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Ambient Networks
‣ In future networks we will have ubiquitous connectivity:

• Increased diversity in (wirelessly connected) devices and services

• Requirement of efficient cooperation and interaction of devices

• Concept of “ambient networks” makes the device adapt to the 
situation and user’s preferences
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Network Traffic is not “Smooth”! 

‣ However, network traffic is not smooth because:

• Devices and services have different bandwidth requirements 
(browsing, VoIP, multimedia streaming, ...)

• Background traffic from other users and external protocols (e.g. 
BGP routing updates) causes fluctuations in the perceived 
performance

‣ Therefore, it is necessary to apply new mechanisms that deviate from 
conventional teletraffic metrics in designing ambient network 
architectures

• Focus is on including robustness and adaptability with 
traditional QoS measures, such as latency, jitter, etc.

• We can take inspiration from dynamics found in biological systems
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Why Use Robustness as Measure?
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Considered Access Router Scenario
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we want to control traffic 
into access router without 

affecting global traffic 

global buffer is isolated from 
the view of local buffer and should 

remain unaffected

local buffer must control 
packet input flow from local 

observations only
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Attractors and Robustness

‣ Nonlinear dynamics provides definitions for equilibrium point x*: 

• x* is attracting if any trajectory starting close to x* will 
eventually converge to x*

• x* is Lyapunov stable, if all trajectories starting sufficiently 
close to x* remain close to it

• x* is asymptotically stable, if it is both attracting and 
Lyapunov stable

‣ An attractor is an invariant closed set, which attracts all 
trajectories that start sufficiently near to it (basin of attractor) 
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Attractor Perturbation Concept

‣ Relationship between fluctuation and its response (Sato et al. 2003)

‣ System has measurable variable x (protein concentration) and 
parameter a (DNA sequence)

‣ Applying a force (a!a+"a) to the system results in a linear 
perturbation of µ (mean of x) proportional to #2 (variance of x 
before applying the force):
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µa+∆a − µa = b ∆a σ2
a
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Attractors vs. Distributions?

‣ Simple dynamic equation with attractor at x0 given by

‣ The term $ is the “softness” of control in the system and % is the 
constant background noise (Gaussian) with variance 2D

‣ Noise follows a Gaussian distribution with pdf

‣ Taking the negative logarithm and deriving over x results in the 
energy potential function
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d

dt
x(t) = −ρ (x(t)− x0) + η(t)

p(x) = p(x0) exp
�
− (x− x0)2

2 σ2

�
p(x0) =

1√
2 π σ2

with

− log(p(x)) =
(x− x0)

2

2 σ2
− log(p(x0)) ⇒ E(x) = −ρ (x− x0)
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Influence of Control on Fluctuations
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Dynamics of 1-Dimensional System

‣ Applying same force to system with different internal fluctuations 
results in different degrees of perturbations!

‣ So if we know the fluctuations (from measurements), we can directly 
compute the force necessary for “pushing” the system to a favorable 
operating region
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Proposed Control Scheme

‣ Control of local arrival probabilities p2(t), 
only by measuring time series x2(t-W), …, x2(t) 
in a sliding window W

‣ Calculate variance over measured values as: 
! v2(t) = Var[x2(t-W),…,x2(t)]

‣ Update local probability p2(t) as follows:

• Direction of adaptation: &(t) = sign(B/2 – x2(t))

• Strength of adaptation: s(t) = f(v2(t)) utilizes 
linear relationship of variance

‣ “Force” is adapted as: p2(t+1) = p2(t) + &(t) s(t)

11

window W 
time 

ob
se

rv
ed

 v
al

ue
s 

variance v2 

pr
ob
ab
ili
tie
s 

buffer 

!p2

perturbation 
buffer 

pr
ob
ab
ili
tie
s 

Kenji Leibnitz
Osaka University

Experimental Results
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Conclusion
‣ Ambient networks are composed of many diverse devices and 

services → many internal fluctuations

‣ Application of biologically inspired concept to adaptive network 
control to improve robustness

‣ Attractor perturbation permits to compute the force necessary to 
“push” the system state to a good solution

‣ Simple example was shown for controlling local buffer at gateway 
router based on local information only

‣ Applicability of attractor perturbation to other applications in 
ambient networks are being studied

‣ Thanks to: Tetsuya Yomo, Naoki Wakamiya, Global COE Program for 
Founding Ambient Information Society Infrastructure
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