experimental Evaluation

cached streams using an LRU algorithm. It then assigns priorities to blocks in the selected

stream using the following algorithm. Blocks being sent to a client have the highest priority.

The block at the beginning of the stream is also assigned the highest priority to provide

potential clients with a low-latency service. Among the others, those closer to the end of a

longer succession of cached blocks are given lower priorities. Finally, blocks candidate for

replacement are chosen one by one until sufficient capacity becomes available.

Figure 2.5 illustrates an example of victim selection. In this example, the block located

at the end of the stream is in the longest succession. Therefore, the block is given the

lowest priority and becomes the “1”st victim. Among successions of the same length, the

one closer to the end of the stream has lower priority.

2.3 Experimental Evaluation

In this section, we show results of experiments on a prototype. In the experiments, we

use 10 and 30 minutes long video streams by coding animation, scenery, action, fantasy,

computer graphic, and sports movies using an MPEG-4 VBR coding algorithm at the

coding rate of 1 Mbps. Video data of 320×240 pixels and 30 fps and audio data of 96 kbps

are multiplexed into an MPEG-4 stream. The maximum and minimum bit rate are about

2 Mbps and 400 kbps, respectively. An example of rate variation is illustrated in Fig. 2.4

as “original”. The size of the video stream is about 84 Mbytes for 10 minute stream and

248 Mbytes for 30 minute stream, respectively. A block corresponds to 300 VOPs, i.e.

10 seconds. Thus, the stream consists of 60 or 180 blocks. A video server always has

the whole video blocks. A client watches a video from the beginning to the end without

interactions such as rewinding, pausing, and fast-forwarding.

There have been proposals for proxy caching mechanisms for video streaming service [16-

23]. However, they do not consider the client-to-client heterogeneity, lack the scalability

and adaptability to rate and quality variations, or assume specially designed server/client

applications which are not widely available. There is no suitable work or implementation

to compare with our system. Therefore, we do not show comparison results with other

research work in following sections.

– 18 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

Proxy

redhat 7.2

Xeon 2.2GHz Dual

Server

redhat 7.2

Pen3 550MHz

100Base-T

Router

Yamaha

RTX2000

10Base-T

Router

Yamaha

RTX2000

10Base-T

Packet Generator

SmartBits600

FTP Server 1

Vine 2.5

Xeon 2.2GHz

FTP Server 2

redhat 7.2

Pen3 750MHz

FTP Server 3

redhat 7.2

Pen3 700MHz

FTP Client 1

Windows 2000

Pen3 1.2GHz

FTP Client 2

Windows 2000

Celeron 1GHz

FTP Client 3

Windows 2000

Pen4 2.4GHz

Client 1

Windows 2000

Pen4 2.4GHz

Client 2

Windows 2000

Pen4 2.4GHz

Figure 2.6: Configuration of experimental system to evaluate rate control

2.3.1 Rate Control with Video Quality Adaptation

Figure 2.6 illustrates the configuration for our experimental system to evaluate the availabil-

ity of rate control with video quality adaptation. A proxy is directly connected to a video

server. Two video clients are connected to the proxy through two routers. Video sessions

compete for the bandwidth of the link between two routers with three FTP sessions and

a UDP flow generated by a packet generator. The proxy has no blocks and a cache buffer

capacity is limited to 50 Mbytes. The prefetching window size P is set to 5. Video client 1

issues an OPTIONS message at time zero, and video client 2 issues it at 150 seconds. Two

clients watch the same video stream. FTP sessions start transferring files at 300 seconds

and stop at 450 seconds. The packet generator always generates UDP packets at the rate of

8 Mbps. For purposes of comparison, we also conducted experiments using a proxy without

the capability of quality adaptation, which is called the traditional system hereafter.

Figure 2.7 illustrates variations in reception rates observed at each client with tcpdump.

As Fig. 2.7(b) shows, the reception rate changes in accordance with network conditions.

During congestion, the average throughput of TCP sessions is 277 kbps with our system.

On the contrary, since the traditional system keeps sending video traffic at the coding rate

as shown in Fig. 2.7(a), TCP session are disturbed and, the attained throughput is only

37 kbps. As a result, the friendliness is 1.44 in our system and 23.1 in traditional system,

where the friendliness is given by dividing the average throughput of video sessions by that

of TCP.

– 19 –

2.3 Experimental Evaluation

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t [

kb
ps

]

Time [sec]

Client 1
Client 2

(a) Video reception rate with traditional system

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t [

kb
ps

]
Time [sec]

Client 1
Client 2

(b) Video reception rate with quality adaptation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t [

kb
ps

]

Time [sec]

FTP Client 1
FTP Client 2
FTP Client 3

(c) FTP reception rate with traditional system

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t [

kb
ps

]

Time [sec]

FTP Client 1
FTP Client 2
FTP Client 3

(d) FTP reception rate with quality adaptation

Figure 2.7: Reception rate at clients

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

R
T

T
 [

m
se

c]

Time [sec]

With Quality Adaptation
Traditional Method

(a) RTT

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700

Pa
ck

et
 L

os
s

Pr
ob

ab
ili

ty

Time [sec]

With Quality Adaptation
Traditional Method

(b) Packet loss probability

Figure 2.8: RTT and packet loss probability at client 1

– 20 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

However, as observed in Fig. 2.7(b), there are large rate variations in video sessions.

The average throughput of video sessions during the competitive period is higher than that

of TCP sessions. TCP sessions are sensitive to congestion and they suppress the number

of packets to inject into the network when they occasionally observe packet losses. Video

sessions, on the other hand, do not notice sudden and instantaneous packet losses due

to the long control intervals. The major reason for this is that the control interval of

adaptation is three to six seconds due to the problem of the client application as described

in Section 2.2.3. The interval is considerably longer than that of TCP, which reacts to

network conditions in an order of RTT. By increasing the frequency that a client reports

feedback information by modifying the client applications, such discrepancies are expected

to be eliminated. Another reason is that the experimental system is relatively small. As a

result, only a slight change during a session directly and greatly affects the other sessions.

Then, synchronized behaviors are observed in Fig. 2.7(b) and 2.7(d).

Figure 2.8 shows RTT and packet loss probability calculated from information in RTCP

Receiver Report messages. In the traditional system, the proxy persists in sending video

data at the coding rate during congestion, and many packets are delayed or lost at routers.

The packet delay may cause freezes at play-out due to underflow of play-out buffer. Fur-

thermore, the client application abandons playing out a VOP which is seriously damaged by

a packet loss. The influence of a packet loss propagates to the other VOPs when I-VOP or

P-VOP is damaged. During the experiment, 9712 VOPs were played out with our system,

but only 9133 VOPs were played out with the traditional system at client 1. Therefore the

perceived video quality is higher and smoother with our system than with the traditional

system owing to the intentional frame discarding, although the amount of received video

data in the traditional system is larger than that in our system.

2.3.2 Effectiveness of the Caching Mechanism

Figure 2.9 illustrates the configuration for our experimental system to evaluate our proxy

caching mechanism. A proxy is connected to a video server through a router. Three clients

are directly connected to the proxy. In order to control the delay, NISTNet [80], a network

emulator, is used at the router. The one-way delay between the video server and the proxy

is set to 125 msec. Clients 1 through 3 issue an OPTIONS message at time 0, 350, and

700, respectively. Three clients watch the same video stream. The proxy has no block at

first. We do not introduce rate control with quality adaptation at the proxy. For purposes

– 21 –

2.3 Experimental Evaluation

Proxy

redhat 7.2

Xeon 2.2GHz Dual

Server

redhat 7.2

Pen3 550MHz

Router

redhat 7.2

Pen4 2GHz

Client 1

Windows 2000

Pen4 2.4GHz

Client 2

Windows 2000

Pen4 2.4GHz

Client 3

Windows 2000

Pen3 800MHz

100Mbps, 125 msec

Figure 2.9: Configuration of experimental system to evaluate the caching mechanism

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

T
ot

al
 T

ra
ff

ic
 [

M
bi

t]

Cache Buffer Capacity [MBytes]

(a) Total traffic between server and proxy

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

A
m

ou
nt

 o
f

C
ac

he
d

D
at

a
[M

by
te

]

Time [sec]

84/100Mbytes Cache
75Mbytes Cache
50Mbytes Cache
25Mbytes Cache

(b) Amount of cached data

 0

 100

 200

 300

 400

 500

 1 2 3

R
ec

ep
tio

n
D

el
ay

 [
m

se
c]

Client

50Mbytes Cache w/ Prefetch
50Mbytes Cache w/o Prefetch

75Mbytes Cache w/ Prefetch
75Mbytes Cache w/o Prefetch

(c) reception delay

Figure 2.10: Evaluation of the caching mechanism

– 22 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

of comparisons, we also conducted experimental evaluations of cases where the proxy has

no cache buffer, that is, when clients always received video blocks from the server.

Figure 2.10(a) shows the total amount of traffic between the video server and the proxy

during experiments, and Fig. 2.10(b) shows the amount of cached data. Prefetching window

size P is set to zero, i.e. no prefetching. In Fig. 2.10(a), 0 Mbyte of the cache buffer capacity

means the proxy has no cache buffer. As the buffer capacity increases, the total amount

of traffic between the server and the proxy decreases. When the buffer capacity exceeds

84 Mbytes, i.e. the size of the whole video stream, the total amount of traffic does not

change any more. In addition, the amount of cached blocks is kept within the limitation of

buffer capacity as Fig. 2.10(b) shows. Consequently, it is shown that the proxy can provide

clients with blocks from its local cache buffer by replacing less important blocks with newly

retrieved blocks.

We define the reception delay of client j, dj , as follows,

dj =
1
N

N∑
i=1

(Tj(i) − Tj(1) − i/F), (2.2)

where, N corresponds to the number of VOPs in a stream, and F corresponds to the frame

rate. Tj(i) is the time that client j receives the VOP i. Thus, the reception delay dj is the

sum of differences between the expected arrival time of a VOP and the actual arrival time at

a client. Figure 2.10(c) shows the average of reception delay during a video session at each

client while prefetching window P is set to 0 or 5. Since there is no cached block in the proxy

at first, the reception delay of client 1 is the same whether the proxy conducts prefetching

or not. However, for client 2 and 3, the reception delay without prefetching is larger than

that with prefetching, since there is the delay in obtaining missing blocks from the server.

Specifically, when the buffer capacity is 50 Mbytes, the reception delay on client 3 with

a non-prefetching proxy is 280 msec. When client 3, the last client among three, joined

the service, some parts of a video stream had been swept out from a cache buffer due to

the limited capacity. As a result, the number of blocks missing in a cache buffer is larger

than the other two clients. When a proxy does not have a capability of prefetching, it has

to retrieve all missing blocks from a video server when they are requested by a client. It

introduces delay. Consequently, the reception delay increases.

In this experiment, since we consider a small and underloaded network, the reception

delay is small enough without the capability of prefetching. We expect that the delay

– 23 –

2.3 Experimental Evaluation

Proxy

redhat 7.2

Xeon 2.2GHz Dual

Server

fedora core 5

Xeon 2.2GHz

Client 1

Windows XP

Pen4 2.4GHz

Client 2

Windows XP

Pen4 2.4GHz

Client 3

Windows XP

Pen4 1.2MHz

Client 4

Windows XP

Pen4 1.2GHz

Client 5

Windows XP

Xeon 3GHz Dual

Figure 2.11: Configuration of experimental system to evaluate with many clients

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50

M
em

or
y

U
sa

ge
 [

M
by

te
s]

Number of Clients

(a) Memory usage

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50

C
PU

 U
sa

ge
 [

%
]

Number of Clients

(b) CPU usage

Figure 2.12: Average memory usage and CPU usage for the number of clients

exceeds the initial buffering of three seconds in a larger network. However, by introducing

the prefetching mechanism and a larger value of P , user becomes free from annoying freezes.

2.3.3 Evaluation with Many Clients

Finally, we conducted experiments on a system with many clients. Figure 2.11 illustrates

the configuration for the experiments. In our experimental configuration, a proxy with

200 MBytes cache is directly connected with a video server and five clients. 10 client

applications are running on each client and request the same video stream of 30 minutes.

The client applications issue an OPTIONS message at random and begin watching the

movie. The proxy has no block at first. The load on the proxy in terms of the memory

– 24 –

Chapter 2. Proxy Caching with MPEG-4 Video Quality Adaptation

and CPU usage is measured by using vmstat every one second, while increasing the number

of client applications. Although not shown in figures, we verified the smoothness of video

play-out on a monitor for a case of many clients.

Figure 2.12 shows the average memory usage and average CPU usage for the number

of clients. As shown in Fig. 2.12(a), the memory usage is almost in proportional to the

number of clients, because a process of proxy caching modules shown in Fig. 2.1 is invoked

for each client on the proxy cache server. The CPU usage also linearly increases with the

number of clients, but it is less than 8% for 50 clients as shown in Fig. 2.12(b).

In conclusion, although we confirmed that our system can offer heterogeneous services to

more than 50 clients, we also observed that the load on the proxy cache server is proportional

to the number of clients in the current implementation. By using the latest equipment and

applications and optimizing of the system, we can expect that a proxy cache server can

accommodate more clients. However, to have the higher scalability, we need to improve

our system, whereas we adopted rather general approaches and mechanisms in the current

implementation.

2.4 Conclusion

In this chapter, we proposed, designed, implemented, and evaluated a proxy caching system

for MPEG-4 video streaming services. We employed off-the-shelf and common applications

for server and client programs to verify the practicality of our proposed system. Through

experiments, it was shown that our proxy caching system could dynamically adapt the

quality of video streams to network conditions while providing users with a continuous and

high-quality video streaming service. We also verified that our system could provide 50

clients with smooth video streaming.

– 25 –

Chapter 3

A Cooperative Proxy Caching

Mechanism with Quality

Adaptation for Video Streaming

Services

3.1 Introduction

In the previous chapter, we proposed, designed, implemented, and evaluated a proxy caching

system for MPEG-4 video streaming services using off-the-shelf and prevailing products.

However, the system was intended for only a single proxy. A proxy always retrieves blocks

from a video server at cache miss although there are other proxies having low-delay and

broadband links to the proxy. By considering cooperation among proxies, further effective

and high-quality video streaming service can be provided.

In this chapter, we extend our previous work by considering cooperation among proxies.

The new mechanism consists of three parts: block provisioning, block prefetching, and cache

replacement. The main benefits of our proxy cooperation mechanism include reducing the

perceived network latency and achieving a higher degree of content availability by cooper-

ative caching. Through simulation experiments, it is shown that our proposed mechanism

can provide users with low-delay and high-quality video streaming services. In addition, to

verify the practicality and adaptability of our proposal to existing video streaming services,

– 27 –

3.2 A Cooperative Proxy Caching Mechanism with Video Quality Adaptation

Video Server

Proxy

The Internet

LAN A
LAN B

Video sessions among servers

LAN C

Heterogeneous

Clients

Figure 3.1: Cooperative video streaming system

we implement our cooperative proxy caching mechanism on a real system for MPEG-4

video streaming services extending our implemented system described in Chapter 2. We

employ off-the-shelf and common applications for server and client systems. Our imple-

mented system is designed to conform to the standard protocols. Through experimental

evaluations, it is shown that our proxy caching system can provide users with a continuous

video distribution under dynamically changing network conditions.

The rest of this chapter is organized as follows. In Section 3.2, we propose the coop-

erative proxy caching mechanism for video streaming services. Next, in Section 3.3, we

evaluate our proposed mechanism through simulation experiments. In Section 3.4, we de-

scribe the implementation of the proposed mechanism on a real system and conduct several

experiments. Finally, we conclude this chapter in Section 3.5.

3.2 A Cooperative Proxy Caching Mechanism with Video

Quality Adaptation

In this section, we describe our cooperative proxy caching mechanism. The video streaming

system we consider in this chapter is illustrated in Fig. 3.1. Our system consists of a single

video server, cooperative proxies, and heterogeneous clients. Clients are heterogeneous in

regard to their available bandwidth, propagation delays, end-system performance, and user

preferences on the video quality.

A video stream is divided into L blocks, each consisting of B frames and assume a

– 28 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

Server
or

Neighboring
Proxy

Proxy

Client

Signal Video Data

Play-out delay Δi

Prefetch
- Check cache
- Predict a cache miss
- Locate an appropriate server
- Request block transfer
- Cache a retrieved block

Provide block from cache
- Read out block from cache
- Quality adjustment
- Transfer

Provide block by retrieving
- Locate an appropriate server
- Determine quality
- Request block transfer
- Cache a retrieved block
- Quality adjustment
- Transfer

Time

Freeze time fi(8)

R
eq

u
es

t
w

it
h

 Q
oS

Play out
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

8673

Inter block time B/F

Figure 3.2: Basic behavior of our cooperative proxy caching system

constant frame rate of F . A proxy retrieves video blocks from the distant video server or

neighboring proxies on behalf of clients, deposits them in its local cache buffer, and adapts

the quality of the blocks to the user’s demands. In addition, proxies communicate with

each other and exchange blocks over a video session established among them, and maintain

information of cached blocks at the other servers. We should note here that, to reduce the

load on the network and servers, there is only a single session established between any pair

of servers regardless of the number of clients.

In the following sections, we describe the involved mechanisms for the video streaming

system to provide users with low-delay and high-quality services under a heterogeneous

environment.

3.2.1 Overview of the Mechanism

Figure 3.2 illustrates how servers and client communicate with each other. The numbers

in the figure correspond to block identifiers, which are in the order of their playout. The

video streaming service is initiated by a request message issued by a client to a designated

proxy. The message contains information about preferable (upper-constraint) and tolera-

ble (lower-constraint) levels of video quality which are determined in accordance with the

available bandwidth, end-system performance, and user preferences. A client is allowed to

dynamically change QoS requirements during a video session to reflect changes of those

– 29 –

3.2 A Cooperative Proxy Caching Mechanism with Video Quality Adaptation

constraints.

On receiving the first request message, the proxy begins to provide a requested video

stream to the client in a block-by-block fashion. The proxy adopts the fastest way that

can provide the client with a block of high level of quality. The proxy can 1) read out and

send a cached block, 2) use a block being received, 3) wait for the preceding request for the

same block to be served, or 4) newly retrieve a block from another server. When the proxy

finishes sending out the block, it moves to the next block and repeats the same procedure.

While providing clients with video blocks, the proxy predicts and prepares for a future

potential cache miss by prefetching a block from other servers. A prefetching request is

processed without disturbing normal block retrievals. Details of the prefetching mechanism

will be given in Section 3.2.3.

To handle unexpected block transmission delays, client i first defers playing out a re-

ceived video block for a predetermined waiting time Δi as shown in Fig. 3.2. Then, it

begins to decode and display received blocks one after another, at regular intervals of B/F .

In some cases such as a cache miss, a block does not arrive in time and the client is forced

to pause. The time required for client i to wait until the arrival of block j is called freeze

time and denoted as fi(j) ≥ 0 in this thesis

3.2.2 Block Provisioning

In providing a client with a block, a proxy chooses the best way among the four described in

Section 3.2.1 in accordance with the offerable quality and the block transfer delay. For this

purpose, servers communicate with each other and maintain the up-to-date information

on other servers, such as the quality of offerable blocks, round-trip time, and available

bandwidth in two tables. Information on locally cached blocks is maintained in the cache

table, while the remote table is for information on cached blocks at other servers. To predict

the transfer time as accurately as possible, a proxy is assumed to be able to estimate the

block size, propagation delay, and throughput. Information related to the network condition

among a proxy and its clients is also required.

Assume that proxy k is trying to provide client i with block j at time t. The quality

of block j must be higher than qi(j) and as high as Qi(j), which are determined by QoS

requirements specified by the latest request message. The deadline Ti(j) that client i should

– 30 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

finish receiving block j is determined as

Ti(j) = Ti + Δi + (j − 1)
B

F
− δi + Di(j − 1), (3.1)

where Ti indicates the instant when client i issues the first request message. δi is introduced

to absorb unexpected delay jitters and estimation errors. Di(j − 1) =
∑j−1

l=1 fi(l) is the

accumulated freeze time. We consider four cases of providing a block to a client as follows.

For each case, a proxy estimates the offerable quality and takes the best choice.

1) Successful Cache Hit

The first case is that the desired block j already exist in the cache buffer of proxy k. The

offerable quality cPC
k,i (j) of block j to client i by using block j cached at the proxy k’s buffer

is derived as

cPC
k,i (j) = min(qk(j), cPC

k,i (j)), (3.2)

where

cPC
k,i (j) = max(q|t + dPC

k,i (t) +
aj(q)

rPC
k,i (t)

≤ Ti(j)). (3.3)

qk(j) stands for the quality of block j cached at the proxy k’s buffer. aj(q) is a function

indicating the size of block j of quality q and is defined as 0, if j = 0 or q = 0. This function

depends on the employed codec and we will provide an example later in Section 3.3. dPC
k,i (t)

and rPC
k,i (t) are estimates of one-way propagation delay and available bandwidth from proxy

k to client i at t, respectively. Thus, dPC
k,i (t) + aj(q)

rPC
k,i (t)

provides the estimated time required

for client i to receive the whole of block j of quality q via a video session whose available

bandwidth is rPC
k,i (t) and propagation delay is dPC

k,i (t).

2) Cache Miss and Block Download in Progress

The second case is that the block j is not available in the cache at proxy k and it is currently

being retrieved from another server s. The quality offerable is derived as

bPC
k,i (j) = max

∀s,s �=k
(min(qSP

s,k , b
PC
k,i (j))), (3.4)

– 31 –

3.2 A Cooperative Proxy Caching Mechanism with Video Quality Adaptation

where

b
PC
k,i (j) = max(q|t + dPC

k,i (t) + max(
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤T i(j)). (3.5)

In the above equations, s indicates the server from which the proxy is receiving block j.

qSP
s,k (t) is the quality of block being received at t. aSP

s,k (t) stands for the amount that has

already been received. dSP
s,k (t) and rSP

s,k (t) correspond to estimates of one-way propagation

delay and available bandwidth from server s to proxy k at t.

3) Cache Miss and Waiting for Pending Block

The third case is that the block j is not available in the cache at proxy k, but it already

submitted a request for j to another server s. A proxy keeps track of requests that it sent

out for block retrieval. WSP
s,k (t) = {W1,W2, . . . ,Ww} is a list of requests that had been

sent from proxy k to server s before t. The quality qw
s,k(n) of block Wn is also maintained

in a list. A pair of the block number and the quality is added to the lists when the proxy

sends a request for block retrieval and is removed from the lists when the proxy begins

receiving the block. The offerable quality wPC
k,i (j) for the m-th request, which is block j,

i.e., Wm = j, can be estimated as

wPC
k,i (j) = max

∀s,s �=k
(min(qw

s,k(m), wPC
k,i (j))), (3.6)

where

wPC
k,i = max(q|t + 2dSP

s,k (t) + dPC
k,i (t) +

∑m−1
n=1 aWn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t))

rSP
s,k (t)

+ max(
aj(qw

s,k(m))

rSP
s,k (t)

) ≤ Ti(j)). (3.7)

ps,k(t) indicates the block number to be prefetched from server s and qp
s,k(t) is its quality.

If no prefetching request is waiting for server s, both ps,k(t) and qp
s,k(t) are zero. In our

system, only one prefetching request is permitted by a server per proxy and prefetching is

preempted by normal block retrievals. Details of the prefetching mechanism will be given in

Section 3.2.3. Equation (3.7) considers the worst case when no block is under transmission

and the preceding requests from 1 to m− 1 and the prefetching request will be served prior

– 32 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

Server

Proxy

Client

Requests were sent just before t
and the first request is for prefetching

Time

WmW3W2W1p Wm-1 Ww... ...

s

k

i

t

aP (qp)

rSP
s,k (t)

P
aWn

rSP
s,k (t)

aj(qw)

rSP
s,k (t)

2dSP
s,k (t) dPC

k,i (t) aj(q)

rPC
k,i (t)

Figure 3.3: Worst-case delay due to waiting for the preceding request

to block Wm, as illustrated in Fig. 3.3. If the proxy is receiving a block at t, wPC
k,i is derived

using the following equations.

wPC
k,i = max(q|t + max(2dSP

s,k (t),
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

)

+dPC
k,i (t) +

SSP
s,k (t)

rSP
s,k (t)

+ max(
aj(qw

s,k(m))

rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤ Ti(j)), (3.8)

where

SSP
s,k (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m−1∑
n=1

awn(qw
s,k(n)) + aps,k(t)(q

p
s,k(t)), if 2dSP

s,k (t) >
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

m−1∑
n=1

awn(qw
s,k(n)), otherwise

. (3.9)

4) Cache Miss and New Block Request

The final case is that the block j is not available in the cache at proxy k and a new request

must be sent to anther server s. The offerable quality sPC
k,i (j) is derived by the following

equations when there is no block under transmission,

sPC
k,i = max

∀s,s �=k
(min(qr

s(j), s
PC
k,i (j))), (3.10)

– 33 –

3.2 A Cooperative Proxy Caching Mechanism with Video Quality Adaptation

where

sPC
k,i = max(q|t + 2dSP

s,k (t) + dPC
k,i (t) +

∑w
n=1 awn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t))

rSP
s,k (t)

+
aj(q)

min(rSP
s,k (t), rPC

k,i (t))
≤ Ti(j)). (3.11)

Here, qr
s(j) corresponds to the quality of block j cached at server s. On the contrary, if

proxy k is receiving a block from server s,

sPC
k,i = max(q|t + max(2dSP

s,k (t),
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

) + dPC
k,i (t) +

USP
s,k (t)

rSP
s,k (t)

+
aj(q)

min(rSP
s,k (t), rPC

k,i (t))
≤ Ti(j)), (3.12)

where

USP
s,k (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w∑
n=1

awn(qw
s,k(n)) + aps,k(t)(q

p
s,k(t)), if 2dSP

s,k (t) >
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

w∑
n=1

awn(qw
s,k(n)), otherwise

. (3.13)

The fastest and best way is chosen among the four as far as the offerable quality is

above qi(j) and below Qi(j). If none of cPC
k,i (j), bPC

k,i (j), wPC
k,i (j), and sPC

k,i (j) can satisfy

request qi(j), the proxy chooses the fastest way.

3.2.3 Block Prefetching

While supplying client i with block j, a proxy investigates its cache table for blocks j + 1

to j + P to find a potential cache miss. The parameter P determines the size of the

prefetching window. When the proxy finds the block with quality lower than qi(j) and

there is no request waiting to be served, it attempts to prefetch the block of higher quality

from another server. If there are two or more unsatisfactory blocks, the one closest to block

j is chosen.

Prefetch requests are treated at a server in a different way from requests for retrieving

cache-missed blocks. The video server and proxies maintain a pair of prioritized queues per

video session. The queue for usual block retrieval is given a higher priority and requests are

– 34 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

handled in a first-come-first-served discipline. On the other hand, the queue for prefetching

has a limited length of 1 and a waiting request is always overwritten by a new one. A

prefetch request in the queue is served only when there is no request in the high-priority

queue. A prefetch request is considered obsolete and removed when a server receives a

request for the same block with higher quality.

A proxy decides to prefetch a block if reception of the block is expected to be completed

in time. The expected time tps,k(t) when the proxy finishes prefetching is derived as

tps,k(t) = t + 2dSP
s,k (t) +

aps,k(t)(q
p
s,k(t))

rSP
s,k

, (3.14)

where ps,k(t) and qp
s,k(t) stand for the block number and the requested quality, respectively.

This means that the proxy tries prefetching only when no preceding request is waiting to

be served. If the derived time tps,k(t) is earlier than

T p
i (ps,k(t)) = Ti + Δi + (ps,k(t) − 1)

B

F
− δi + Di(j − 1) − dPC

k,i (t), (3.15)

the proxy sends a request to server s.

Quality qp
s,k(t) is determined on the basis of the QoS requirement as βQi(j) where

0 < β ≤ 1. If we set β to a small value, we can expect to prefetch a large number of blocks,

but their quality becomes low. On the other hand, with a large β, there is little chance to

successfully prefetch blocks in time, but a high-quality video stream can be provided with

prefetched blocks. Information about a prefetching request is kept at a requesting proxy

as a pair of block number ps,k(t) and quality qp
s,k(t) and is overwritten by a new prefetch

and canceled when a block reception begins or a normal block retrieval is requested for the

same block of higher quality.

3.2.4 Cache Replacement

When the available space of a cache buffer becomes insufficient to deposit a newly received

block, a proxy first makes a list of blocks to be discarded. Those blocks which are located in

prefetching windows are likely to be used earlier, and thus they will not be discarded. The

first P blocks of a video stream are also considered important to suppress the initial delay.

The rest of blocks are all candidates for replacement. The block m closest to the end of the

longest run, i.e., a succession of non-prioritized blocks, becomes the first candidate. If the

– 35 –

3.3 Simulation Experiments

Client A

9 6 3 8 5 2 1 7 4

Client B

B
eg
in
n
in
g

E
n
d

Prefetching window P=3

Figure 3.4: Sample order of block replacement

m-th block is cached, a proxy first tries degrading its quality to shrink the block size. The

quality of the candidate should be larger than max1≤j≤m−1 maxi∈Sm−1 Qi(j) to prepare for

future requests. Here, Sm−1 is a set of clients which is watching any of blocks 1 through

m − 1. If the quality degradation is still insufficient, the proxy discards the candidate and

moves to the next candidate at the end of the longest run. When all candidates, i.e., non-

prioritized blocks, are dropped, but there is not enough room yet, the proxy gives up storing

the new block. Figure 3.4 illustrates an example of an order of candidates. In the figure,

the length of a video stream is 18 blocks and the prefetching window is P = 3 blocks. The

proxy is serving clients A and B with a block 7 and 14, respectively. Then, those blocks

from 1 to 3, from 7 to 9, and from 14 to 16 are not to be degraded or discarded. Among

the others the first victim is block 13, since the block is located at the end of the longest

run.

3.3 Simulation Experiments

In this section, we discuss the performance of our proposal with results we obtained through

simulation experiments. The network we employed in the simulation is shown in Fig. 3.5. A

video server is behind a wide-area network or the Internet. It communicates with five proxies

through 10 Mbps sessions which are established over long-haul links with propagation delays

200 msec. Proxies are located at the boundary of an ISP network and are connected with

each other via 20 Mbps sessions which are established over intra-network broadband links

of 50 msec delay. A proxy establishes a 8 Mbps fixed-bandwidth session with each of its

clients. The one-way propagation delay of each session is 10 msec. Although the available

bandwidth and one-way delay fluctuate greatly under realistic conditions, we have employed

static values so that we can clearly observe the basic behavior of our mechanisms. A client

starts requesting video blocks at randomly determined times. The inter-arrival time of

– 36 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

ProxyServer

10 Mbps200 msec

20
 M

bp
s

50
 m

sec

8 Mbps

10 msec

LAN
ISPThe Internet Client

Figure 3.5: Configuration of simulation experiments

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

B
lo

ck
 S

iz
e

[M
bi

ts
]

Quality

Figure 3.6: Relationship between quality and block size

the video requests issued by clients in each LAN follows an exponential distribution with

average τ sec.

The video stream has a duration of 90 min and is played back at 30 fps. The stream

is divided into 1 sec blocks, that is, L = 5400 and B = 30. There are ten levels of quality

from qmin = 1 to qmax = 10, and they are mapped to block sizes from amin = 1 to amax = 10

Mbits. The relationship between quality and block size is usually described as convex

downward [81]. In this thesis, we use ∀j aj(q) = amaxqmin
qmax+qmin−q

B
F Mbits as shown in Fig. 3.6.

Thus, the whole video stream amounts to 675 MB to 6.75 GB depending on the quality.

Each proxy is equipped with a limited cache buffer. Initially, all cache buffers are empty

and only the video server has all blocks of the highest quality. The prefetching window size

– 37 –

3.3 Simulation Experiments

P is set at 10 blocks.

On client side, the buffering times Δi and δi to absorb delay jitters and prediction errors

are set at 4 and 2 sec, respectively. The tolerable video quality qi(j) is fixed at 1. However,

the preferable quality Qi(j) varies from 1 to 10, is initially set to 5, i.e., Qi(1) = 5. Then,

a client randomly determines the quality requirement on a block-by-block basis. In our

experiments, the quality level Qi(j) is increased or decreased with a probability of 5% after

each block is sent. This is introduced as a way of imitating the dynamic changes in quality

requirements according to system conditions and the user preferences. The ratio of the

quality of prefetched blocks to that of requests is determined as β = 1.0.

For comparison purposes, we conduct simulations of a system with four different schemes.

One is referred as “independent w/o prefetch”. In this approach proxies always retrieve

the missing or unsatisfactory block from the originating video server without prefetching.

“independent w/ prefetch” corresponds to the case where independent proxies are coupled

with the prefetching mechanism. The schemes “proposal w/o prefetch” and “proposal w/

prefetch” indicate the corresponding cases where the proxies cooperate.

We compare the performance in terms of the average freeze time, the average freeze

ratio, the average quality ratio, and the average traffic among servers per user. The average

freeze time is derived as
∑n

i=1

∑L
j=1 fi(j)/Ln where n is the number of clients. The average

freeze ratio is defined as the ratio of number of freezes to the number of all blocks L per

user. The quality ratio is defined as the ratio of quality of provided block to the requested

preferable quality Qi(j). Simulations finish after 100τ sec and all results are averaged over

5 simulation runs.

First, we evaluate the effects of the inter-arrival time τ . The cache buffer size is fixed

at 2 GB. Figure 3.7 shows the average freeze time, the average freeze ratio, the average

quality ratio, and average amount of traffic among servers against the average inter-arrival

time of clients. As shown in Fig. 3.7, our proposed mechanism can provide users with

video distribution of lower delay and fewer freezes, achieving the same or higher quality

ratio at the cost of a slight increase in traffic due to inter-proxy communication. Further-

more, the prefetching mechanism contributes to achieving low-delay and high-quality video

distribution.

For all schemes, if the inter-arrival time is less than 200 sec, the average freeze time and

the average freeze ratio increase with the inter-arrival time and the quality ratio decreases.

This is because shorter inter-arrival times can achieve a higher probability of utilizing cached

– 38 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

 0.01

 0.1

 1

 10

 10 100 1000 10000

A
ve

ra
ge

 F
re

ez
e

T
im

e
[s

ec
]

Average Inter-Arrival Time [sec]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(a) Average freeze time

 1

 0.1

 0.01
 10 100 1000 10000

A
ve

ra
ge

 F
re

ez
e

R
at

io

Average Inter-Arrival Time [sec]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(b) Average freeze ratio

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 100 1000 10000

A
ve

ra
ge

 Q
ua

lit
y

R
at

io

Average Inter-Arrival Time [sec]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(c) Average quality ratio

 0

 5

 10

 15

 20

 10 100 1000 10000

A
ve

ra
ge

 T
ra

ff
ic

 [
G

bi
ts

]

Average Inter-Arrival Time [sec]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(d) Average traffic among servers

Figure 3.7: Simulation evaluations against average inter-arrival time τ

blocks and lower probability of retrieving new blocks from other servers. On the other hand,

if the inter-arrival time is larger than 200 sec, as the inter-arrival time increases, the average

freeze time and the average freeze ratio decrease and the quality ratio increases. This is

because a proxy can use more bandwidth for each client, if the number of clients is small

as shown in Fig. 3.7(d).

Next, we evaluate the effects of the cache buffer size. The average inter-arrival time

τ is fixed at 200 sec. Figure 3.8 shows the average freeze time, the average freeze ratio,

the average quality ratio, and the average amount of traffic among servers against cache

buffer size. As shown in the figures, our proposed mechanism can provide users with video

distribution of lower delay and fewer freezes, achieving higher quality ratio.

For all schemes, the average freeze time and the average freeze ratio decrease, the

average quality ratio increases, and the average traffic among servers decreases with the

– 39 –

3.4 Implementation and Experimental Evaluation

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 F
re

ez
e

T
im

e
[s

ec
]

Cache Buffer Size [GB]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(a) Average freeze time

 1

 0.1

 0.01
 0 1 2 3 4 5 6 7

A
ve

ra
ge

 F
re

ez
e

R
at

io

Cache Buffer Size [GB]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(b) Average freeze ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 Q
ua

lit
y

R
at

io

Cache Buffer Size [GB]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(c) Average quality ratio

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

A
ve

ra
ge

 T
ra

ff
ic

 [
G

bi
ts

]

Cache Buffer Size [GB]

Proposal w/ Prefetch
Proposal w/o Prefetch

Independent w/ Prefetch
Independent w/o Prefetch

(d) Average traffic among servers

Figure 3.8: Simulation evaluations against cache buffer size

cache buffer size as shown in Fig. 3.8. This is because a larger cache buffer size can achieve

higher probability of cache hit and that of finding blocks in other proxies’ cache buffers.

However, in this experiment, increasing the cache buffer size more than 6 GB has no impact

on the average freeze time, the average freeze ratio and the average quality ratio.

3.4 Implementation and Experimental Evaluation

In this section, we describe our implementation of proposed mechanism on a real system,

and evaluate our mechanism through practical experiments. The system we implemented

is based on our system described in Chapter 2, and video streaming is controlled through

RTSP/TCP sessions. Each of the video and audio streams is transferred over a dedicated

RTP/UDP session and the condition of streaming is monitored over RTCP/UDP sessions.

– 40 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

Video Server

Proxy

Client

Cooperation

Module

Cooperation

Module
Cooperation

Module

Cooperation

Module

Cooperation

Module
Cooperation

Module

CacheTable

CacheTable

Client

Frame dropVideo quality adjustment

TFRCBandwidth estimation

RTCP/UDPFeedback

RTP/UDPVideo transfer

RTSP/TCPVideo streaming control

MPEG-4Video format

Frame dropVideo quality adjustment

TFRCBandwidth estimation

RTCP/UDPFeedback

RTP/UDPVideo transfer

RTSP/TCPVideo streaming control

MPEG-4Video format

Proxy

Module

Proxy

Module

Signal

Video Data

CacheTable

Proxy Proxy

Darwin

Streaming

Server

RealOne

Player

QuickTime

Player

Module

Figure 3.9: Overview of the implemented system

A video stream is coded using MPEG-4, and it is compliant with ISMA 1.0 [34]. In this

chapter, we use the Darwin Streaming Server as a server application, and RealOne Player

and QuickTime Player as client applications. However, other server or client applications

being compliant with the standard can be incorporated with no or only small modification.

3.4.1 Overview of the Implemented System

Figure 3.9 illustrates the modules that constitute our video streaming system. Each dotted

arrow and solid arrow corresponds to signal and data flow, respectively. A Proxy Module is

generated for each client and provides a client with video blocks. A proxy has a Cache to

deposit video data, and maintains the cache table and the remote table in the Table. We

introduce a Cooperation Module for each proxy to communicate with neighboring proxies.

For its simplicity and speed, these modules have a frame dropping filter to adapt the

quality of video. It adjusts the video quality to the desired level by discarding frames in a

well-balanced way. To know the available bandwidths among the server, the proxies, and

clients, they have the capability to estimate TCP-friendly [35] rates. Proxies estimate the

throughput of a TCP session sharing the same path using control information obtained by

exchanging RTCP messages.

In our implemented system, each block corresponds to a sequence of VOPs (Video

Object Planes) of an MPEG-4 stream. A block consists of a video block and an audio

block, and they are separately stored in the Cache. We empirically use B = 300 VOPs as

– 41 –

3.4 Implementation and Experimental Evaluation

Proxy

Client

Signal Video Data

TimeServer

P
L

A
Y

P
L

A
Y

w
it

h
 R

an
geR

E
P

L
Y

Establishing
sessions

O
P

T
IO

N
S

D
E

S
C

R
IB

E

R
E

P
L

Y

R
E

P
L

Y

R
E

P
L

Y

Server or
Neighboring Proxy

S
E

T
U

P
(V

id
eo

)

S
E

T
U

P
(A

u
di

o)

R
E

P
L

Y

T
E

A
R

D
O

W
N

 Server

P
L

A
Y

w
it

h
 R

an
ge

Closing
sessions

Playout
Play-out

delay

Figure 3.10: Basic behavior of the implemented system

the block size in our implementation. Since our MPEG-4 video stream is coded at F = 30

frames per second, a single block corresponds to 10 sec. We use the video coding rate to

indicate its quality, and the Range and Bandwidth field of an RTSP PLAY message to

specify the block and its quality.

The basic behavior of our system is illustrated in Fig. 3.10. First, a client establishes

connections for audio and video streams with a proxy by sending a series of RTSP OP-

TIONS, DESCRIBE, and SETUP messages. These RTSP messages are received by the

Proxy Module and relayed to the video server. Thus, connections between the video server

and the proxy are also established at this stage. On receiving a SETUP REPLY message,

the client requests delivery of the video stream by sending an RTSP PLAY message. Here,

since the used client applications cannot declare an acceptable range of video quality levels,

they are considered ready to receive and perceive a video stream at any quality.

The Proxy Module adopts the fastest way so that it can provide a client with a block of

higher level of quality. When the Proxy Module provides a cached block, it reads it from

Cache and sends it to the client. The quality of the video block is adjusted if necessary.

When the Proxy Module retrieves a block from a neighboring proxy, it sends a request to

the Cooperation Module. The Cooperation Module sends an RTSP PLAY message to the

proxy, retrieves the block, and relays the block to the Proxy Module. When the reception

is completed, the Proxy Module deposits the block in the Cache. If there is not enough

room to store the newly retrieved block, the Proxy Module replaces the new block with less

important blocks in the cache buffer. When the Proxy Module retrieves the block from the

video server, it sends an RTSP PLAY message to the video server.

– 42 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

A client receives blocks from a proxy and first deposits them in the so-called play-out

buffer. Then, it gradually reads blocks out from the buffer and plays them. When a proxy

receives an RTSP TEARDOWN message from a client, the proxy relays the message to the

video server, and closes the sessions.

3.4.2 Information Sharing Among Proxies

In order to maintain a remote table, a proxy issues an RTSP GET PARAMETER message

to other proxies when the end of the prefetching window of any client reaches an entry

which is zero, i.e., an uncached block. An RTSP GET PARAMETER message includes a

list of blocks required in the near future. Blocks in the list are those which are currently

requested by clients and its subsequent I blocks. These I blocks from the beginning of the

stream are also listed in the message to prepare for new clients that will request the stream

in the future. In addition, we also introduce a timer to force a refreshing of the remote table.

The timer expires every (I −P − 1)B/F and a proxy sends an RTSP GET PARAMETER

message to other proxies.

On receiving an RTSP GET PARAMETER message, a proxy first examines its cache

table about blocks listed in the message. It then returns an RTSP REPLY message which

contains the list of pairs of a cached block and its quality.

3.4.3 Cooperative Proxy Caching

In order to run an implementation of our cooperative proxy caching mechanism as described

in Section 3.2 on an actual system, we made the following small modifications.

Block Provisioning

A proxy adopts the fastest way that can provide a client with a block of higher quality

in time. Since a server sends a video block frame-by-frame at the frame rate of a video

stream in our implemented system, the value aj(q)/rSP
s,k′(t) in the equations in Section 3.2.2

is replaced with B/F for the originating video server k′.

Block Prefetching

In our implemented system, a proxy sends an RTSP PLAY message with an additional field

to prefetch a block from another proxy, that is the Prefetch field. Since the video server

– 43 –

3.4 Implementation and Experimental Evaluation

Proxy 1

Proxy 2

Server

Client 1

Client 2

Router

redhat 7.2

Pen3 550MHz

redhat 7.2

Pen4 2GHz

redhat 7.2

Xeon 2.2GHz

Dual

redhat 7.2

Xeon 2.2GHz

Dual

Router

Router

redhat 7.2

Pen3 700MHz

redhat 7.2

Pen3 700MHz
Windows

Pen4 2.4GHz

Windows

Pen3 800MHz

1 Mbps

100 msec

1 Mbps

100 msec

1.5 Mbps, 10msec

1.5 Mbps, 10msec

2 Mbps

50 msec

Figure 3.11: Configuration of experimental system

1000b1-b20

bit rate [kbps]block

1000b1-b20

bit rate [kbps]block

Cache table on proxy 1 (t=200)

1000b1-b19

276b20

bit rate [kbps]block

1000b1-b19

276b20

bit rate [kbps]block

Cache table on proxy 2 (t=400)

0b7-b10

1000b1-b3

700b4-b6

1000b11-b20

bit rate [kbps]block

0b7-b10

1000b1-b3

700b4-b6

1000b11-b20

bit rate [kbps]block

Cache table on proxy 1 (t=0)

1000b1-b6

0b7-b20

bit rate [kbps]block

1000b1-b6

0b7-b20

bit rate [kbps]block

Cache table on proxy 2 (t=0)

Figure 3.12: Cache tables

cannot process this new field, a proxy only sends a prefetching request to other proxies and

not to the video server.

Cache Replacement

Since the client application does not declare its desired level of quality, a proxy only discards

a cached block once it is chosen as a candidate.

3.4.4 Experimental Configuration

The effectiveness of the caching mechanism such as block prefetching and cache replacement

as well as the scalability against the number of clients in our implemented system have been

already verified in the case of a single proxy as described in Chapter 2. In this chapter, we

– 44 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

evaluate the block provisioning mechanism when proxies cooperate with each other.

Figure 3.11 illustrates the configuration of our experimental system. For the sake of

clarity, we limit the experimental settings to only two proxies and a video server connected

through a router. There are two video clients in the system and each is connected to

a neighboring proxy through a router. In order to control the delay and link capacity,

NISTNet is used at the routers. The one-way propagation delay and link capacity are set

as shown in Fig. 3.11. In the experiments, we use an MPEG-4 video stream of 200 sec

encoded at a rate of 1 Mbps and a frame rate of 30 fps. A block corresponds to 300 VOPs,

i.e., 10 sec. Thus, the stream consists of 20 blocks, b1, b2, · · · , b20. Initially, proxies already

have some blocks as shown in Fig. 3.12. Proxy 1 first has blocks b1 through b3 of the coding

rate of 1000 kbps, b4 through b6 of 700 kbps, and b11 through b20 of 1000 kbps. Proxy 2

has blocks b1 through b6 of 1000 kbps. The window of inquiry I is set to 5.

The experimental scenario is as follows. Client 1 first issues an RTSP OPTIONS message

at time 0, and client 2 issues it at 200 sec. Both clients watch the same video stream from the

beginning to the end without interactions such as rewinding, pausing, and fast-forwarding.

After 260 sec, the link capacity between proxy 1 and proxy 2 is reduced from 2 Mbps to

700 kbps. Using this configuration, we evaluate the capability of the block provisioning

mechanism against changes in network conditions and cached blocks on the neighboring

proxy. For this purpose, we do not consider other mechanisms such as block prefetching

and cache replacement in this experiment. We set the cache buffer capacity to 30 MB, i.e.,

larger than the size of the whole video stream, and the prefetching window to 0.

3.4.5 Experimental Results

Figures 3.13(a) and 3.13(b) illustrate variations in reception rates observed at proxy 1 and

client 1 with tcpdump, respectively. First, proxy 1 provides client 1 with cached blocks b1

to b3, since they are available fastest and have the highest quality. While sending cached

blocks, the proxy can afford to retrieve blocks of higher quality from proxy 2 for blocks b4

to b6. Then, proxy 1 retrieves b7 to b10 from the video server. For these 40 sec of blocks, it

takes 50 sec of transmission time, because the link capacity between the video server and

proxy 2 is smaller than the video rate. Furthermore, the video server sends additional VOPs

beginning with the preceding I-VOP, if the specified range starts with a P or B-VOP. This

increases the block size and introduces additional delay. However, owing to those cached

blocks, proxy 1 has enough time to retrieve them and provide all blocks to client 1 for

– 45 –

3.4 Implementation and Experimental Evaluation

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

R
ec

ep
tio

n
R

at
e

[k
bp

s]

Time [sec]

4 5 6

7 8 9 10

from proxy2
from server

(a) Reception rate at proxy 1

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200

R
ec

ep
tio

n
R

at
e

[k
bp

s]

Time [sec]

1 2 3 4 5 6 7 8 9 10 11121314151617181920

arrival
play-out

(b) Reception rate at client 1

 0

 500

 1000

 1500

 2000

 2500

 200 250 300 350 400

R
ec

ep
tio

n
R

at
e

[k
bp

s]

Time [sec]

78 9

10 11 12 13 14 15 16 17 18 1920

from proxy1
from server

(c) Reception rate at proxy 2

 0

 500

 1000

 1500

 2000

 2500

 200 250 300 350 400

R
ec

ep
tio

n
R

at
e

[k
bp

s]

Time [sec]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

arrival
play-out

(d) Reception rate at client 2

Figure 3.13: Experimental evaluation of block provisioning mechanism

smooth playback.

In the bottom part of Fig. 3.13(b), instants of block arrivals and those of play-out at

client 1 are indicated. In these experiments, the client application first caches a received

video block and defers its play-out by 3 sec. As Fig. 3.13(b) illustrates, a user can watch

the video without freezes. As a result of block retrieval, the cache table of proxy 1 changes

as shown in Fig. 3.12.

Figures 3.13(c) and 3.13(d) illustrate variations in reception rates observed at proxy 2

and client 2, respectively. Proxy 2 first provides client 2 with cached blocks b1 to b6. For

uncached blocks b7 to b20, proxy 2 tries retrieving high-quality blocks from proxy 1. At

260 sec, the capacity of the link between proxy 1 and proxy 2 is reduced to 700 kbps.

Consequently, proxy 2 contacts the video server from b9, since the video server can provide

the highest quality blocks in the fastest way. However, delays are gradually introduced in

– 46 –

Chapter 3. Cooperative Proxy Caching with Video Quality Adaptation

retrieving blocks from the video server due to the insufficient link capacity.

At 392 sec, proxy 2 again contacts proxy 1 to retrieve the block b20. Taking into account

the time needed in block transmission from proxy 1 to proxy 2 and that to client 2, the

quality of block b20 to request to proxy 1 is intentionally reduced to 276 kbps. On receiving

the request, proxy 1 applies the video quality adjustment to block b20 and transfers the

modified block to proxy 2. Proxy 2 caches the block and provides it to client 2. As

Fig. 3.13(d) illustrates, all blocks are successfully provided to client 2 through the above

mentioned control. Finally, the cache table of proxy 2 becomes as in Fig. 3.12.

In this experiment, not only a single proxy could successfully provide its client with a

video stream in time, but also two proxies cooperated to accomplish a continuous video-play

out by offering a cached block and the capability of video quality adjustment

3.5 Conclusion

In this chapter, we proposed an effective video streaming mechanism where proxies cooper-

ate with each other. Simulation results showed that our proposed mechanisms can provide

users with low-delay and high-quality video streaming services. In addition, we designed

and implemented our proxy caching mechanisms on a real system for an MPEG-4 video

streaming service employing off-the-shelf and common applications. Through evaluations,

it was shown that our proxy caching system can provide users with a continuous video

streaming service under dynamically changing network conditions.

– 47 –

Chapter 4

A Traveling Wave-based

Communication Mechanism

Adaptive to Application

Requirements for Wireless Sensor

Networks

4.1 Introduction

The development of low-cost microsensor equipments having the capability of wireless com-

munication has caused sensor network technology to attract the attention of many re-

searchers and developers [24-30]. It is possible to obtain information on behavior, con-

dition, and position of elements in a local or remote region by deploying a network of

battery-powered sensor nodes there. Each sensor node in such a sensor network has a

general purpose processor with a limited computational capability, a small memory, and a

radio transceiver.

Due to several restrictions including limited battery capacity, random deployment, and a

large number of fragile sensor nodes, a communication mechanism should be energy-efficient,

adaptive, robust, fully-distributed, and self-organizing. Furthermore, it should be able to

handle various types of communication, i.e. diffusion and gathering, involving the whole

– 49 –

4.1 Introduction

network in accordance with application requirements. For example, a sensor node detecting

an emergency would distribute the information over the whole sensor network to alert the

other nodes and make them cooperatively react to the emergency. On the contrary, a sensor

node detecting an uncertain condition would collect and aggregate sensor information of the

other nodes to have a more precise view of the environment by conjecturing from collected

information.

There are many proposals of communication mechanism for wireless sensor networks [82-

91]. For example, communication mechanisms for data gathering such as LEACH [84,

85], CMLDA [86], and BCDCP [87] cannot function without such global information as

the number of sensor nodes deployed, their locations, the predetermined optimal number

of clusters, and the residual energy of all sensor nodes. They therefore need additional,

possibly expensive and unscalable, communication protocols for collecting and sharing the

global information, and they cannot easily adapt to the addition, removal, or movement of

sensor nodes.

Furthermore, most of communication mechanisms cannot adopt to dynamically chang-

ing application requirements. For example, directed diffusion [89-91] also considers both

types of communication, i.e. pull and push. In the two-phase pull diffusion, sinks first emit

an interest message to find sources. Interest messages are flooded across a network, and

matching sources periodically send exploratory data to the sink along paths that interest

messages traversed. After the initial exploratory data come, the sink chooses one and rein-

forces the corresponding paths to sources so that following data traverse them to the sink

with the smallest latency. The pull-type communication is shown to be appropriate for

a case with many sources and few sinks. On the contrary, in the push diffusion, sources

first send exploratory data to notify possible sinks of the existence of data. The push-type

communication is good for a case with many sinks and few sources. Although directed

diffusion can support two different application requirements, these mechanisms cannot be

used simultaneously and the mechanism to employ must be determined in advance tak-

ing into account expected conditions, including the number of sources and sinks and their

communication frequency.

To answer dynamically changing application requirements, a communication mechanism

should handle both types of communication, especially in an autonomous and self-organizing

manner. In addition, taking into account the insufficient computational capability and

memory capacity of inexpensive small sensor nodes, the mechanism must be as simple as

– 50 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

Time

Non-Firing Node Firing Node

Time

Global Synchronization Traveling Wave

Figure 4.1: Global synchronization and traveling wave

possible. A simple mechanism can also avoid introducing programming and operational

errors.

For this purpose, we adopt a pulse-coupled oscillator (PCO) model based on biological

mutual synchronization such as that observed in flashing fireflies [49-53]. In a PCO model,

synchronous behavior of a group of oscillators is considered. Each oscillator operates on

a timer. When the phase of the timer reaches one, an oscillator fires. Oscillators coupled

with the firing oscillator are stimulated and they shift the phase of timers by a small

amount. Through mutual interactions by stimuli among oscillators, they eventually reach

a synchronized behavior. There are several papers which employ a PCO model to make

sensor nodes operate in synchrony, e.g., clock synchronization, through a distributed and

self-organizing control mechanism [54-65]. In [64, 65], our research group proposed a data

gathering mechanism which employ synchronized behavior of a PCO model, and confirmed

that it worked in a fully-distributed, self-organizing, robust, adaptive, scalable, and energy-

efficient manner.

In this chapter, in contrast to the other works, we focus on another phenomenon ob-

served in a PCO model. In a PCO model, it is shown that not only the global synchroniza-

tion where all oscillators fire synchronously, but a traveling wave, where oscillators behave

synchronously but with fixed phase difference, appears (Fig. 4.1) [52]. By adjusting param-

eters and functions of a PCO model, we can control the frequency, form, and direction of a

wave. We first investigate conditions of a phase response curve (PRC) with which a wireless

sensor network reached a preferred phase-lock condition where the phase differences among

sensor nodes are kept constant from arbitrary settings of the initial phase of sensor nodes.

Next, we propose a self-organizing communication mechanism which generated concentric

– 51 –

4.2 Analysis of Mathematical Model

traveling waves centered at a sensor node, which wanted to gather information from all sen-

sor nodes or diffuse information to all sensor nodes. In our mechanism, each sensor node

broadcasts its sensor information in accordance with the phase of its own timer. When a

sensor node receives a radio signal of others, it shifts the phase of its timer. Through mutual

interactions among neighboring sensor nodes, they reach the phase-lock and emit sensor

information alternately. Through simulation experiments, we confirm that our scheme de-

livers sensor information to / from designated nodes in a more energy-efficient manner than

other method, although it takes time to generate a traveling wave. Furthermore, we im-

plement our mechanism using commercial wireless sensor units, MICAz. Since collisions

among synchronized packet emissions affects the performance, we extend the mechanism to

distribute timing of packet emission and we confirm that data delivery ratio of about 95 %

is accomplished.

The rest of this chapter is organized as follows. First, in Section 4.2, we briefly introduce

the mathematical model and its analysis to generate traveling waves. Next, we propose a

distributed and self-organizing communication mechanism for wireless sensor networks in

Section 4.3, and show simulation results in Section 4.4. Then, we implement, evaluate, and

improve our mechanism in Section 4.5. Finally, we conclude this chapter in Section 4.6.

4.2 Analysis of Mathematical Model

In this section, we briefly introduce the PCO model we adopted in this thesis, and investigate

conditions of a PRC which leads to a desired form of a traveling wave from arbitrary settings

of the initial phase.

4.2.1 Pulse-Coupled Oscillator Model

A PCO model is developed to explain synchronous behaviors of biological oscillators such as

pacemaker cells, fireflies, and neurons. In this section, mainly following the model described

in [52], we give a brief explanation of the model.

Consider a set of N oscillators. Each oscillator i has phase φi ∈ [0, 1] (dφi/dt = 1).

As time passes, φi shifts toward one and, after reaching it, the oscillator fires and the

phase jumps back to zero. Oscillator j coupled with the firing oscillator i is stimulated and

– 52 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

-1

 0

 1

 2

 3

 0 0.2 0.4 0.6 0.8 1

Δ(
φ)

φ

a=0.5
a=1.0

a=-0.5

(a) PRC of QIF model ΔQIF

-1

 0

 1

 2

 3

 0 0.2 0.4 0.6 0.8 1

Δ(
φ)

φ

a=0.5
a=1.0

a=-0.5

(b) PRC of RIC model ΔRIC

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

Δ(
φ)

φ

a=1,b=0.6,c=6

(c) PRC of Neuron model 1 Δn1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 0.2 0.4 0.6 0.8 1

Δ(
φ)

φ

a=2,p=0.6,q=6

(d) PRC of Neuron model 2 Δn2

Figure 4.2: PRC examples

advances its phase by an amount Δ(φj). Thus, we have

φj → φj + Δ(φj), (4.1)

where Δ(φ) is called a phase-response curve (PRC). For example, for the quadratic integrate-

and-fire (QIF) model, ΔQIF(φ) = a(1 − cos 2πφ) (Fig. 4.2(a)) and for the radial isochron

clock (RIC) model, ΔRIC(φ) = −a sin 2πφ (Fig. 4.2(b)) [52]. The PRC of neurons is mod-

eled as Δn1(φ) = aφ(1 − φ)/(1 + e−c(φ−b)) (Fig. 4.2(c)) or Δn2(φ) = aφ(1 − φ)e−pφ−q(1−φ)

(Fig. 4.2(d)). Here, an oscillator ignores all stimuli at the moment of firing, and an oscillator

identifies multiple stimuli received at the same time as one stimulus.

Through mutual interactions, a set of oscillators reach either of the global synchroniza-

tion where they have the same phase and fire all at once, or the phase-lock condition where

– 53 –

4.2 Analysis of Mathematical Model

1

0
Time

i
φ

P
h
a
s
e

1

0
Time

Firing

Time

Time

Firing

)(φΔ)(φΔ

)(φΔ)(φΔ

Firing

Firing Firing

Firing

Firing Firing

Global Synchronization Phase-Lock

P
h
a
s
e

j
φ

1

0

1

0

Figure 4.3: Global synchronization and phase-lock

 0

 1

1φ3φ2φ10

h(
φ)

Phase φ

(a) h(φ) generating the global synchronization

 0

 1

1φcφ3φ2φ10

h(
φ)

Phase φ

(b) h(φ) generating the phase-lock

Figure 4.4: Phase transition

phases are different among oscillators with a constant offset as shown in Fig. 4.3. In the

case of the phase lock, the geographic propagation of firings seems like a traveling wave as

shown in Fig. 4.1.

Whether a network reaches the global synchronization or the phase-lock depends on the

initial phase of timers or properties of the PRC [92]. In Fig. 4.4, h(φ) indicates the phase

at which an oscillator is stimulated again by a neighboring oscillator, after the oscillator

is stimulated from a neighboring oscillator at the phase of φ. For example, in the case of

a pair of oscillators, it is defined as h(φ) = 1 − F (1 − F (φ)) where F (φ) = φ + Δ(φ). A

dotted diagonal line stands for h(φ) = φ, and a stepwise line stands for phase transition of

– 54 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

1

2

Non-Firing Node Firing Node Stimuli

1

2

1

2

1

2

Time

1

2

(a) Firing pattern in two oscillators

 1

 2

 0 1 2 3 4 5

O
sc

ill
at

or

Time

(b) Timing of firing in two oscillators

Figure 4.5: Traveling wave in two oscillators

an oscillator whose initial phase is φ1. When an oscillator is stimulated at φ1, the oscillator

changes its phase by using Eq. (4.1), and it will observe the next fire and be stimulated at

φ2.

In Fig. 4.4(a), through being stimulated several times, the phase h(φ) becomes one from

arbitrary initial phase. h(φ) = 1 means that an oscillator receives a stimulus from another

firing oscillator when the oscillator itself is firing. Therefore, they fire at the same time.

On the contrary, if oscillators have a PRC corresponding to Fig. 4.4(b), h(φ) converges

at φc independently of the initial phase. It means that all oscillators reach the condition

where the phase is always φc when being stimulated. Therefore, oscillators fire with the

time difference of φc at the stable condition.

4.2.2 Generation of Various Traveling Waves

In this section, we investigate initial conditions that lead to desired phase-lock conditions,

i.e. traveling waves. We start from the simplest case, two alternately firing oscillators, then

move to a ring, a line, two types of concentric circles, a wedge, and a radar-shaped traveling

wave.

Traveling Wave in Two Oscillators

First, we consider phase-lock condition in a pair of oscillators as shown in Fig. 4.5(a) [52].

Suppose that when oscillator 1 fires at time 0, oscillator 2 is at φ2 so that the new phase

for oscillator 2 becomes F (φ2). At t1 = 1 − F (φ2) oscillator 2 fires, then oscillator 1 at

– 55 –

4.2 Analysis of Mathematical Model

N

Time

1

2
τ

Non-Firing Node Firing Node Stimuli

34

N-1

N

1

2
τ

34

N-1

N

1

2
τ

34

N-1

(a) Firing pattern in a ring

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 1 2 3 4 5

O
sc

ill
at

or

Time

(b) Timing of firing in a ring (N = 10)

Figure 4.6: Ring-type traveling wave

φ1 = t1 = 1 − F (φ2) moves to the new phase F (t1) = F (1 − F (φ2)). At t2 = 1 − F (t1)

oscillator 1 fires once again, and the phase of oscillator 2 is 1−F (t1) = 1−F (1−F (φ2)). To

have the phase-lock condition, φ2 = 1−F (1−F (φ2)). Consequently, when initial conditions

are comply with φf = 1 − F (1 − F (φf)), oscillators fire alternately. In the case of φ
′
= 1,

the occurrence condition is |φ1 − φ2| = 1 − φf .

Figure 4.5(b) shows the timing of firing in two oscillators. We used the RIC PRC with

a = 0.1. φ1 and φ2 were set at 0 and 0.5, respectively. In Fig. 4.5(b), we can see that

oscillators fire alternately. X-axis corresponds to time and y-axis corresponds to identifiers

of oscillators. Each dot stands for the timing that an oscillator fires.

Ring-Type Traveling Wave

Next, we consider the case of a ring of N oscillators as shown in Fig. 4.6(a) [52]. Since an

oscillator is stimulated by two neighboring oscillators, Eq. (4.1) becomes as

φ
′
i = 1 + Δ(φi)[δ(φi−1) + δ(φi+1) − δ(φi−1)δ(φi+1)], (4.2)

where we identify 0 with N and N +1 with 1. Consider oscillators fire in order of 1 → 2 →
· · · → N at constant phase-difference τ . When oscillator N fires, oscillator N − 1 and 1

are stimulated. At this time, the phase of oscillator N − 1 is τ and its new phase becomes

F (τ). Oscillator 1 is at (N −2)τ +F (τ) and its new phase φ1 becomes F ((N −2)τ +F (τ)).

Here, φ1 = 1 − τ holds because oscillator 1 will fire after τ . Therefore, the phase of each

– 56 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

1

Time

2 3 N-1 N

21 3 N-1 N

τ

31 2 N-1 N

τ

N1 2 N-13

1 32 N-1 N

Τ

τ

Non-Firing Node

Firing Node

Stimuli

(a) Firing pattern in a line

 1

 2

 3

 4

 0 1 2 3 4 5

O
sc

ill
at

or

Time

(b) Timing of firing in a line (N = 4)

Figure 4.7: Line-type traveling wave

oscillators in a traveling ring wave should satisfy the following conditions.

φN−1 = F (τ)

φN−2 = τ + F (τ)
... =

...

φi = (N − i − 1)τ + F (τ)
... =

...

φ2 = (N − 3)τ + F (τ)

φ1 = F ((N − 2)τ + F (τ)) = 1 − τ.

From this, we have the following formula.

F ((N − 2)τ + F (τ)) + τ = 1. (4.3)

Waves with multiple cycle replace the 1 with m.

Figure 4.6(b) shows the timing of firing in a ring of oscillators, where N = 10. We used

the RIC PRC with a = 0.1. τ was set at 0.0964 derived from Eq. (4.3). In Fig. 4.6(b), we

can see that a fire travels along a ring.

– 57 –

4.2 Analysis of Mathematical Model

3

Time

4 5 N-1 N

43 5 N-1 N

τ

53 4 N-1 N

τ

Non-Firing Node Firing Node Stimuli

1 2

1 2

1 2

3 4 5 N-1 N

τ

1 2

3 4 5 N-1 N

τ

1 2

τ

m

(a) Multiple firing pattern in a line

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 1 2 3 4 5

O
sc

ill
at

or
Time

(b) Timing of multiple firing in a line (N = 10)

Figure 4.8: Line-type multiple traveling wave

Line-Type Traveling Wave

In this section, we consider a line of N oscillators. Consider oscillators fire in order of

1 → 2 → · · · → N at constant phase-difference τ , and oscillator 1 fires after T unit of time

from a fire of oscillator N as illustrated in Fig. 4.7(a) where dashed arrows stand for stimuli

given by a firing oscillator to neighboring oscillators.

When oscillator i (1 ≤ i < N − 1) fires, the new phase of oscillator i + 1 becomes

F ((N − 3)τ + T + F (τ)) = 1 − τ. (4.4)

Similarly, when oscillator N − 1 fires, the new phase of oscillator N becomes

F ((N − 2)τ + T) = 1 − τ. (4.5)

Finally, when oscillator N fires, the new phase of oscillator 1 becomes

(N − 2)τ + F (τ) = 1 − T. (4.6)

Equations (4.4) through (4.6) describe the condition for the existence of traveling waves

on a line of oscillators. Figure 4.7(b) shows the timing of firing in a line, where N = 4,

T = 0.25, and τ = 0.25. We used Δ(φ) = −a sin 4πφ as PRC, where a = 0.05.

Next, we consider another pattern of traveling wave in a line illustrated in Fig. 4.8(a).

– 58 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

In this case, oscillators which are distant by m (m is a natural number) fire at the same

time. Suppose that oscillator i (1 < i < N) fires at time 0. At time τ , oscillator i + 1 fires

and the new phase of oscillator i becomes F (τ). After (m−1)τ unit of time, oscillator i−1

fires, and the new phase of oscillator i becomes,

F ((m − 1)τ + F (τ)) = 1 − τ. (4.7)

Similarly, let us consider oscillator 1. Oscillator 1 fires at time 0. At time τ , oscillator 2

fires and the new phase of oscillator 1 becomes F (τ). After mτ , oscillator 1 will fire again.

Therefore,

(m − 1)τ + F (τ) = 1 − τ. (4.8)

Finally, we consider oscillator N . Oscillator N − 1 fires after mτ from oscillator N fires.

F (mτ) = 1 − τ. (4.9)

Equations (4.7) through (4.9) describe the condition for the existence of traveling waves.

We should note that Eqs. (4.7) through (4.9) are identical to Eqs. (4.4) through (4.6) when

m is equal to N − 1 and T is equal to τ .

Figure 4.8(b) shows the timing of firing in a line, where N = 10, m = 3, and τ = 0.25.

In Fig. 4.8(b), two to three oscillators fire at the same time as (2, 6, 10) → (3, 7) → (4, 8) →
(1, 5, 9) → (2, 6, 10).

Concentric Circle-Type Traveling Wave

In this section, we consider a traveling wave drawing a concentric circle as in [64]. Fig-

ure 4.9(a) illustrates interactions among firing oscillators in concentric circles. The number

in each circle, i.e. an oscillator, indicates the number of hops from the center of circles

called level in [64]. Oscillators fires in order of levels. We assume an oscillator ignores all

stimuli at the moment of firing [52], and an oscillator identifies multiple stimuli received at

the same time as one stimulus. Following this assumption, we can regard oscillators on the

same level as one oscillator. Therefore, we can apply the same condition derived in Section

4.2.2 by defining the same initial condition for oscillators on the same level.

– 59 –

4.2 Analysis of Mathematical Model

Time

Non-Firing Node Firing Node Stimuli

1

τ

1

1

11

0

2

2

2

2

2 2

1

1

τ

1

1

11

0

2

2

2

2

2 2

1

1

τ

1

1

11

0

2

2

2

2

2 2

1

(a) Firing pattern in a concentric circle

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

Y

X

 1 2
 3 4 5

 6
 7 8 9

 10

 11
 12

 13

 14

 15
 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

(b) Location of oscillators

 1

 5

 9

 13

 17

 21

 25

 0 1 2 3 4 5

O
sc

ill
at

or

Time

(c) Timing of firing

 1

 5

 9

 13

 17

 21

 25

 0 1 2 3 4 5

O
sc

ill
at

or

Time

(d) Timing of firing in reverse

Figure 4.9: Concentric circle-type traveling wave

We confirmed the existence of phase-lock condition to generate a concentric circle-

shaped traveling wave. Figure 4.9(b) illustrates the simulated network of 25 oscillators.

For easier understanding, oscillators are placed to form concentric circles. However, we

can generate a traveling wave of the form of a concentric circle on a sensor network with

arbitrary node distribution. Oscillators are numbered from the center to the edge. The

oscillator at the center is named 1. Oscillators from 2 to 9 are on the most inner circle

which has a radius of one unit of distance. Oscillators from 10 to 17 are on the middle

circle, and ones from 18 to 25 are on the third. Each oscillator interacts with all other

oscillators that are within distance of 1.5. We used T = 0.25 and τ = 0.25 on Eqs. (4.4)

through (4.6). In Fig. 4.9(c), we can observe a traveling wave propagating from the center

toward the edge where all oscillators on the same circumference fire synchronously.

When we give the initial conditions of oscillators in reverse, a wave propagates from the

edge toward the center as shown in Fig. 4.9(d).

– 60 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

Non-Firing Node

Firing Node

Neighboring Relationship

0

0’

62

4

7

53

1

8’

12’4’

14’

10’6’

2’

0”

12”

18”6”

3” 21”

15”9”

11’

13’

15’

9’7’

5’

3’

1’

23”
22”

20”

19”

17”

16”

14”
13”11”

10”

8”

7”

5”

4”

2”
1”

0

0’

1

2’

0”

3”

Direction of the Wave

Time 0

Time T/8

(a) Firing pattern in a radar

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1 2 3 4

Y

X

 1
 7

 13 19
 25

 31
 37

 43 49
 55

 2
 5

 8
 11 14 17 20 23

 26
 29
 32
 35

 38
 41 44 47 50 53

 56
 59

 3
 4

 6
 9

 10
 12 15 16 18 21 22

 24
 27

 28
 30
 33
 34
 36

 39
 40

 42 45 46 48 51 52
 54

 57
 58
 60

(b) Location of oscillators

 1
 6

 11
 16
 21
 26
 31
 36
 41
 46
 51
 56

 0 0.5 1 1.5 2 2.5 3

O
sc

ill
at

or

Time

(c) Timing of firing

Figure 4.10: Radar-type traveling wave

Radar-Type Traveling Wave

In this section, we consider a radar-shaped traveling wave as illustrated in Fig. 4.10(a).

The number in each circle indicates the order of firing on a circumference, and we call it as

level. Oscillators with the same level value on different circumferences do not necessarily

fire simultaneously. On the contrary, oscillators with different level values on different

circumferences fire simultaneously if they are on the same radius. For example, at time 0,

oscillators 0, 0′, and 0′′ on the same radius fire simultaneously. When we consider a cycle

of T , T/8 unit of time later, oscillator 1, 2′, and 3′′ fire at the same time. Between them,

oscillator 1′ fires at T/16, and oscillators 1′′ and 2′′ fires at T/24 and T/12, respectively.

A radar-shaped traveling wave can be generated by first organizing oscillators into con-

centric circles. Next, on each of a circumference, a ring-shaped traveling wave is generated

– 61 –

4.2 Analysis of Mathematical Model

P 1 2 N

Pacemaker

StimuliOscillator

Figure 4.11: Oscillators in tandem

while making oscillators on a radius fire simultaneously. For this purpose, we assume that

an oscillator receives stimuli only from neighboring oscillators on the same circumference

and those in the same radius as shown by dashed arrows in the figure. In addition, we

assume that the center node does not fire, or oscillators on the most inner circle ignore

firing of the center node.

Figure 4.10(b) illustrates the simulated network of 60 oscillators. Oscillators from 1

to 10 are on the most inner circle which has a radius of one unit of distance. Oscillators

from 11 to 30 are on the middle circle, and ones from 31 to 60 are on the third. Each

oscillator interacts with all other oscillators that are within distance of 1. Derived from

Eq. (4.3), τ was set at 0.0964, 0.0482, and 0.0323 for the most inner, the middle, and the

third circle, respectively. Figure 4.10(c) shows the timing of firing. A solid line indicates

the time that oscillator 1 fired. In Fig. 4.10(c), we can observe a radar-shaped traveling

wave where oscillators on the same circumference fire in order the same time and those on

the same radius fire at.

4.2.3 Condition of PRC to Generate Traveling Waves

In previous section, we showed that we could generate various traveling waves by using PCO

model. However, it was sensitive to the initial phase setting. In this section, we investigate

conditions of PRC that lead to desired phase-lock condition regardless of the initial phase

to generate preferred traveling waves. We call an oscillator which dominates and controls

a PCO network as a pacemaker. To keep the timing and frequency of communication, a

pacemaker will not be stimulated and will fire at regular intervals, which corresponds to

the data gathering or diffusion cycle in a wireless sensor network.

Oscillators in Tandem

First, we consider a traveling wave in a PCO network where oscillators are arranged in a line

as shown in Fig. 4.11. Each circle stands for an oscillator, each arrow shows the direction

– 62 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

of stimuli, and oscillators are numbered by the number of hops from the pacemaker. An

oscillator is stimulated only by its neighboring oscillator which is closer to the pacemaker.

A pacemaker fires periodically at regular intervals of one time unit. Oscillators fire in order

of the pacemaker, oscillator 1, oscillator 2, · · · , oscillator N at constant phase-difference τ .

Therefore, if a pacemaker fires at time 0, oscillator 1 fires at time τ , and oscillator N fires

at time Nτ . Here, we consider 0 < τ < 1.

Now, consider phase transitions of oscillators at the phase-lock condition. Assume that

after t time unit since oscillator i (1 ≤ i ≤ N) fired, an oscillator i is stimulated by oscillator

i − 1. Oscillator 0 corresponds to the pacemaker. Since oscillators fire at constant phase-

difference τ , the phase of an oscillator becomes 1−τ when it is stimulated by a neighboring

oscillator, i.e. F (t) = 1 − τ . Then, oscillator i fires at τ + t. Since an oscillator fires at

regular intervals of one at the phase-lock condition, we have t + τ = 1. Hence, we have

Δ(1 − τ) = 0. (4.10)

To generate a desired traveling wave regardless of the initial phase, an oscillator should

advance its phase towards 1 − τ when it is stimulated during 0 ≤ φ < 1 − τ , and push

back its phase towards 1 − τ when it is stimulated during 1 − τ < φ < 1. Finally, we have

following conditions of PRC to generate a traveling wave regardless of the initial phase.

⎧⎪⎪⎨
⎪⎪⎩

0 < Δ(φ) ≤ 1 − τ − φ (0 ≤ φ < 1 − τ)

Δ(φ) = 0 (φ = 1 − τ)

1 − τ − φ ≤ Δ(φ) < 0 (1 − τ < φ < 1).

(4.11)

For example, following PRC function satisfies Eq. (4.11).

Δs(φ) = a sin
π

1 − τ
φ + b(1 − τ − φ) (4.12)

Here, a (−b(1− τ)/π < a ≤ (1− b)(1− τ)/π) and b (0 < b ≤ 1) are parameters which deter-

mine characteristics of PRC. Figure 4.12 illustrates PRC Δs(φ) for two different settings of

a and b when τ = 0.2. Two dot-and-dash lines stand for Δ(φ) = 0 and Δ(φ) = 1 − τ − φ,

respectively. The curve of PRC satisfying Eq. (4.11) must lie between these two lines.

With a PRC satisfying the above conditions, oscillators fire in order of the pacemaker,

– 63 –

4.2 Analysis of Mathematical Model

0

11-τ0

Δ(
φ)

Phase φ

Δ(φ)=0

Δ(φ)=1-τ−φ

a=0, b=1
a=0.1, b=0.6

a=0.05, b=0.6
a=-0.1, b=0.6

(a) In the case of 0 < τ < 0.5

0

11-τ0

Δ(
φ)

Phase φ

Δ(φ)=0

Δ(φ)=1-τ−φ

a=0, b=1
a=0.03, b=0.6

a=-0.03, b=0.6

(b) In the case of 0.5 < τ < 1

Figure 4.12: PRC Δs from Eq. (4.12)

1

0.5

 1 2 3 4 5 6 7 8

Ph
as

e
at

 S
tim

ul
us

 R
ec

ep
tio

n

Number of Stimuli from the Pacemaker

a=0 b=1
a=0.1 b=0.6

a=0.05 b=0.6
a=0.01 b=0.5

Figure 4.13: Phase transition of oscillator 1

oscillator 1, oscillator 2, · · · , oscillator N at constant phase-difference of τ at the phase-

lock condition. This can also be regarded as a traveling wave propagating from oscillator N

toward the pacemaker, with constant phase-difference 1− τ . Therefore, to have a diffusion

type of communication, where information propagates from the peacemaker to oscillator N

with constant phase-difference τ , τ should be set as τ < 0.5. On the contrary, to have a

gathering type of communication, τ should be set as τ > 0.5.

Figure 4.13 shows a phase of oscillator 1 when it receives a stimulus from the pacemaker

where τ = 0.1 and N = 1. The initial phase of oscillator 1 is randomly chosen, and

results are averaged over 1000 simulations. At a �= 0, as parameters a and b increase, a

traveling wave emerges more rapidly. Especially, a traveling wave emerges by only one

– 64 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

Oscillator

P

Stimuli

1

12

2

3

1
2

N

Pacemaker

3

Figure 4.14: Two-dimensional arrangement of oscillators

interaction, i.e. stimulus, among oscillators with a = 0 and b = 1. However, such aggressive

setting spoils the resilience of the mechanism against a failure of node and unexpected

influence from the environment, since a single firing emitted at a wrong time will drastically

change the state of the whole system. Therefore, a PRC function and its parameters should

be appropriately determined taking into account the trade-off between the speed that a

traveling wave emerges and the resilience against failures.

Oscillators in Two-Dimensional Arrangement

A PRC satisfying Eq. (4.11) can also be applied to the case of two dimensional arrangement

of oscillators. By making a tree whose root is the pacemaker and setting the direction of

stimuli as shown in Fig. 4.14, we can adopt the same PRC and generate a traveling wave

propagating from or to the pacemaker in a two-dimensional area. Although any routing

protocol for wireless sensor networks is viable to organize such tree-type topology, a simple

way of setting such relationship among oscillators will be given in the next section.

4.3 A Traveling Wave-based Communication Mechanism

In this section, we propose a fully-distributed and self-organizing communication mechanism

for wireless sensor networks. In our mechanism, any of sensor nodes can become a point,

called core node, from which messages are disseminated or to which messages are gathered

in accordance with application requirements. Core node plays a role of a pacemaker in the

PCO model.

– 65 –

4.3 A Traveling Wave-based Communication Mechanism

4.3.1 Basic Behavior

Sensor node i (1 ≤ i ≤ N) has a timer with phase φi ∈ [0, 1]. It maintains PRC function

Δ(φ), level value li, session identifier si, direction δi, and offset τ (0 < τ < 0.5). Initially a

level value, a session identifier, and a direction are set to zero. A level value indicates the

number of hops from the core node and it is used to define the relationship among sensor

nodes. Direction δi is a parameter which controls the direction of information propagation,

and it is set at 1 for diffusion and −1 for gathering. The offset defines the interval of

message emission between a node of level l − 1 and that of level l. The PRC function and

offset are determined at the deployment phase, but the offset can be dynamically adjusted

as explained later. In this thesis, based on Eq. (4.12), we use the following PRC function

for all sensor nodes.

Δ(φ) = a sin
π

g
φ + b(g − φ), (4.13)

Here, g is defined as (1 − δiτ) mod 1.

As time passes, phase φi shifts toward one and, after reaching it, sensor node i broadcasts

a message and the phase jumps back to zero. A message that sensor node i emits contains

level value li, session identifier si, direction δi, and its information aggregated with other

sensor’s information kept in its buffer. To initiate a new communication, a core node

broadcasts a message containing a new session identifier set at the current value plus one,

a level value of zero, the direction, and information to disseminate or gather.

Now, sensor node i receives a message from sensor node j. If session identifier sj is

larger than si, sensor node i considers that a new communication begins. Therefore, it

sets its level value li at lj + 1, session identifier si at sj, and direction δi at δj . Then,

it is stimulated to join a new traveling wave. This mechanism means that the current

communication is terminated by a newly initiated communication. To avoid unintended

termination of communication by other sensor nodes, a core node might advertise its desired

communication period in a message it emits. However, it requires an additional mechanism

such as clock synchronization, and it is left as one of future research issues. If session

identifiers are the same but the level value lj is smaller than li, sensor node i sets its level

value li at lj + 1, direction δi at δj , and it is stimulated. Stimulated sensor node i shifts its

phase based on the PRC function. As in the PCO model, a sensor node is not stimulated

by messages from sensor nodes with a smaller level value during the following duration of τ

– 66 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

YES

(new communication)
NO

YES

?
ij

ss >

?
ij

ss =

()
iii

ji

ji

ji

ll

ss

φφφ

δδ

Δ+←

←

+←

←

1

()
iii

ji

ji ll

φφφ

δδ

Δ+←

←

+← 1

?
iij

ll δ−=

sensor node i deposits

received information

※ stimulated

※

※

sensor node i receives a message

from sensor node j

?
ij
ll <

YES

end of processing

NO
NO YES

NO

Figure 4.15: Node behavior on message reception

when it has already been stimulated, to avoid being stimulated by deferred messages. If the

session identifier is the same and level value lj is li − δi, sensor node j is an upstream node

of sensor node i. Therefore, to relay information of sensor node j to the next downstream

node, sensor node i deposits the received information in its local buffer. If a message does

not satisfy any of the above conditions, sensor node i ignores it. We should note here that a

sensor node only emits a message in accordance with the phase of its timer. No additional

message is required to organize a traveling wave. The algorithm is illustrated in Fig. 4.15.

4.3.2 Power-Saving Mode

Through mutual interactions among neighboring sensor nodes, they reach the phase-lock,

and a sensor node moves to a power-saving mode. In power-saving mode, a sensor node

wakes up when its phase is at 1 − τ to receive messages from upstream nodes. Upstream

nodes are scheduled to emit their messages from 1− τ to 1. When its phase reaches one, a

sensor node broadcasts a message. After that, it keeps awake for τ to receive messages from

downstream nodes, and then goes to sleep by turning off its radio transceiver and other

needless modules.

Here, τ should be appropriately determined considering trade-off between the rate of

successful message reception and the lifetime of sensor network. The smaller τ is, the smaller

– 67 –

4.3 A Traveling Wave-based Communication Mechanism

probability of successful message reception by missing messages delayed by collisions in radio

signals. At the same time, a smaller τ leads to longer lifetime of sensor network, since a

node is awake for the duration of 2τ in one communication cycle.

To judge whether the phase-lock condition is globally accomplished or not, we consider

Tmax as the worst-case time required for a sensor node to establish the phase-lock condition

with a neighboring node closer to the core node. We can expect that a sensor node can

move to a power-saving mode after (li + (1− δi)/2)×Tmax since the level value is updated.

If the phase-lock condition is lost for some reasons after a power-saving mode is acti-

vated, a sensor node does not receive any valid message when it is awake. In such a case,

a sensor node stops a power-saving mode to reorganize the phase-lock condition.

4.3.3 Addition and Removal of Sensor Nodes

Next, we consider the case where a new sensor node is introduced in a sensor network in

operation. Initially, the session identifier of a new sensor node is set at zero. Therefore, it

does node affect other sensor nodes. Being stimulated several times, its level value, session

identifier, and direction are correctly identified, and its timer synchronizes at constant

phase-difference with that of a neighboring sensor node whose level is smaller by one.

On the contrary, when a sensor node disappears due to battery depletion or removal,

a sensor node that is synchronized with the vanished node will be stimulated by another

of the same level as the vanishing node. If there is no other node with a smaller level

value in its vicinity, the sensor node becomes isolated. Since it does not receive stimuli any

more, it can recognize the isolation and then it initializes its session identifier so that it can

synchronize with other neighboring sensor nodes.

4.3.4 Multiple Core Nodes

In addition, we consider the case that there are two or more core nodes with the same

session identifier in a sensor network. Since it takes time for information to propagate

between the edge of a wireless sensor network and a core node, it is a good idea to have

multiple core nodes for one communication to solve the scalability problem. In such case,

the sensor network is divided into clusters each of which has one core node. Each core node

can gather or diffuse information in its cluster.

A sensor node which is at the same hop count from more than one core node, which

– 68 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

we call a border node, receives messages from different clusters. Since session initiation is

not necessarily synchronized among core nodes and time required for stimulus propagation

would differ among paths from core nodes, such multiple stimuli prevent a border node

from establishing the phase-lock condition with neighboring nodes.

Therefore, a border node chooses one cluster which it belongs to. First, after a level

value is updated, a border node waits for the duration of (li−1)×Tmax +τ until the phase-

lock condition is established in each of clusters. Then, it begins to stick on the timing of

the first message it receives. To avoid being stimulated by deferred messages or message

originated from another core node, it ignores received stimuli during the following duration

of 1 − τ when it has already been stimulated.

4.3.5 Node Failures

Finally, we consider cases of node failures. First, the failure of a radio transmitter has no

influence on other communication, since a failed sensor node can not emit any message

and never stimulate neighboring nodes. On the other hand, a sensor node with a failed

receiver keeps sending messages based on its timer. The timer of a failed node keeps

its own pace independently of the others. Therefore, when the phase-lock condition is

not established yet, the failed node disturbs establishment of the phase-lock condition by

stimulating neighboring nodes at inappropriate timings. However, a failed node eventually

considers it is isolated for not receiving any message from neighboring nodes. Then, it

initializes its state and it does not affect others anymore.

In some cases, a timer gains or loses, being affected by, for example, geomagnetism.

Basically, a wrong timer will be correctly adjusted from stimulations. A sensor node with

a timer which gains, stimulates neighboring nodes at a wrong timing, since sensor nodes

take the first message it receives and ignores the following delayed messages. If a wrong

timer keeps an advanced phase, the problem is that the interval between message emission

of the failed node and its upstream node becomes smaller than τ and it does not bring any

serious influence on message propagation.

On the other hand, a sensor node with a timer which loses does not affect the phase-lock

condition very much. If a sensor node which is stimulated by a failed node has another

normal node with a smaller level value, it is always stimulated by the normal sensor node

and ignores delayed messages from the failed node. Otherwise, the interval of message

emission of the failed sensor node and the affected sensor node becomes longer than τ .

– 69 –

4.4 Simulation Experiments

In addition, we consider wrong setting of parameters such as δi, li, and si of sensor node

i by temporal error of memory or CPU. Direction δi is updated periodically when a sensor

node receives a message from a sensor node with a smaller level value.

When level value li is incorrectly larger than the actual hop count from a core node,

messages emitted by sensor node i do not affect neighboring sensor nodes with a smaller level

value. On the contrary, if the level value is too small, neighboring nodes would wrongly

identify their distance from the core node. It first disturbs establishing the phase-lock

condition. However, since the level value of the failed sensor node is the smallest in its

range of radio signals, it does not receive any stimulus, i.e. a message with a further larger

level value. Therefore, it considers it is isolated and initializes its session identifier so that

its level value will be adjusted correctly.

When the session identifier si is incorrectly smaller than the current session identifier

used in a wireless sensor network, the failed sensor node does not affect the others at all.

Its session identifier will be corrected on receiving a message from a neighboring sensor

node. On the contrary, a larger session identifier si means that a new communication is

initiated by the failed sensor node. Since the other nodes cannot judge whether a new

communication is actually initiated or not, it is handled as normal. When another sensor

node initiates a new communication, a new session identifier is used and the failed node

does not affect the others any more.

4.4 Simulation Experiments

In this section, we show results of simulation experiments. In the simulation, the range of

the radio signal is fixed at 2 units of length. The initial phase of sensor node is randomly

chosen. A sensor node consumes 81 mW for transmission, 30 mW for receiving and idle,

and 0.003 mW for sleep [66]. Initial energy is 50 J for all nodes. We use Eq. (4.13) with

a = 0.01 and b = 0.5 as the PRC function and τ is set at 0.1.

4.4.1 Basic Behavior

We first confirm the basic behavior of our communication mechanism. We consider sensor

networks of 100 sensor nodes randomly distributed in a 10×10 region as shown in Fig. 4.16.

From 0 to 20 time units, we randomly chose a sensor node A as a core node for information

diffusion. Then, from 20 to 40 time units, we randomly chose another sensor node B as a

– 70 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Y

X

A

B

Figure 4.16: Sensor distribution in the simulation experiments

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

L
ab

el
 o

f
Se

ns
or

 N
od

e

Time

0hop
1hop

2hop

3hop

4hop

(a) Diffusion

 0

 20

 40

 60

 80

 100

 20 25 30 35 40

L
ab

el
 o

f
Se

ns
or

 N
od

e

Time

0hop
1hop

2hop

3hop

4hop

5hop

6hop

7hop

(b) Gathering

Figure 4.17: Timing of message emissions

core node for information gathering.

Figure 4.17 shows how the sensor network reached the phase-lock condition in a certain

simulation experiment. Each mark stands for an instant when a sensor node emitted a

message. For easier understanding, sensor nodes are sorted in order of the hop count

from the core node. In Fig. 4.17(a), at first, all sensor nodes randomly and independently

emit messages. However, by exchanging stimuli several times, the phase-lock condition is

eventually accomplished and a regular pattern appears. It is clearly shown that message

emission is in order of the hop count of sensor nodes, from the core node to nodes with larger

numbers. In Fig 4.17(b), it is shown that the phase-lock condition for information diffusion

is first broken for information gathering initiated by sensor node B. Then, although it takes

– 71 –

4.4 Simulation Experiments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25

Pr
ob

ab
ili

ty

Time to Establish the Phase-Lock

a=0.01 b=0.5
a=0.05 b=0.6

Figure 4.18: Distribution of the time to establish the phase-lock condition

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

L
ab

el
 o

f
Se

ns
or

 N
od

e

Time

0hop
1hop

2hop

3hop

4hop

Figure 4.19: Timing of message emissions with dynamic deployment

longer time than for diffusion, the new phase-lock condition appears, where information

propagates from the edge of the sensor network towards the core node B.

Over 100 experiments, the average time to establish the phase-lock condition is 15.5

time units. The time ranges from 11.6 to 19.6 depending on the distribution of sensor

nodes, location of the core node, and phase of sensor nodes. The histogram is shown in

Fig. 4.18. The time to reach the stable phase-lock condition can be reduced by using a

set of larger a and b satisfying Eq. (4.11). For example, with a = 0.05 and b = 0.6, the

minimum, average, and maximum are 5.96, 8.10, and 10.7, respectively.

We confirmed that traveling waves can be formed in a wireless network with addition,

movement, and removal of sensor nodes, and failed nodes. In Fig. 4.19, an example of

the case of node addition is illustrated. At 10 time units, after the phase-lock condition

– 72 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

is established for information diffusion, ten sensor nodes are deployed at random locations

in the wireless sensor network. As can be seen in the figure, newly added sensor nodes

initially emit messages independently of their location. When a new sensor node receives a

message from an existing sensor node, it sets the level value as the received value plus one.

However, its timer has not been adjusted well yet. Therefore, the phase-lock condition of

neighboring sensor nodes is lost as in the case of timer errors. However, as time passes,

they begin to behave in synchrony with sensor nodes at the same distance from the core

node and the phase-lock condition is re-established in the whole sensor network.

4.4.2 Effectiveness of the Mechanism

We next evaluate effectiveness of our communication mechanism. We consider wireless

sensor networks of 100, 900, and 2500 sensor nodes randomly distributed in 10×10, 30×30,

and 50×50 region, respectively. A core node is randomly chosen for data gathering or

information diffusion. For comparison purposes, we also conduct simulation experiments

for the directed diffusion [89-91] where per-hop delay is set at 0.1 time units. All results

are averaged over 100 simulation experiments.

The response time indicates the duration from emission of an interest or a message with

a new session identifier to reception of sensor information from all nodes. The topology

time indicates the duration from emission of an interest or a message with a new session

identifier to reception of reinforcement messages at all nodes or to establish the phase-lock

condition. The number of messages indicates the average number of messages that a node

sends and receives during the response time or the topology time. The data gathering ratio

is defined as the ratio of data reached to a core node or a sink node to the number of nodes.

The lifetime is defined as the duration from emission of an interest or a message with a new

session identifier to death of any sensor node due to depletion of energy.

In Figs. 4.20(a) and 4.20(b), both of the response time and topology time with our

mechanism are longer than those with the directed diffusion. A traveling wave is generated

thorough local and mutual interactions, whereas the directed diffusion relies on message

flooding. However, the overhead in terms of the number of messages is much smaller with

our mechanism. It is only 1 to 6 % of the directed diffusion in the response time and 4 to

26 % in the topology time as shown in Figs. 4.20(c) and 4.20(d). Since a sensor node emits

a message per cycle in our mechanism, the number of message increases in proportional

to the response and topology time. As described in Section 4.2, the response time and

– 73 –

4.4 Simulation Experiments

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

R
es

po
nc

e
T

im
e

Number of Nodes

Proposal
Two-Phase Pull Diffusion

(a) Response time

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

T
op

ol
og

y
T

im
e

Number of Nodes

Proposal
Two-Phase Pull Diffusion

(b) Topology time

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

N
um

be
r

of
 M

es
sa

ge
s

Number of Nodes

Proposal
Two-Phase Pull Diffusion

(c) Number of messages in response time

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

N
um

be
r

of
 M

es
sa

ge
s

Number of Nodes

Proposal
Two-Phase Pull Diffusion

(d) Number of messages in topology time

Figure 4.20: Response time and topology time in gathering

topology time can be reduced by adjusting a PRC function and its parameters.

Figures 4.21(a) and 4.21(b) shows results for the case of information diffusion, where a

randomly chosen node diffuses information to the whole sensor network. When comparing to

the push diffusion of the directed diffusion, our proposal takes longer to diffuse information

to all nodes. Differently from the data gathering scenario, the overhead is larger with our

mechanism. It is 220 to 790 % of the directed diffusion in response time and 718 to 877 % in

topology time as shown in Fig. 4.21(c) and 4.21(d). In the case of diffusion, only one source

node floods exploratory data to all other nodes in the push diffusion, but our mechanism

takes time to generate a traveling wave and thus requires much message exchanges.

Figure 4.22 shows the data gathering ratio against the packet loss probability in a

10×10 network. A sensor node randomly fails in transmitting a message at the packet loss

probability shown on the x-axis. In Fig. 4.22, our mechanism always achieves higher data

– 74 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

R
es

po
ns

e
T

im
e

number of Nodes

Proposal
Push Diffusion

(a) Response time

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

T
op

ol
og

y
T

im
e

Number of Nodes

Proposal
Push Diffusion

(b) Topology time

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500

N
um

be
r

of
 M

es
sa

ge
s

Number of Nodes

Proposal
Push Diffusion

(c) Number of messages in response time

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

N
um

be
r

of
 M

es
sa

ge
s

Number of Nodes

Proposal
Push Diffusion

(d) Number of messages in topology time

Figure 4.21: Response time and topology time in diffusion

gathering ratio than the directed diffusion with the same packet loss probability. In our

mechanism, broadcasting contributes to achieving multi-path effect and this leads to the

higher gathering ratio.

Finally, we verify energy efficiency of our mechanism from a viewpoint of a lifetime of

a sensor network of 100 nodes. As shown in Fig. 4.23(a), the lifetime with our mechanism

is 1577 time units whereas that with the directed diffusion is 265 time units in the case of

information gathering. Furthermore, by using a power-saving mode, the lifetime with our

mechanism becomes as long as 2733 time units wheres that with the directed diffusion is

304 time units. On the contrary, as shown in Fig. 4.23(b), the lifetime with our mechanism

is 1577 time units whereas that with the directed diffusion is 251 time units in the case of

information diffusion. Furthermore, by using a power-saving mode, the lifetime with our

mechanism becomes as long as 3680 time units whereas that with the directed diffusion is

– 75 –

4.5 Implementation and Experimental Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1

D
at

a
G

at
he

ri
ng

 R
at

io

Packet Loss Probability

Proposal
Two-Phase Pull Diffusion

Figure 4.22: Data gathering ratio against packet loss probability

100

80

60

40

20

0
 0 2000 4000 6000

N
um

be
r

of
 A

va
ila

bl
e

N
od

es

Time

Proposal w/o PS Mode
Proposal w/ PS Mode

Pull Diffusion w/o PS Mode
Pull Diffusion w/ PS Mode

(a) Gathering

100

80

60

40

20

0
 0 2000 4000 6000

N
um

be
r

of
 A

va
ila

bl
e

N
od

es

Time

Proposal w/o PS Mode
Proposal w/ PS Mode

Push Diffusion w/o PS Mode
Push Diffusion w/ PS Mode

(b) Diffusion

Figure 4.23: Number of available nodes

286 time units.

4.5 Implementation and Experimental Evaluation

In this section, we describe our implementation of proposed mechanism on a real system,

and evaluate our mechanism through practical experiments.

4.5.1 Implementation of the Mechanism

We implement our mechanism using a commercial sensor unit Crossbow MICAz [66]. It

has an omni-directional antenna and employs B-MAC [93] and IEEE 802.15.4 [94] protocol

– 76 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

Table 4.1: Consumption current of MICAz

Module Description Consumption Current
MCU ATMega128L 12 mA (Active)

(7.37 MHz, 8 bit) 0.01 mA (Sleep)
Flash Memory AT45DB014B 15 mA (Write)

(512 kB) 4 mA (Read)
0.002 mA (Sleep)

Radio CC2420 [95] 19.7 mA (Receive)
(IEEE 802.15.4, 2.4 GHz ISM band) 8.5–17.4 mA (Transmit)

0.001 mA (Sleep)
Sensor Light, Temperature, Acoustic, Magnetic 5 mA (Active)

Acceleration, Other 0.005 mA (Sleep)

LED

R1

5
1
-p
in
 H
ir
o
s
e
 C
o
n
n
e
c
to
r
(f
e
m
a
le
)

(LED1) #10

(VCC) #50

SW

(ADC5) #38

SW

(ADC3) #40

R2 R2

(GND) #1

LED SW SWLED SW SW

(a) Circuit Diagram of Attachment Module (b) Implemented Attachment Module

Figure 4.24: Diagram of attachment module for MICAz

on 2.4 GHz bandwidth for radio communication. The communication range varies from 20

to 100 m depending on the environment and the transmission power. It can be equipped

with light, temperature, barometric pressure, acceleration/seismic, acoustic, magnetic, and

other modules through Hirose DF-9 51 position interface.

Table 4.1 shows consumption current of MICAz. MICAz can reduce energy consumption

by sleeping each modules. For example, when we use off-the-shelf battery with 2000 mAh

of current capacity and we set data gathering cycle as 10 minutes and offset as 5 seconds,

the lifetime of MICAz without sleep will be 2.26 days and the lifetime with sleep will be

132 days.

– 77 –

4.5 Implementation and Experimental Evaluation

Table 4.2: List of parts for attachment module of MICAz

Mame Model Number Number
Connector Hirose, DF9-51S-1V 1
5 mmφ LED (Red) Toshiba TLRH180P 1
5 mmφ LED Diffusion Cap 1
1/4 W, 390 Ω Metal-film Resistor (R1) 1
1/4 W, 10 kΩ Metal-film Resistor (R2) 2
Tact Switch (SW) Mitsumi SOA-113HS 2
1.27 mm Picth Board Sunhayato ICB-028 1

Level value Researved δ0 8

Session identifier

Data
48

Node ID

Figure 4.25: Packet format

To choose core node, we make attachment modules as shown in Fig. 4.24. An attach-

ment module has a red LED and two push switches, and can be connected to MICAz

through Hirose DF-9 51 position interface. The parts for the attachment module is listed

in Table 4.2. The LED flashes when the sensor node broadcasts a message. A sensor node

becomes a core node for information diffusion or gathering when its switch is pushed.

A timer is implemented by shifting phase φi by 0.1/T at every 100 milliseconds. A

message is 48 bits long where the first 4 bits are for level value, 1 bit for δ, 3 bits reserved,

16 bits for session identifier, 8 bits for node id, and the last 16 bits for data as shown in

Fig. 4.25.

4.5.2 Experimental Evaluation

We confirm basic behavior of our mechanism on a sensor network consisting of 16 nodes

arranged in a grid as shown in Fig. 4.26. To maintain the stable network topology, we

introduce a filter with which a node ignores messages from non-neighboring nodes. A pair

of nodes connected by a dotted line in Fig. 4.26 exchange messages. Since the filter is

– 78 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

#1 #2 #3 #4

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

#5 #6 #7 #8

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

#9 #10 #11 #12

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

#13 #14 #15 #16

(a) Relationship among sensor nodes (b) Photo of experiment

Figure 4.26: Experimental topology

16
15
14
13
12

8
4

11
10

9
7
5
3
2
1
6

 80 100 120 140 160 180 200

ID
 o

f
Se

ns
or

 N
od

e

Time [sec]

(a) Timing of message emissions (diffusion)

13
9
5
4
3
2
1

16
15
14
12
10

8
7
6

11

 200 220 240 260 280 300

ID
 o

f
Se

ns
or

 N
od

e

Time [sec]

(b) Timing of message emissions (gathering)

Figure 4.27: Experimental evaluation of the mechanism

– 79 –

4.5 Implementation and Experimental Evaluation

implemented on the application layer, collisions of radio signals among non-neighboring

nodes occur. A cycle of data gathering or dissemination is set at 10 seconds. Other

parameters and settings are the same as those used for the simulation experiments in the

previous section. First, all sensor nodes periodically broadcast messages independently

from each other. At time 100 seconds, sensor node 6 becomes a core node and initiates

a data diffusion session. Then, at time 200 seconds, sensor node 11 initiates a new data

session for data gathering.

Figures 4.27(a) and 4.27(b) show how the sensor network reached the phase-lock con-

dition. Each mark stands for an instant when a sensor node emitted a message. For easier

understanding, sensor nodes are sorted in order of the hop count from the core node. At

first, all sensor nodes independently emit messages. However, by exchanging messages,

the phase-lock condition for information diffusion eventually appears at about 130 seconds.

Figure 4.27(a) shows that sensor nodes emit messages in order of the hop count from the

core node, and thus information propagates from sensor node 6 to the edge of sensor net-

work. From time 200, the phase-lock condition for information diffusion is first broken by

initiating a new session. Then, the new phase-lock condition for information gathering ap-

pears at about 250 seconds, where information propagates from the edge of sensor network

towards the sensor node 11.

As described above, we confirmed that our mechanism can gather or diffuse information

in accordance with application requirements. However, due to collisions among synchro-

nized packet broadcasts among sensor nodes of the same level, some packets are lost as

shown blank in Fig. 4.27. In this experiment, data delivery ratio is about 87%. Packet loss

leads to increase of delay and energy consumption.

4.5.3 Improvement and Evaluation of the Mechanism

To distribute timing of broadcast emissions, we improve the PRC function of sensor node

i from Eq. (4.13) to following.

Δ(φi) = a sin
π

gi
φi + b(gi − φi), (4.14)

where gi = (1 − δiτi) mod 1. Offset τi (τmin < τi ≤ τmax = τ) is chosen randomly.

Figure 4.28 shows timing of message emissions for information gathering when Eq. (4.14)

is used for PRC function. In Fig. 4.28, although node B and C have same level, node C first

– 80 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

Time
Active Sleep Broadcast

A (lv:1)

B (lv:2)

C (lv:2)

D (lv:3)

E (lv:4)

Core (lv:0)

A

B
C

D

E

2τ
max

Core

Node

τ
D

τ
E

τ
C
τ
A

τ
B

Upstream

Downstream

Figure 4.28: Timing of message emissions in the improved mechanism

broadcasts its message τC before node A broadcasts, and node B broadcasts its message τB

before node A broadcasts.

To confirm the basic behavior of the improved mechanism, we consider sensor networks

of 100 sensor nodes randomly distributed in a 10 × 10 region as shown in Fig. 4.16. We

use τmax as 0.1, τmin as 0.05, and same setting for other parameters as described in Section

4.4.1. From 0 to 20 time units, we chose a sensor node A as a core node for information

diffusion. Figure 4.29 shows how the sensor network reached the phase-lock condition when

the improved mechanism is used. Each mark stands for an instant when a sensor node

emitted a message. Sensor nodes are sorted in order of the hop count from the core node.

As shown in Fig. 4.29(a), by exchanging stimuli several times, the phase-lock condition

is eventually accomplished and a regular pattern appears. Figure 4.29(b) shows that the

improved mechanism can distribute timing of broadcast emission among sensor nodes of

the same level.

We confirm effectiveness of the improved mechanism on a sensor network consisting

of 16 nodes arranged in a grid as shown in Fig. 4.26. We use same settings as used in

Section 4.5.2. Figures 4.30(a) and 4.30(b) show how the sensor network reached the phase-

lock condition. Each mark stands for an instant when a sensor node emitted a message.

As with the results in Section 4.5.2, by exchanging messages, the phase-lock condition for

information diffusion eventually appears. Since the improved mechanism distributes timing

of packet emission, data delivery ratio of about 95 % is accomplished.

– 81 –

4.6 Conclusion

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

ID
 o

f
Se

ns
or

 N
od

e

Time

0hop

1hop

2hop

3hop

4hop

(a) Timing of message emissions from 0 to 20

 0

 20

 40

 60

 80

 100

 15.4 15.5 15.6 15.7 15.8 15.9 16

ID
 o

f
Se

ns
or

 N
od

e

Time

level 1

level 2

level 3

level 4

(b) Timing of message emissions from 15 to 16

Figure 4.29: Simulation evaluation of the improved mechanism

16
15
14
13
12

8
4

11
10

9
7
5
3
2
1
6

 80 100 120 140 160 180 200

ID
 o

f
Se

ns
or

 N
od

e

Time [sec]

(a) Timing of message emissions (diffusion)

13
9
5
4
3
2
1

16
15
14
12
10

8
7
6

11

 200 220 240 260 280 300

ID
 o

f
Se

ns
or

 N
od

e

Time [sec]

(b) Timing of message emissions (gathering)

Figure 4.30: Experimental evaluation of the improved mechanism

4.6 Conclusion

In this chapter, we first investigated conditions that lead to a desired form of traveling

wave regardless of the initial phase of oscillators in a PCO model. Then, we proposed a

self-organizing communication mechanism in wireless sensor networks. Through simulation

experiments, we confirmed that our scheme delivers sensor information to/from designated

nodes in a more robust and energy-efficient manner than other methods. Our mechanism

could extend the network lifetime by a factor of up to 12.8 compared to the directed dif-

fusion method, which is a well-known reference model found in the lifetime. However, due

– 82 –

Chapter 4. Traveling Wave-based Communication Adaptive to Application Requirements for WSNs

to the underlying biological model, we experienced a slight delay until the data dissemina-

tion process is completed. Furthermore, we implemented the mechanism using commercial

wireless sensor units, MICAz. Since collisions among synchronized packet emissions affects

the performance, we extended the mechanism to distribute timing of packet emission and

consequently data delivery ratio of about 95 % was accomplished.

– 83 –

Chapter 5

A Data Gathering Mechanism

Adaptive to Sensing Requirements

for Wireless Sensor Networks

5.1 Introduction

In wireless sensor networks, sleep scheduling certainly plays an essential role in saving en-

ergy consumption for longer lifetime and guaranteeing communication delay for mission

critical applications [27]. In Chapter 4, we considered energy-efficient scheduling for peri-

odic communication involving all sensor nodes. In gathering type of our communication

mechanism, message transmission first begins at the edge of a wireless sensor network. At

the timing when those nodes at the furthest hop distance from the base station transmit

messages, nodes which are closer to the base station by one hop, i.e. next hop nodes, are

scheduled to wake up to receive the messages. After a while, they also transmit messages,

and at this time, their next hop nodes are awake and ready to receive the messages. At the

same time, the furthest nodes also receive the messages and go to sleep. As a consequence

of such scheduling, we see concentric traveling waves of message propagation from the edge

to the base station.

If the interval of data gathering is fixed, such sleep scheduling to wake up nodes from the

edge of a wireless sensor network to a base station is effective in saving energy consumption

and reducing data gathering delay. However, in some class of applications, a node need to

– 85 –

5.1 Introduction

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Floor

Shaft

Furnace

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Cro ssb o w MPR2400JCro ssb o w MPR2400J

Cro ssb ow MPR2400JCro ssb ow MPR2400J

Sensor Node

BS

BS

Shaft Furnace

Monitoring

Room

Figure 5.1: Monitoring of shaft furnace of steel plant

change its sensing frequency to monitor the region or target more frequently when it detects

unusual condition and phenomena. Furthermore, the number of nodes which monitor and

report the phenomena should be regulated in accordance with its criticality and importance.

For example, we consider to deploy temperature and CO gas sensors on the surface of shaft

furnace of steel plant as shown in Fig. 5.1. Temperature changes slowly in the order of

hours and once increases, it stays high for a long period of time. Therefore, nodes are

required to monitor temperature more frequently when temperature is changing, while

they can decrease the sensing frequency under stable condition. On the other hand, CO

gas suddenly appears and moves fast. Therefore, nodes are required to monitor CO gas

more frequently than temperature while CO gas exists.

In this chapter, to tackle the above-mentioned problem, we propose a data gathering

mechanism adaptive to dynamically changing sensing requirements. In our mechanism,

nodes operate on traveling wave-based periodic data gathering at regular data gathering

intervals. We organize traveling waves in a self-organizing fashion by adopting a pulse-

coupled oscillator model [52] as described in Chapter 4. We assume that the regular sensing

frequency is the same among sensors of different types. When condition of sensing target,

such as temperature and gas concentration, changes at a certain point, surrounding nodes

decide whether to monitor the target more frequently or not depending on the need for

sensing. To regulate the number of nodes engaged in frequent monitoring of target in a

self-organizing way, we adopt a response threshold model [69], i.e. a mathematical model of

division of labor. Once a node considers to monitor the target more frequently, it changes

its sensing frequency higher. So that obtained sensor data are forwarded to a base station at

the higher frequency, nodes on the path to the base station also adapt to the new frequency.

As a result, two or more traveling waves emerge in part or as a whole in a wireless sensor

– 86 –

Chapter 5. Data Gathering Adaptive to Sensing Requirements for WSNs

Time
Active Sleep Broadcast

A (lv:1)

B (lv:2)

C (lv:2)

D (lv:3)

E (lv:4)

BS (lv:0)

A

B
C

D

E

2τmax

BS

T

Tk Tk Tk Tk

T

xB,1=1

τ
D

τ
E

τ
C
τ
A

τ
B

Upstream

Downstream

Figure 5.2: Broadcast timing of proposed mechanism

network.

The rest of this chapter is organized as follows. We propose a data gathering mechanism

adaptive to sensing requirement in Section 5.2. Then, we show simulation results in Section

5.3. Finally, we conclude this chapter in Section 5.4.

5.2 A Data Gathering Mechanism Adaptive to Sensing Re-

quirements

In this section, we propose a data gathering mechanism adaptive to sensing requirements.

An example of behavior of our mechanism is illustrated in Fig. 5.2. In our mechanism, all

nodes have kmax sensing devices, for example, temperature, light, and gas concentration,

and monitors condition of kmax sensing targets. For example, a sensing target of a tem-

perature sensor is temperature in the vicinity of a sensor, but we use sensor and sensing

target interchangeably hereafter. Node i has two sensing states, normal state and frequent

state for each sensor k (1 ≤ k ≤ kmax), and they are denoted as xi,k = 0 and xi,k = 1,

respectively. Usually, node i is in normal state on all sensors, monitors sensing targets, and

broadcasts sensor data at a regular interval of T seconds. When node i moves to frequent

state on sensor k, it begins to operate at a new interval of Tk = T/2ck seconds. To relay

sensor data from node i to a base station, nodes on the path from node i to the base station

also change their operation interval to Tk. Here, ck (0 ≤ ck ≤ [log2(T/2τmax)]) is an integer

– 87 –

5.2 A Data Gathering Mechanism Adaptive to Sensing Requirements

value pre-determined for sensing target k.

5.2.1 Adaptive Sensing using Response Threshold Model

To decide the sensing state for sensing target k at node i in a fully-distributed and self-

organizing manner, we adopt the response threshold model of division of labor and task

allocation in social insects [69]. There are several research work in application of the

response threshold model to wireless sensor network control [96, 97].

Now, we consider demand si,k of sensing target k at node i. Following the response

threshold model, demand si,k changes as

dsi,k

dt
= δi,k(t) − α

mi,k(t)
ni,k(t)

, (5.1)

where δi,k(t) corresponds to the rate of increase and α determines the work efficiency.

mi,k(t) and ni,k(t) represent the number of neighbor nodes performing frequent sensing on

sensor k at time t and the number of neighbor nodes having sensor k, respectively. In the

equation, when the increase of demand is equivalent to the work output, the demand does

not change. If the number of workers are insufficient, the demand increases.

The definition of δi,k depends on application requirements. For example, in steel plant,

temperature changes slowly in the order of hours and once increases, it stays high for a

long period of time. Therefore, nodes are required to monitor temperature more frequently

when temperature is changing, while they can decrease the sensing frequency under stable

condition independently of the absolute value of temperature. It means that the rate of

temperature change is appropriate as δi,k for temperature monitoring. On the other hand,

CO gas suddenly appears and moves fast. The existence of CO gas is harmful to workers

near the shaft. Therefore, the absolute value is more important for CO gas sensors and δi,k

should be defined based on the value itself.

The probabilities that node i begins to work, i.e. monitor the sensing target more

frequently and that node i stops frequent sensing are given by the following equations,

respectively.

P (xi,k = 0 → xi,k = 1) =
s2
i,k(t)

s2
i,k(t) + θ2

i,k(t)
(5.2)

P (xi,k = 1 → xi,k = 0) = pi,k(t), (5.3)

– 88 –

Chapter 5. Data Gathering Adaptive to Sensing Requirements for WSNs

where pi,k(t) ∈ [0, 1] is a parameter. For example, by using an inverse of changing rate

of temperature as pi,k(t), we can expect that nodes immediately resume the normal sleep

schedule once temperature becomes stable. The readiness of node to get engaged in a

frequent sensing task depends on the threshold θi,k. Threshold is adjusted depending on

whether a node performs frequent sensing or not.

dθi,k

dt
=

{
−ξ, if i performs frequent sensing

ϕ, otherwise,
(5.4)

where ξ and ϕ are parameters. The threshold adjustment makes specialists having a small

threshold and keep sensing the target frequently. In addition, the threshold adjustment

makes the response threshold model insensitive to parameter setting, such as the ragne of

demand si,k and α.

5.2.2 Data Gathering with Adaptive Intervals

Now, we explain how to accomplish adaptive data gathering on traveling wave-based com-

munication. The mechanism is based on our previous mechanism described in Chapter 4.

Control Parameters

In our mechanism, node i maintains the phase φi ∈ [0, T] (dφi/dt = 1), level value li, PRC

(phase-response curve) function Δi(φi), offset τi (0 < τmin ≤ τi ≤ τmax < 0.5T), demand

vector Si = {si,k|1 ≤ k ≤ kmax}, threshold vector Θi = {θi,k|1 ≤ k ≤ kmax}, sensing state

vector Xi = {xi,k|1 ≤ k ≤ kmax}, relay flag vector Fi = {fi,k|1 ≤ k ≤ kmax}, sensing state

table Yi = {∀jXj} containing sensing state vectors of all neighbor nodes, and sensor data

Di = {Di,k|1 ≤ k ≤ kmax}. Entries of vectors are updated based on control information

embedded in a received message from a neighbor node, which is emitted at the interval of

sensing. It implies that there is no additional message transmission for control.

A level value li indicates the number of hops from a base station. Initially, a level value

is set at infinity. A base station uses a level value of zero. The offset τi defines the interval of

message emission between a node of level l−1 and that of level l. Offset τi is chosen randomly

to avoid synchronous message emissions among nodes of the same level (see node B and

C in Fig. 5.2). The maximum offset τmax is determined taking into account the density of

nodes. The PRC function determines the amount of phase shift on receiving a broadcast

– 89 –

5.2 A Data Gathering Mechanism Adaptive to Sensing Requirements

message. To generate concentric traveling waves of message propagation regardless of the

initial phase condition, we use the following PRC function for all nodes as described in

Chapter 4.

Δi(φi) = a sin
π

τi
φi + b(τi − φi), (5.5)

where a and b are parameters which determine the speed of convergence. A relay flag fi,k

is used to notify downstream nodes of the existence of upstream nodes in frequent state.

When sensor node i relays data to downstream nodes from upstream nodes in frequent state,

the relay flag fi,k is set at one, otherwise, fi,k is set at zero. Sensor data Di,k contains all

sensor data, together with originator’s id, generated or received during the wake-up period

for sensing target k.

Node Behavior

Node i behaves in accordance with its phase φi and relay flag vector Fi. Node i wakes

up when φi mod mink Tk becomes mink Tk − τmax, where mink Tk = T/maxk(fi,k2ck , 1).

In Fig. 5.2, node A with sensor k = 1 additionally wakes up three times between regular

sensing of interval of T , for having mink Tk = T/4 with fA,1 = 1, for example. Upstream

nodes setting the same relay flag (node B in Fig. 5.2) are scheduled to broadcast a message

during mink Tk − τmax and mink Tk from the node i’s viewpoint. After waking up, node i

initializes its relay flag vector Fi to all zero, clears sensor data Di, and waits for message

reception.

When node i receives a message from upstream node j whose level value must be

lj = li + 1, node i deposits the received sensor data Dj. The broadcast message also

contains relay flag vector Fj, sensing state vector Xj. If any of relay flag fj,k ∈ Fj is set at

one in the received message, node i sets corresponding relay flag fi,k at one. In addition,

node i replaces or adds the entry of node j in its sensing state table Yi by the received

sensing state vector Xj.

When node i receives a message from node j with lj = li, it checks whether the received

sensor data Dj covers its own sensor data Di. Those sensor data contained in the broadcast

message of node j are removed from Di. If Di,k becomes empty, node i sets relay flag fi,k

at zero. As a result, the amount of sensor data in a message can be reduced and the number

of sensor nodes involved in frequent relaying could be further reduced as shown in Fig. 5.3.

Then, when φi mod mink Tk reaches mink Tk − ε, node i determines whether it moves

– 90 –

Chapter 5. Data Gathering Adaptive to Sensing Requirements for WSNs

Neighboring

Relationship

Route (A�BS)

BS

Node A

(XA,k=1)

Without Trimming

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Crossbow MPR2400JCrossbow MPR2400J

Upstream

Downstream

Reset

Relay Flag

BS

Node A

(XA,k=1)

Without Trimming

Figure 5.3: An example of message reduction

to frequent state for sensing target ∀k ∈ {k|φi mod Tk = Tk − ε} or not. ε (0 < ε < τmin)

corresponds to the sensing delay. First, node i calculates ni,k and mi,k from sensing state

table Yi. Next, node i derives a demand vector Si using Eq. (5.1). Then, node i determines

its sensing state vector Xi using Eq. (5.2) and Eq. (5.3). If any of sensing state xi,k is set

at one, node i monitors sensing target k, deposits sensor data, and sets its relay flag fi,k at

one. If φi is T − ε, i.e. timing for regular sensing, node i monitors all sensing targets and

deposits sensor data. After that, node i adjusts its threshold vector Θi using Eq. (5.4).

When φi mod mink Tk becomes zero in 0 < φi < T , or φi reaches T , node i broadcasts

a message, which is received by any of awake nodes in the range of radio communication. A

message that node i emits contains node id i, level value li, sensing state vector Xi, relay

flag vector Fi, synchronization flag zi, and sensor data Di. zi is set at one only if the phase

φi is T on broadcasting the message. After broadcasting, the phase reaching T goes back

to zero.

After the broadcasting, it keeps awake for τmax. When node i receives a message having

synchronization flag zj of one from node j with lj < li, it sets its level value li at lj + 1

and shifts its phase by an amount Δi(φi) in Eq. (5.5). The phase shift is done only once

during the τmax awake period. When node i receives a message from node j with lj = li, it

only updates sensing state table Yi. After τmax later from its broadcasting, node i goes to

sleep. Therefore, a node is awake for the duration of 2τmax in one data gathering interval

mink Tk, i.e. duty cycle becomes 2τmax/mink Tk.

– 91 –

5.3 Simulation Experiments

5.2.3 Overhead of the Mechanism

Now, let us consider protocol overhead and complexity. Each sensor node operates on the

phase of timer and wakes up at the frequency of sensing. A message containing sensor data

and control information is broadcast once per awake period.

Information that node i has to maintain are, level value li, demand vector Si, threshold

vector Θi, sensing state vector Xi, relay flag vector Fi, and sensing state table Yi. Then,

we can formulate the total amount as, |li|+ |Si|+ |Θi|+ |Xi|+ |Fi|+ |Yi|+ |Di|. When we

assume that a level value needs 4 bits (up to 15 hops), each of demand and threshold value

is expressed by 32 bits, each of relay flag and sensing state needs 1 bit, and the number of

neighbors is n, the total amount becomes 4 + (66 + n)kmax bits. In our scenario in steel

plant, kmax = 2, i.e. temperature and CO gas concentration, and the number of neighbors

is a few dozen. Therefore, memory size required for control information is less than 200

bits. Most of off-the-shelf sensor nodes can afford this amount. For example, MICAz [66]

has 32 kbits of memory.

Control information in a message includes node id i, level value li, sensing state vector

Xi, relay flag vector Fi, and synchronization flag zi. Then, we can formulate the total

amount as, |i| + |li| + |Xi| + |Fi| + |zi|. When we assume a node id requires 10 bits (1023

nodes) and a synchronization flag requires 1 bit, the total amount becomes 15+2kmax bits.

If kmax = 2, only 19 bits are needed for control information in a message. For example,

a MICAz [66] sensor node with TinyOS platform uses 144 bits for total size of control

information, i.e. header and meta-data field, as default [98].

5.3 Simulation Experiments

In this section, we show results of simulation experiments. We consider a wireless sensor

network of 200 nodes randomly distributed in 100 m × 100 m region as shown in Fig. 5.4. A

base station is located in the center of the region. Both sensing and communication ranges

are fixed at 20 m. We consider two sensing targets, i.e. temperature and CO gas concen-

tration. The normal data gathering interval is T = 160 seconds. For unusual condition,

we set ctemp = 2 and cgas = 4, and therefore, Ttemp = 40 seconds and Tgas = 10 seconds,

respectively.

We use δi,temp = β|dvi,temp/dt| and δi,gas = vi,gas in Eq. (5.1), and pi,temp = 1 −
β|dvi,temp/dt| and pi,gas = 1−vi,gas in Eq. (5.3) for all nodes. vi,temp ∈ [0, 1] and vi,gas ∈ [0, 1]

– 92 –

Chapter 5. Data Gathering Adaptive to Sensing Requirements for WSNs

TEMP.

GAS

BS

Area C Area D

Area A Area B

Normal State Node Relay NodeFrequent State Node

Figure 5.4: Node distribution and snapshot at 1200 seconds in simulation experiments

are temperature and CO gas concentration normalized by its maximum value, respectively.

We use β = 1000. A node consumes 52.2 mW for transmission, 59.1 mW for reception,

60 μW in an idle mode, and 3 μW in a sleep mode [66]. τmax and τmin is set at 1 second

and 0.5 second, respectively. We assume that control information in a message amounts to

24 bits and one sensor data amounts to 16 bits. We use a = 0.01 and b = 0.5 for PRC in

Eq. (5.5) and the parameters of response threshold model are set to α = 1, ξ = 0.01, and

ϕ = 0.001.

Until 500 seconds, nothing happens where temperature vtemp is 0.1 and no CO gas is

observed. From 500 seconds, temperature begins to linearly increase at a randomly chosen

location in the area D. At 1500 seconds, temperature at the location reaches 0.9 and stays

high until the end of simulation. During the temperature increase, CO gas of concentration

vgas=0.8 leaks out from a randomly chosen location in the area C at 1000 seconds. The

gas moves to the area A at the speed of 0.08 m/s. At 2000 seconds, the gas disappears.

Figure 5.5 illustrates the behavior of nodes. Each mark corresponds to the instant when

a node, whose id is shown on the left y-axis, broadcasts a message. Nodes are numbered

based on the location as shown on the right y-axis. Figures 5.6(a) and 5.6(b) show the

number of nodes in frequent state for each of sensing targets. At first, all nodes are in the

normal state. At the end of awake period at 500 seconds, some nodes in the area D decide

to monitor and report temperature more often to answer the increased sensing demand

caused by temperature change. From the next timing, at most 160 seconds later, they

begin frequent sensing of temperature as shown in Fig. 5.6(a). Since they set relay flag

fi,temp in broadcast messages, nodes on the path to the base station also set their relay flag

– 93 –

5.3 Simulation Experiments

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

L
ab

el
 o

f
Se

ns
or

 N
od

e

Time [seconds]

Area A

Area B

Area C

Area D

Temperature

CO Gas

Figure 5.5: Timing of message emissions

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500

N
um

be
r

of
 S

en
so

r
N

od
es

Time [seconds]

xtemp=1
ftemp=1

(a) Temperature

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500

N
um

be
r

of
 S

en
so

r
N

od
es

Time [seconds]

xco=1
fco=1

(b) CO gas

Figure 5.6: Number of nodes in frequent state

and begin to operate at the shorter intervals of Ttemp = 40 seconds. At 1500 seconds, nodes

find that temperature becomes stable, and they go back to normal state.

Figure 5.4 illustrates snapshot of the wireless sensor network at 1200 seconds. Each

filled circle, filled square, and open square correspond to a node in the normal state, a node

in the frequent state, and a relay node, respectively. Some nodes between the base station

and nodes in the frequent state stay in the normal state and keep operating at the normal

interval. It contributes reduction of energy consumption and probability of collisions among

nodes.

In a similar manner, at 1000 seconds, some nodes in the area C begin to operate at the

shorter intervals of Tgas = 10 seconds for CO gas leakage. As CO gas moves to the area

– 94 –

Chapter 5. Data Gathering Adaptive to Sensing Requirements for WSNs

A, nodes in the area C eventually go back to normal state while nodes in the area A move

to the frequent state as shown in Fig. 5.5. Nodes in the frequent state evaluates Eqs. (5.2)

and (5.3) often whereas nodes moving from the normal state to the frequent state begins

frequent sensing at the next wake-up. Therefore, we observe the gradual decrease in short

time scale and the sudden increase in long time scale in Fig. 5.6(b).

During simulation experiments, total energy consumption with our proposed mechanism

is 57.6 mJ per node and duty cycle is 0.03 per node. On the other hand, when we adopt 10

seconds as the regular data gathering interval to prepare for CO gas leakage, the per-node

energy consumption becomes 632 mJ and duty cycle is 0.2. Therefore, we can conclude

that our mechanism accomplishes autonomous and energy-efficient data gathering satisfying

dynamically changing sensing requirements.

5.4 Conclusion

In this chapter, we considered adaptation of intervals of sensing and data gathering pe-

riod, since the interval depends on application requirements and surrounding conditions in

wireless sensor networks. We proposed a data gathering mechanism adaptive to sensing

requirements in wireless sensor networks composed nodes with multiple sensing capabili-

ties. To accomplish self-organizing control, we adopted the response threshold model for

adaptive sensing task engagement and the pulse-coupled oscillator model for energy-efficient

transmission and sleep scheduling. Through simulation experiments, we confirmed that au-

tonomous and energy-efficient data gathering can be accomplished satisfying dynamically

changing sensing requirements in a more energy-efficient manner.

– 95 –

Chapter 6

Conclusion

Communication mechanisms for future cooperative information networks must cope with

the heterogeneity of connected devices and dynamic changes in the network environment.

In this thesis, we considered self-adaptive communication mechanisms for cooperative in-

formation networks focusing on two very different types of information networks, i.e. video

streaming systems and wireless sensor networks.

First, we considered a video streaming system. We introduced proxy caching servers to

the video streaming system to achieve scalable, low-delay, and high-quality video streaming.

By cooperation among proxies, the video streaming system can reduce the perceived net-

work latency and achieve a higher degree of content availability. Furthermore, we provided

capability of video quality adaptation, i.e. video filters, at the proxy to handle heteroge-

neous and dynamically changing requirements on the quality of the video data provided to

heterogeneous users in terms of the available bandwidth, end-system performance, and user

preferences on the perceived video quality. We began this work by proposing, designing,

and implementing a proxy caching system for MPEG-4 video streaming services by using

common applications for server and client programs. Then, we extended our caching mech-

anism by considering cooperation among the proxies. Through simulation and experimental

evaluations, it was shown that our proposed mechanism can provide users with continuous

and high-quality video streaming services under dynamically changing network conditions

in comparison with independent and non-adaptive caching mechanisms.

Next, we considered wireless sensor networks which should be operated in an energy-

efficient, adaptive, robust, fully-distributed, and self-organizing manner. We proposed two

self-adaptive communication mechanisms by adopting bio-inspired models to handle various

– 97 –

Chapter 6. Conclusion

and dynamically changing application requirements on communication patterns, sensing

frequencies, and the number of nodes to monitor and report the phenomena. The first

communication mechanism adapts to various types of communication, i.e. diffusion and

gathering, in accordance with the application requirements in wireless sensor networks.

We investigated conditions that lead to a desired form of traveling wave regardless of the

initial phases in a pulse-coupled oscillator model, and proposed a self-adaptive and self-

organizing communication mechanism. Through simulation experiments, we confirmed that

our mechanism delivers sensor information to/from designated nodes in a more energy-

efficient and robust manner than other methods, at the slight cost of increased time to

generate a traveling wave. Implementations using commercial MICAz sensor units gave

further evidence of the good applicability of our approach. Then, we extended the first self-

adaptive communication mechanism by considering the adaptation of sensing frequencies

and the number of nodes which monitor and report the phenomena. We proposed a self-

adaptive data gathering mechanism in wireless sensor networks composed of nodes with

multiple sensing capabilities by adopting the response threshold model for adaptive sensing

task engagement. Through simulation experiments, we confirmed that autonomous and

energy-efficient data gathering can be accomplished, satisfying the dynamically changing

sensing requirements.

From above findings, for very distinct types of two information networks, i.e. video

streaming systems and wireless sensor networks, we can conclude that self-adaptability is a

key feature to accomplish future cooperative information networks which suffer very much

from unpredictable, unreliable, dynamically chainging, and selfish behavior of heterogeneous

users and devices as well as the external and environmental conditions. Although a lot of

problems are left as open issues to be solved, we believe that those discussions and results

in this thesis would provide insights toward a future information society.

– 98 –

Bibliography

[1] N. Niebert, A. Schieder, J. Zander, and R. Hancock, Ambient Networks: Co-Operative

Mobile Networking for the Wireless World. Wiley, 2007.

[2] Q. H. Mahmoud, Cognitive Networks: Towards Self-Aware Networks. Wiley, 2007.

[3] N. Wakamiya, K. Leibnitz, and M. Murata, “Noise-assisted control in information net-

works,” in Proceedings of Frontiers in the Convergence of Bioscience and Information

Technologies (FBIT 2007), pp. 11–13, Oct. 2007.

[4] D. B. Johnson, “Routing in ad hoc networks of mobile hosts,” in Proceedings of the

Workshop in Mobile Computing Systems and Applications, pp. 158–163, Dec. 1994.

[5] C. Perkins and E. Royer, “Ad hoc on-demand distance vector routing,” in Proceedings

of 2nd IEEE Workshop on Mobile Computing Systems and Applications, Feb. 1999.

[6] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C.Gill, “Integrated coverage and

connectivity configuration in wireless sensor networks,” in Proceedings of ACM 1st In-

ternational Conference on Embedded Networked Sensor Systems (SenSys 2003), pp. 28–

39, Nov. 2003.

[7] F. Dressler, Self-Organization in Sensor and Actor Networks. Wiley, 2007.

[8] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to

Artifical Systems. Oxford Univ Pr., 1999.

[9] M. Murata, “Biologically inspired communicaiton network control,” in Proceedings of

SELF-STAR: International Workshop on Self-* Properties in Complex Information

Systems, May 2004.

– 99 –

BIBLIOGRAPHY

[10] K. Leibnitz, N. Wakamiya, and M. Murata, “Self-adaptive ad-hoc/sensor network rout-

ing with attractor-selection,” in Proceedings of IEEE Global Telecommunications Con-

ference (GLOBECOM 2006), pp. 1–5, Nov. 2006.

[11] K. Leibnitz, N. Wakamiya, and M. Murata, “Biologically inspired self-adaptive multi-

path routing in overlay networks,” Communication of the ACM Special Issue on Self-

managed Systems and Services, vol. 49, pp. 62–67, Mar. 2006.

[12] G. D. Caro, F. Ducatelle, and L. M. Gambardella, “AntHocNet: an ant-based hybrid

routing algorithm for mobile ad hoc networks,” European Transactions on Telecom-

munications, vol. 16, pp. 443–455, Oct. 2005.

[13] “YouTube.” http://www.youtube.com/.

[14] “Google Video.” http://video.google.com/.

[15] “GyaO.” http://www.gyao.jp/.

[16] J. Liu and J. Xu, “Proxy caching for media steaming over the Internet,” IEEE Com-

munication Magazine, pp. 88–94, Aug. 2004.

[17] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache allocation for

efficient streaming media distribution,” IEEE Transactions on Multimedia, vol. 6,

pp. 366–374, Apr. 2004.

[18] J. Song, “Segment-based proxy caching for distributed cooperative media content

servers,” ACM SIGOPS Operating Systems Review, vol. 39, pp. 22–33, Jan. 2005.

[19] L. Guo, S. Chen, Z. Xiao, and X. Zhang, “DISC: dynamic interleaved segment caching

for interactive streaming accesses,” in Proceedings of the 25th International Conference

on Distributed Computing Systems (ICDCS 2005), pp. 763–772, June 2005.

[20] A. T. S. Ip, J. Liu, and J. C.-S. Lui, “COPACC: An architecture of cooperative proxy-

client caching system for on-demand mediea streaming,” IEEE Transaction on Parallell

and Distributed Systems, vol. 18, pp. 70–83, Jan. 2007.

[21] B. Shen, S.-J. Lee, and S. Basu, “Caching strategies in transcoding-enabled proxy sys-

tems for streaming media distribution networks,” IEEE Transactions on Multimedia,

vol. 6, pp. 375–386, Apr. 2004.

– 100 –

BIBLIOGRAPHY

[22] M. Zink, J. Schmitt, and C. Griwodz, “Layer-enabled video streaming: a proxy’s

perspective,” IEEE Communication Magazine, pp. 96–103, Aug. 2004.

[23] C.-L. Lin, H.-H. Lee, C.-L. Chan, and J.-S. Wang, “Cooperative proxy framework for

layered video streaming,” in Proceedings of the 2005 IEEE Global Telecommunications

Conference (GLOBECOM 2005), vol. 1, Nov. 2005.

[24] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-

works: a survey,” Computer Networks, vol. 38, pp. 393–422, Mar. 2002.

[25] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a survey,” IEEE

Networks, vol. 18, pp. 45–50, July 2004.

[26] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor networks,”

Ad Hoc Networks, vol. 3, pp. 325–349, May 2005.

[27] L. Wang and Y. Xiao, “A survey of energy-efficient scheduling mechanisms in sensor

networks,” Mobile Networks and Applications, vol. 11, pp. 723–740, Oct. 2006.

[28] C. F. Garcia-Hernández, P. H. Ibrargüengoytia-González, J. Garćıa-Hernández, and

J. A. Pérez-D́ıaz, “Wireless sensor networks and applications: a survey,” International

Journal of Computer Science and Network Security (IJCSNS), vol. 7, pp. 264–273,

Mar. 2007.

[29] M. Younis and K. Akkaya, “Strategies and techniques for node placement in wireless

sensor networks: a survey,” Ad Hoc Networks, vol. 6, pp. 621–655, June 2008.

[30] K. L. Mills, “A brief survey of self-organization in wireless sensor networks,” Wireless

Communicaitons and Mobile Computing, vol. 7, pp. 823–834, Sept. 2007.

[31] Y. Taniguchi, A. Ueoka, N. Wakamiya, M. Murata, and F. Noda, “Implementation

and evaluation of proxy caching system for MPEG-4 video streaming with quality

adjustment mechanism,” Technical Report of IEICE (NS2003-45), pp. 45–48, June

2003. (in Japanese).

[32] Y. Taniguchi, A. Ueoka, N. Wakamiya, M. Murata, and F. Noda, “Implementation and

evaluation of proxy caching system for MPEG-4 video streaming with quality adjust-

ment mechanism,” in Proceedings of The 5th AEARU Workshop on Web Technology,

pp. 27–34, Oct. 2003.

– 101 –

BIBLIOGRAPHY

[33] Y. Taniguchi, N. Wakamiya, and M. Murata, “A proxy caching system for MPEG-

4 video streaming with a quality adaptation mechanism,” WSEAS Transactions on

Communications, vol. 6, pp. 824–832, Oct. 2007.

[34] Internet Streaming Media Alliance, “Internet streaming media alliance implementation

specification version 1.0,” Aug. 2001.

[35] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate control (TFRC):

Protocol specification,” Internet Request for Comments 3448, Jan. 2003.

[36] N. Wakamiya, M. Murata, and H. Miyahara, “Cooperative video streaming mecha-

nisms with video quality adjustment,” in Proceedings of the 4th Asia-Pasific Sympo-

sium on Information and Telecommunication Technologies (APSITT 2001), pp. 106–

110, Nov. 2001.

[37] N. Wakamiya, M. Murata, and H. Miyahara, “Video streaming systems with cooper-

ative caching mechanisms,” in Proceedings of SPIE International Symposium ITCom

2002, pp. 305–314, July 2002.

[38] N. Wakamiya, M. Murata, and H. Miyahara, “On proxy-caching mechanisms for co-

operative video streaming in heterogeneous environment,” in Proceedings of the 5th

IFIP/IEEE Ineternational Conference on Management of Multimedia and Mobile Net-

works and Services (MMNS 2002), pp. 127–139, Oct. 2002.

[39] Y. Taniguchi, N. Wakamiya, and M. Murata, “Implementation and evaluation of coop-

erative proxy caching system for video streaming services,” Technical Report of IEICE

(IN2003-190), pp. 13–18, Feb. 2004. (in Japanese).

[40] Y. Taniguchi, N. Wakamiya, and M. Murata, “Implementation and evaluation of co-

operative proxy caching mechanisms for video streaming services,” in Proceedings of

SPIE’s International Symposium on the Convergence of Information Technologies and

Communications (ITCom 2004), pp. 288–299, Oct. 2004.

[41] Y. Taniguchi, N. Wakamiya, and M. Murata, “Quality-aware cooperative proxy caching

for video streaming services,” submitted to Journal of Networks, Apr. 2008.

[42] Y. Taniguchi, N. Wakamiya, and M. Murata, “A distributed and self-organizing data

gathering scheme in wireless sensor networks,” in Proceedings of the 6th Asia-Pacific

– 102 –

BIBLIOGRAPHY

Symposium on Information and Telecommunication Technologies (APSITT 2005),

pp. 299–304, Nov. 2005.

[43] Y. Taniguchi, N. Wakamiya, and M. Murata, “A distributed and self-organizng commu-

nication mechanism based on traveling wave phenomena for wireless sensor networks,”

Technical Report of IEICE (NS2006-48), pp. 17–20, July 2006. (in Japanese).

[44] Y. Taniguchi, N. Wakamiya, and M. Murata, “A self-organizing communication mech-

anism using traveling wave phenomena for wireless sensor networks,” in Proceedings of

the 2nd International Workshop on Ad Hoc, Sensor and P2P Networks (AHSP 2007),

pp. 562–569, Mar. 2007.

[45] Y. Taniguchi, N. Wakamiya, and M. Murata, “Implementaiton and evaluation of trav-

eling wave based communication mechanism for wireless sensor networks,” Technical

Report of IEICE (NS2007-40), pp. 1–6, July 2007. (in Japanese).

[46] Y. Taniguchi, N. Wakamiya, and M. Murata, “A communication mechanism using

traveling wave phenomena for wireless sensor networks,” in Proceedings of the 1st

Annual IEEE International Workshop: From Theory to Practice in Wireless Sensor

Networks (t2pWSN 2007), May 2007.

[47] Y. Taniguchi, N. Wakamiya, and M. Murata, “A traveling wave based communication

mechanism for wireless sensor networks,” Journal of Networks, vol. 2, pp. 24–32, Sept.

2007.

[48] Y. Taniguchi, N. Wakamiya, and M. Murata, “Demo abstract: a traveling wave-based

self-organizing communication mechanism for WSNs,” in Proceedings of the 5th ACM

Conference on Embedded Networked Sensor Systems (SenSys 2007), pp. 399–400, Nov.

2007.

[49] B. Ermentrout and J. Rinzel, “Beyond a pacemaker’s entrainment limit: phase walk-

through,” The American Journal of Physiology - Regulatory, Integrative and Compar-

ative Physiology, pp. 102–106, 1984.

[50] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological oscilla-

tors,” Society for Industrial and Applied Mathematics Journal, vol. 50, pp. 1645–1662,

Dec. 1990.

– 103 –

BIBLIOGRAPHY

[51] B. Ermentrout, “An adaptive model for synchrony in the firefly Pteroptyx malaccae,”

Journal of Mathematical Biology, pp. 571–585, 1991.

[52] P. Goel and B. Ermentrout, “Synchrony, stability, and firing patterns in pulse-coupled

oscillators,” Physica D, pp. 191–216, Mar. 2002.

[53] H.-A. Tanaka, “Computer simulation of population synchrony for P. effulgens,” Insects

and Nature, June 2004.

[54] Y.-W. Hong and A. Scaglione, “A scalable synchronization protocol for large scale sen-

sor networks and its appliations,” IEEE Journal on Selected Areas in Communications,

vol. 23, pp. 1085–1099, May 2005.

[55] S. Barbarossa, “Self-organizing sensor networks with information propagation based

on mutual coupling of dynamic systems,” in Proceedings of the 2005 International

Workshop on Wireless Ad-hoc Networks (IWWAN 2005), May 2005.

[56] S. F. Bush, “Low-energy network time synchronization as an emergent property,” in

Proceedings of the 14th International Conference on Computer Communications and

Networks (ICCCN 2005), pp. 93–98, Oct. 2005.

[57] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-inspired

sensor network synchronicity with realistic radio effects,” in Proceedings of the 3rd

ACM Conference on Embedded Networked Sensor Systems (SenSys 2005), pp. 142–

153, Nov. 2005.

[58] A.-S. Hu and S. D. Servetto, “On the scalability of cooperative time synchronization

in pulse-connected networks,” IEEE Transactions on Information Theory, vol. 52,

pp. 2725–2748, June 2006.

[59] A. Tyrrell, G. Auer, and C. Bettstetter, “Synchronization inspired from nature for

wireless meshed networks,” in Proceedings of the 2nd IEEE International Conference

on Wireless Communications, Networking and Mobile Computing (WiCOM 2006),

pp. 1–4, Sept. 2006.

– 104 –

BIBLIOGRAPHY

[60] O. Simeone and U. Spagnolini, “Distributed synchronization for wireless sensor net-

works with coupled discrete-time oscillators,” EURASIP Journal on Wireless Com-

munication and Networking Special Issue on Novel Techniques for Analysis & Design

of Cross-Layer Optimized Wireless Sensor Networks, vol. 2007, 2007.

[61] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “DESYNC: self-organizing desynchroniza-

tion and TDMA on wireless sensor networks,” in Proceedings of the 6th International

Conference on Information Processing in Sensor Networks (ISPN 2007), pp. 11–20,

Apr. 2007.

[62] A. Patel, J. Degesys, and R. Nagpal, “Desynchronization: the theory of self-organizng

algorithms for round-robin scheduling,” in Proceedings of the 1st IEEE International

Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007), pp. 87–96,

July 2007.

[63] J. Degesys, P. Basu, and J. Redi, “Synchronization of strongly pulse-coupled oscillators

with refractory periods and random medium access,” in Proceedings of the 23rd Annual

ACM Symposium on Applied Computing (SAC 2008), pp. 1976–1980, Mar. 2008.

[64] N. Wakamiya and M. Murata, “Synchronization-based data gathering scheme for sen-

sor networks,” IEICE Transactions on Communications, vol. E88-B, pp. 873–881, Mar.

2005.

[65] S. Kashihara, N. Wakamiya, and M. Murata, “Implementation and evaluation of a

synchronization-based data gathering scheme for sensor networks,” in Proceedings of

the IEEE International Conference on Communication, Wireless Networking (ICC

2005), pp. 3037–3043, May 2005.

[66] “MOTE.” http://www.xbow.com/Products/wproductsoverview.aspx.

[67] Y. Taniguchi, N. Wakamiya, M. Murata, and T. Fukushima, “An autonomous data

gathering scheme adaptive to sensing requirements for industrial environment moni-

toring,” submitted to the 2nd International Conference on New Technologies, Mobility

and Security (NTMS 2008), June 2008.

[68] Y. Taniguchi, N. Wakamiya, M. Murata, and T. Fukushima, “A traveling wave based

data gathering scheme adaptive to sensing requirements,” to be presented at IEICE

USN Workshop, July 2008. (in Japanese).

– 105 –

BIBLIOGRAPHY

[69] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg, “Adaptive task

allocation inspired by a model of division of labor in social insects,” in Proceedings of

Biocomputing and Emergent Computation, pp. 36–45, 1997.

[70] M. Sasabe, Y. Taniguchi, N. Wakamiya, M. Murata, and H. Miyahara, “Proxy caching

mechanisms with quality adjustment for video streaming services,” IEICE Transac-

tions on Communications Special Issue on Content Delivery Networks, vol. E86-B,

pp. 1849–1858, June 2003.

[71] “Darwin Streaming Server.” http://developer.apple.com/darwin/.

[72] “RealOne Player.” http://www.real.com/.

[73] “QuickTime Player.” http://www.apple.com/quicktime/.

[74] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, and H. Kimata, “RTP payload format

for MPEG-4 audio/visual streams,” Internet Request for Comments 3016, Nov. 2000.

[75] M. Jain and C.Dovrolis, “End-to-end available bandwidth: Measurement methodology,

dynamics, and relation with TCP throughput,” in Proceedings of ACM SIGCOMM

2002, pp. 295–308, Aug. 2002.

[76] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of available bandwidth

estimation tools,” in Proceedings of ACM SIGCOMM 2003, pp. 39–44, Oct. 2003.

[77] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “pathChirp: efficient

available bandwidth estimation for network paths,” in Proceedings of the 4th Passive

& Active Measurement Workshop (PAM 2003), Apr. 2003.

[78] D. Antoniades, M. Athanatos, A. Papadogiannakis, E. Markatos, and C. Dovrolis,

“Available bandwidth measurement as simple as running wget,” in Proceedings of the

7th Passive & Active Measurement Workshop (PAM 2006), Mar. 2006.

[79] N. Yeadon, F. Graćıa, D. Hutchinson, and D. Shepherd, “Filters: QoS support mech-

anisms for multipeer communications,” IEEE Journal on Selected Areas in Communi-

cations, vol. 14, pp. 1245–1262, Sept. 1996.

[80] “NIST Net.” http://snad.ncsl.nist.gov/itg/nistnet/.

– 106 –

BIBLIOGRAPHY

[81] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara, “QoS mapping between user’s

preference and bandwidth control for video transport,” in Proceedings of the 5th IEEE

International Workshop on Quality of Service (IWQoS’97), pp. 291–302, May 1997.

[82] S. Lindsey, C. S. Raghavendra, and K. Sivalingam, “Data gathering in sensor networks

using the energy*delay metric,” in Proceedings of the 15th International Parallel &

Distributed Processing Symposium (IPDPS-01), pp. 2001–2008, Apr. 2001.

[83] S. Lindsey and C. S. Raghavendra, “PEGASIS: Power-efficient gathering in sensor

information systems,” in Proceedings of 2002 IEEE Aerospace Conference, vol. 3, pp. 3–

1125–3–1130, Mar. 2002.

[84] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-

munication protocol for wireless microsensor networks,” in Proceedings of the Hawaii

International Conference on System Science, pp. 3005–3014, Jan. 2000.

[85] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application spe-

cific protocol architecture for wireless microsensor networks,” IEEE Transactions on

Wirelss Communications, vol. 1, pp. 660–670, Oct. 2002.

[86] K. Dasgupta, K. Kalpakis, and P. Namjoshi, “An efficient clustering-based heuristic

for data gathering and aggregation in sensoer networks,” in Proceedings of the IEEE

Wireless Communications and Networking Conference (WCNC 2003), vol. 3, pp. 16–

20, Mar. 2003.

[87] S. D. Muruganathan, D. C. F. Ma, R. I. Bhasin, and A. O. Fapojuwo, “A centralized

energy-efficient routing protocol for wireless sensor networks,” IEEE Radio Commu-

nications, vol. 43, pp. 8–13, Mar. 2005.

[88] L. Gatani, G. L. Re, and M. Ortolani, “Robust and efficient data gathering for wire-

less sensor networks,” in Proceedings of the 39th Hawaii International Conference on

System Sciences, pp. 1530–1605, Jan. 2006.

[89] C. Intanagonwiwat, A. Govindan, and D. Estrin, “Directed diffusion: a scalable and

robust communication paradigm for sensor networks,” in Proceedings of the 6th An-

nual International Conference on Mobile Computing and Networking (MobiCom 2000),

pp. 56–67, Aug. 2000.

– 107 –

BIBLIOGRAPHY

[90] J. Heidemann, F. Silva, and D. Estrin, “Matching data dissemination algorithms to

application requirements,” in Proceedings of the 1st ACM Conference on Embedded

Networked Sensor Systems (SenSys 2003), pp. 218–229, Nov. 2003.

[91] F. Silva, J. Heidemann, D. Estrin, and T. Tran, “Directed diffusion,” Technical Report

ISI-TR-2004-586, USC/Information Science Institute, Jan. 2004.

[92] M. B. H. Rhouma and H. Frigui, “Self-organization of pulse-coupled oscillators with

application to culstering,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 23, pp. 180–195, Feb. 2001.

[93] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor

networks,” in Proceedings of the 2nd ACM International Conference on Embedded

Networked Sensor Systems (SenSys 2004), pp. 95–107, Nov. 2004.

[94] “IEEE 802.15.4: Wireless medium access control (MAC) and physical layer (PHY)

specifications for low-rate wireless personal area networks (LR-WPANs),” 2003.

[95] “CC2420.” http://www.chipcon.com/files/CC2420 Data Sheet 1 4.pdf.

[96] K. H. Low, W. K. Leow, and J. Marcelo H. Ang, “Task allocation via self-organizing

swarm coalitions in distributed mobile sensor network,” in Proceedings of 19th National

Conference on Artificial Intelligence (AAAI-04), pp. 28–33, July 2004.

[97] T. H. Labella and F. Dressler, “A bio-inspired architecture for division of labour in

SANETs,” in Proceedings of the 1st International Conference on Bio-inspired Models

of Network, Information and Computing Systems (BIONETICS 2006), Dec. 2006.

[98] “TinyOS.” available at http://www.tinyos.net/.

– 108 –

