Performance Evaluation of a Low-Energy-Consumption Ad Hoc Mesh Network Based on Intermittent Operation

Masashi Sugano
(Osaka Prefecture University)
Ryo Fukushima, Masayuki Murata
(Osaka University)
Takayoshi Hayashi, Takaaki Hatauchi
(Fuji Electric Advanced Technology)

Ad hoc Mesh Network
- The network which consists of nodes with the relay function by wireless communications
- Redundancy of a communication link is high
- Applications in various fields
 - Environmental monitoring
 - Urgent network at the time of a disaster
 - Security management of a building
- Each node is operating with battery
 ⇒ Reduction of power consumption is a large subject

Suppress of the power consumption by intermittent operation

- **Intermittent operation**
 - Each node repeats active state and sleep state in a fixed cycle
 - Each node communicates in an active state

- **Low Power Listening (LPL) [6]**
 - Problem of LPL system
 - One node occupies a channel at the time of preamble transmission
 - Since the receiving node is specified in the preamble, the transmission node can communicate only with a specific node.

Proposed Method Developed by Fuji Electric Co. Ltd.

- **Intermittent ID transmission of Receivers (IIDR)**
 - Both of nodes 1 and 2 can receive the packet from the transmission node

Purpose of Our Research

- To clarify the performance characteristic of IIDR method
 - Power consumption for each node
 - Packet collection rate
 - Packet transmission delay

 Clarify these characteristics by simulation experiments

- Parameter settings for improving the performance of IIDR
 - Goal:
 - Extension of life of the network by reduction of power consumption
 - Parameters:
 - Sleep time for each node
 - Maximum transmission number

Simulation Model

- **Behavior of each node**
 - Constitute mesh topology
 - Each node generates a packet according to packet generation rate
 - Each packet is transmitted along the one of multiple routes
 - Sleep time of all the nodes is 3 seconds

- **Energy consumption model**
 - Receiving state: 6.25 × 10⁻² w
 - Transmitting state: 7.20 × 10⁻² w
 - Sleep state: 0 w
Routing of Target System

- Priority of selection of destination nodes
 - The nodes whose number of hop to the center node are the minimum
 - The node whose number of hop to a center node are the minimum plus 1
- Forward node
- Sideward node

1. First, packet is transmitted to either of the nodes of a forward route
2. If forward transmission fails, sideways routes are added to the candidate of receiving nodes.

Simulation results (Power Consumption)

Performance Improvement (Setting of Sleep time of Center Node)

- Shortening of the sleep time of center node
- The packet transfer processing to center node become smooth
- Increase in packet collection rate
- Decrease of packet propagation delay
- Decrease of the power consumption in the adjacent node of center node

Performance Improvement (Sleep Time Setting according to Each Node)

- In center adjacent nodes, sleep time is set up for each node according to its load
 - Node with high load: 3, 15 ⇒ 6.0 second
 - Node with low load: 4, 7, 16 ⇒ 1.5 second
 - Other nodes ⇒ 3.0 second

Result (Sleep Time Setting according to Each Node)

- Load sharing was realized by setting up sleep time according to load.
 ⇒ Extension of Network Lifetime

Conclusion

- Basic performance characteristic of IIDR was clarified
- Power consumption of a node is dependent on ID waiting time
- Load of adjacent node of the center node is high
 - Packet discard by excess of the maximum number of transmission increases, and packet collection rate decreases
 - Packet transmission delay increases by the transmission failure to the center node
- Performance Improvement by parameter settings
 - Sleep time of the center node
 - Load balancing by setting up sleep time according to load of each node
- Future work
 - Adaptive and distributed control method for IIDR