

Outline

- Introduction
- Access Control List (ACL)
- Ternary Content Addressable Memory (TCAM)
- Prefix Expansion
- Proposal \& Contribution
- Range Matching Device (RMD)
- Optimization of Prefix Expansion (PE-MIN)
- Managing TCAM (RMD + PE-MIN)
- Evaluation
- Conclusion

May 16, 2008
High Performance Switching and Routing

Access Control List (ACL)

access-list 101 permit tcp host 10.1.1.2 host 172.16.1.1 eq telnet
access-list 102 deny tcp any range 137139 any
access-list 101 permit ip 10.1.1.0 0.0.0.255 172.16.1.0 0.0.0.255
access-list 111 deny icmp any 10.1.1.0 0.0.0.255 echo

- List in routers for packet classification (permit/deny)
- Entries consist of source and destination IP address, source and destination port number, and protocol number
- Storage in TCAM

May 16, 2008	High Performance Switching and Routing	4

Motivation

- Writing ACL in TCAM
- Issue of expressing port numbers in ranges
Q. How do we write "ranges" in memory?
Q. How do we restrain the growth of expensive TCAM entry?
- Possible storage of ranges
- Full expansion: writing every single number to exactly match the entire range
- Prefix expansion: writing least significant bits as don't care bits
May 16, $2008 \quad$ High Performance Switching and Routing

Research Purpose

- Minimize memory usage by integrating additional device within the TCAM
- Decrease worst case by optimizing prefix expansion algorithm

Reduce TCAM's memory consumption by using Range Matching Device and optimized prefix expansion

May 16, 2008

Logical Circuit of RMD

- Write the range FROM ~ TO in the memory
- Determine if the search key (port \#) is within FROM ~ TO

May 16, 2008
High Performance Switching and Routing
10

Prefix Expansion Algorithms

Prefix expansion of range "5000 ~ 6000"

- PE-OR: Conventional prefix expansion

$$
A \vee B \vee C \vee D \vee E \vee F \vee G \vee H \vee I \vee J
$$

- PE-MIN: Proposed prefix expansion

Logical NOT/AND Gates in TCAM

- Logical gates are required in addition to the conventional TCAM to express the result of PE-MIN
- Gain: Tradeoff between the additional gates and the reduced line
May 16, $2008 \quad$ High Performance Switching and Routing

RMD Policy

- Weight of each range determines the order to be written in the RMD
(Lines after PE-1) \times (Number of ACLs referring this range)

Range	PE-MIN lines	\# of Ranges	PE-MIN x \# of Ranges	Weight
$2326 \sim 2837$	8	16	128	112
$6970 \sim 6999$	4	18	72	54
$5555 \sim 6555$	10	6	60	54
$5555 \sim 5587$	5	11	55	44
$3230 \sim 3253$	4	14	56	42

Conclusion \& Future Work

- Proposed new TCAM architecture by integrating Range Matching Device and using optimized prefix expansion algorithm
- Evaluated using actual ACL data
- Future work
- Analysis of the proposed method using other ACLs to achieve a general purpose TCAM
- Implementation of the proposed TCAM in the network processor to investigate further performance characteristics (i.e. power consumption)

High Performance Switching and Routing

Thank you

May 16. 2008
High Performance Switching and Routing

