Biologically-Inspired Path Selection Scheme for Multipath Overlay Networks

Kenji Leibnitz, Masayuki Murata
Osaka University
{leibnitz,murata}@ist.osaka-u.ac.jp

Akihiro Nakao
The University of Tokyo
nakao@iii.u-tokyo.ac.jp

Outline of the Talk

- Problem statement and motivation
- Considered network scenario
- Adaptive response by attractor selection
- Application to multi-path routing
- Numerical Evaluation
- Conclusion
**Self-Organization in Biology**

- Biological systems have the ability to self-organize and adapt to environmental changes.
- Self-organization in nature is driven by two key factors:
  - Adaptation through **feedback**:
    - **Positive feedback** generates new possible solutions.
    - **Negative feedback** provides learning from bad experience.
  - Utilization of system-inherent **noise**.
- Mostly communication is only performed locally between entities (e.g., swarm intelligence).

⇒ Beneficial for self-adaptive network control.

---

**Network Scenario**

- Overlay network architecture:
  - Higher flexibility through multi-path routing on overlay.
  - Paths may have different latencies ("out-of-order" packets).
- Each SORA router acts as an independent entity.
Adaptive Response by Attractor-Selection

- Model of gene expression from cell biology:
  - reaction to lack of nutrient when no signaling pathway exists from environment to DNA
  - attractor: region within which the orbit of dynamical system returns regardless of initial conditions and noise
  - activity: mapping of environment to “goodness” of current system state
- Description by Langevin-type of stochastic differential equation system
  \[
  \frac{dx_i}{dt} = f(x_1, \ldots, x_M) \times \alpha + \eta_i
  \]

Basic Concept of Attractor Selection

- Noise constantly exists in the system
- Activity changes the depth of the potential landscape to escape from “bad” solutions
- Formulation using weighted activation like in recurrent neural networks
Application to Path Selection

- SORA path computation server determines set of possible paths
- Attractor selection is used to choose appropriate overlay paths among candidates
- Activity is determined by the destination node’s relative buffer occupancy level

Application of Attractor Selection

- Weights are chosen mutually inhibitory
  \[ w_{ij} = \begin{cases} \frac{1}{N-1} & i = j \\ \frac{1}{N-1} \sum_{j} \sum_{j=0} w_{ij} = 0 & \Rightarrow \theta = 0 \end{cases} \]
- \( B \): maximal experienced buffer occupancy over sliding window
- \( b \): currently observed buffer occupancy
- Activity reacts with adaptation rate \( \rho \) to smoothen its reaction (like in simulated annealing):
  \[ \frac{d\alpha}{dt} = \rho \left( \frac{b}{B - \alpha} \right) \]
Example Scenario

- Example simulation for $N = 6$ paths
- When relative buffer occupancy is high, system operates rather deterministically
- When it is low, we have a random phase (no preference)

Simulation Experiments

- Comparison with random selection of paths:
  - proposal results in smaller buffer occupancy and delays
  - larger $N$ increases diversity due to uniform randomly chosen path latencies
Out-of-Order Packet Ratio

- Ratio of all packets remaining in buffer over all received packets
- Peak value exists in all cases depending on packet interarrival time

Conclusion

- Attractor selection is meta-heuristic for self-adaptation of a system in an uncontrollable environment
- Application to the packet reordering problem in multipath overlay networks
- Fine-tuning of parameters can provide even further improvements (include neural network learning of weights)
- Areas of application:
  - feedback-based adaptation where the influence of control parameters on the metrics is unknown
  - system may react unpredictably
  - formulation of dynamics is implicitly defined by differential equation system ➔ no explicit adaptation rules