
Comparison of Packet Switch Architectures and Pacing Algorithms for
Very Small Optical RAM

Onur Alparslan, Shin’ichi Arakawa, Masayuki Murata
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{a-onur,arakawa,murata}@ist.osaka-u.ac.jp

Abstract—One of the difficulties with optical packet switched
(OPS) networks is buffering optical packets in the network. The
research on optical RAM presently being done is not expected
to achieve a large capacity soon. However, the burstiness
of Internet traffic causes high packet drop rates and low
utilization in small buffered OPS networks. In this article, we
investigate and compare optical-buffered switch architectures
and pacing algorithms for minimizing the buffer requirements
of OPS switches. We simulate two mesh topologies (NSFNET
and Abilene) for goodput and packet drop rate comparisons
and optimization of XCP parameters. We show that XCP-based
pacing algorithm with a shared buffered switch architecture
yields high TCP goodput and low packet drop rate in a core
OPS network when very small optical RAM buffers are used.

Keywords-small buffer, OPS, optical RAM, optical switch

I. INTRODUCTION

A well-known problem in realizing optical packet
switched (OPS) networks is buffering. Recent advances in
optical networks such as dense wavelength division mul-
tiplexing (DWDM) have allowed us to achieve ultra-high
data-transmission rates in optical networks. This ultra-high
speed of optical networks has made it necessary to do some
basic operations like buffering and switching in the optical
domain instead of the electronic domain due to high costs
and limitations with electronic buffers. However, the lack
of high-capacity optical RAM makes it difficult to buffer
enough optical packets in OPS networks [1]. According
to a rule-of-thumb [2], the buffer size of a link must be
B = RTT × BW , where RTT is the average round trip
time of flows and BW is the bandwidth of the output link,
to achieve high utilization with TCP flows. However, as this
requires a huge buffer size in optical routers due to the ultra-
high speed of optical links, this buffer size is unfeasible.

The only available solution that can currently be used
for buffering in the optical domain is using fiber delay lines
(FDLs), where contended packets are switched to long FDLs
so that they can be delayed. However, FDLs pose severe
limitations such as signal attenuation, and bulkiness. Most
FDL architectures lack the real O(1) reading operation of
RAM as it may not be possible to access a packet circulating
an FDL until the packet departs the fiber and arrives back
to the switch, which causes extra delays depending on the

FDL length. Moreover, all-optical RAMs, which can solve
the problems with FDLs, are still being researched (e.g.,
NICT project [3]) and this may become available in the
near future. Furthermore, optical RAMs are expected to have
a lower rates of power consumption, which is a serious
problem with electronic RAMs. However, optical RAMs
are not expected to attain large capacities. Therefore, it
is necessary to decrease the buffer requirements of OPS
networks to make use of optical RAMs.

Appenzeller et al. [4] recently demonstrated that when
there are many TCP flows sharing the same link, a buffer
sized at B = RTT×BW√

n
, where n is the number of TCP

flows passing through the link, is sufficient to achieve high
utilization. However, there should be many flows on a link to
significantly decrease the buffer requirements of ultra-high-
speed optical networks. Enachescu et al. [5] proposed that
O(logW) buffers are sufficient where W is the maximum
congestion window size of flows when packets are suffi-
ciently paced by replacing TCP senders with paced TCP
[6] or by using slow access links. TCP pacing is defined as
transmitting ACK (data) packets according to special crite-
ria, instead of immediately transmitting packets when data
(ACK) packets arrive [6]. Paced TCP is usually implemented
by evenly spreading out the transmission of a window of
data packets over a round-trip time. However, the O(logW)
buffer size depends on the maximum congestion window
size of TCP flows, which may change. Moreover, using slow
access links, which is an extreme way of applying node
pacing, is not ideal when there are applications that require
large amounts of bandwidth on the network. Furthermore,
replacing TCP senders of computers with paced versions can
be difficult. Furthermore, this proposal was based on the as-
sumption that most IP traffic is from TCP flows. Theagarajan
et al. [7] demonstrated that even small quantities of bursty
real-time UDP traffic can increase the buffer requirements
of well-behaved TCP traffic on the same link. Therefore, it
may be better to design a general architecture for an OPS
network that can achieve high utilization in a small buffered
OPS network independent of the number of TCP or UDP
flows, and that does not require a strict limit to be placed
on the speed of access links, and that does not require the

159

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sender or receiver TCP and UDP agents of computers using
the network to be replaced.

We recently proposed [8] an all-optical OPS network
architecture that can achieve high utilization and a low
packet drop ratio by using small buffering. We took into
consideration an OPS domain where packets entered and
exited the OPS domain through edge nodes. We proposed
using an Explicit Congestion Control Protocol (XCP)-based
[9] intra-domain congestion control protocol to achieve high
utilization and a low packet-drop ratio with small buffers.
XCP is a new congestion control algorithm using a control-
theory framework, which was specifically designed for high-
bandwidth and large-delay networks. XCP was first proposed
by Katabi et al. [9] as a window-based algorithm for reliably
controlling congestion and transmission. We selected the
XCP framework because it allows the utilization level of
each wavelength to be individually controlled. Moreover,
there is no need to modify the TCP and UDP agents of
computers or limit the speed of access links to decrease
burstiness.

Another difficulty in attaining OPS networks is the switch-
ing fabric, which is usually one of the biggest factors deter-
mining overall router cost. Many switching fabric architec-
tures like MEMS, optomechanical, electrooptic, thermoop-
tic, and liquid-crystal based switches have been proposed for
optical switching [10]. However, the number of switching
elements in the fabric increases together with the overall
cost, and crosstalk and insertion losses as the number of
ports for the switch increases. In our previous papers, we
evaluated the performance of our proposed architecture with
UDP and TCP-based traffic and output buffering [8][11][12].
In Alparslan et al. [1], we proposed and investigated different
optical-buffered switch architectures to further minimize the
size of the optical switching fabric of core nodes while
achieving higher goodput with small optical RAM buffers.
We evaluated the optical RAM requirements of our proposed
architecture on a mesh NSFNET topology with TCP traffic.
We also compared the performance of our architecture with
paced TCP, which is the solution generally proposed for
small buffered networks. Our simulations revealed that the
average goodput of standard TCP flows in our proposed
architecture could even surpass the goodput of paced TCP
when buffers were small.

This article discusses the extension of our work and
presents our results in Alparslan et al. [1] verified by
simulating an Abilene network, which is a larger topology
with a higher nodal degree than NSFNET. We optimized
XCP parameters on both NSFNET and Abilene topologies
to demonstrate what effect XCP parameters have on overall
performance. Moreover, we introduce one more metric,
which is the overall packet-drop rate in a small buffered
core network, that enables better comparison of switch
architectures and algorithms.

The rest of the paper is organized as follows. Section II

TCP, UDP Flows

XCP XCPXCP XCP

XCP Macro Flow

XCP

IP Routers
IP Routers

Figure 1. XCP pacing

describes the XCP algorithm and switch architectures. Sec-
tion III describes the simulation methodology and presents
the simulation results. Finally, we conclude the paper and
describe future work that we intend to do in Section IV.

II. ARCHITECTURE

This section describes the XCP algorithm and switch
architectures.

A. Optical Rate-based Paced XCP

XCP is a new congestion control algorithm that has been
specifically designed for high-bandwidth and large-delay
networks. XCP makes use of explicit feedback received from
the network. Core routers are not required to maintain per-
flow state information. Each XCP core router updates its
control decisions calculated with an Efficiency Controller
(EC) and a Fairness Controller (FC) when timeout of a per-
link control-decision timer occurs.

EC controls input aggregate traffic to maximize link uti-
lization. A required increase or decrease in aggregate traffic
for each output port is calculated by using the equation,
Φ = α · S − β · Q/d, where Φ is the total amount of
required change in input traffic, α and β correspond to spare
bandwidth-control and queue-control parameters, and d is
the control-decision interval. S is the spare bandwidth that
is the difference between the link capacity and input traffic
in the last control interval. Q is the persistent queue size.

After EC has calculated the aggregate feedback Φ, FC
fairly distributes this feedback to flows according to AIMD-
based control. However, convergence to fairness may take
a long time when Φ is small. Bandwidth shuffling, which
redistributes a small amount of traffic among flows, is used
to solve this problem. The amount of shuffled traffic is
calculated by h = max(0, γ·u−|Φ|), where γ is the shuffling
parameter and u is the rate of aggregate input traffic in the
last control interval.

In Alparslan et al. [8], we proposed optical rate-based
paced XCP, which is a modified version of XCP adapted
to work as an intra-domain traffic shaping and congestion
control protocol in an OPS network domain. In our architec-
ture, when there is traffic between an edge-source destination
node pair, a rate-based XCP macroflow is created as shown
in Figure 1, and the incoming TCP and UDP packets of

160

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) Output buffering (OB) (b) Input buffering (IB)

(c) Shared buffering (SB) (d) Worst-case shared buffering (WCSB)

Figure 2. Switch architectures

this edge pair are assigned an XCP macroflow similar to
TeXCP [13]. The edge nodes of the OPS network apply
leaky-bucket pacing to the macroflows by using the rate
information provided by XCP to minimize burstiness.

In our optical rate-based paced XCP, XCP feedback is
carried in separate probe packets that XCP sender agents
only send once in every control period. As there is no
feedback information carried in the header of data packets,
there is no need to calculate per-packet feedback in core
routers unlike in the original XCP [9]. We separated the
control channel and data channels. Probe packets are carried
on a separate single control wavelength that is sufficiently
slow to only carry probe packets. The low transmission rate
to control wavelength allows electronic conversion to be
applied to update the probe feedback and buffer the probe
packets in an electronic RAM in case of a contention.

When a probe packet of macroflow i arrives at a core
router, the XCP agent responsible for controlling the wave-
length of i calculates positive feedback pi and negative
feedback ni for macroflow i. Positive feedback is calculated
as

pi =
h+max(0,Φ)

N
(1)

and negative feedback is calculated as

ni =
ui · (h+max(0,−Φ))

u
, (2)

where N is the number of macroflows on this wavelength,
ui is the traffic rate of flow i estimated and sent by the XCP
sender in the probe packet, and h is the shuffled bandwidth.

N can be estimated by counting the number of probe
packets received during the last control interval. Another
possible method is using the number of LSPs if GMPLS is
available [13]. The control interval is the maximum RTT
in the network. The control interval can be selected to
be a bit longer than the maximum RTT to compensate
for the processing and buffering delays in control packets.
Feedback, which is the required change in the flow rate,
is calculated as feedback = pi − ni. If this feedback is
smaller than that in the probe packet, the core router replaces
the feedback in the probe packet with its own feedback.
Otherwise, the core router does not change the feedback in
the probe packet.

B. Switch Architectures

In this paper, we compare the performance of output
buffering (OB), input buffering (IB), shared buffering (SB)
and worst-case shared buffering (WCSB), as shown in
Figure 2. The internal speedup is 1 in all switches, which
means the line rates are equal in both inside and outside the
switch. Switch size is shown as I ×O, where I and O are
the number of input and output ports, respectively. Output
buffering has a large switch size of N ×N2 to prevent
internal blocking where N is the nodal degree as seen in
Figure 2a. It has buffer size B at each output link. As input
buffering has a switch size of only N ×N , as seen in Figure
2b, it has the smallest switches. However, a well-known
problem with input buffering is head-of-line blocking, which
limits the utilization that can be accomplished. We applied
virtual output queuing (VOQ) scheduling, which is the

161

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

0

2

3 4

5

6

7

8

11

10

12

13

9

14

15

16

17
20

18

19 23
27

26

25

24

22

21

4.7ms

2.8ms
7.0ms

3.5ms 2.8ms

11.2ms

3.5ms

3.5ms

3.5ms

9.1ms

2.8ms

3.5ms

1.4ms

1.4ms

0.7ms

8.4ms

4.9ms

8.4ms

5.6ms

1.4ms

3.5ms

Figure 3. NSFNET

generally proposed solution in the literature, by dividing
each input buffer into N sub-queues to minimize the head-
of-line blocking problem [14]. Input buffering has buffer
size B at each input link. Shared buffering and worst-case
shared buffering have a switch size of 2N × 2N . As shared
buffering has a single buffer with a size of N ·B, this is in
direct proportion to its capacity and the nodal degree. Shared
buffering has the same total buffer size per node as input and
output buffering to enable fairer comparisons with them at
the same B value in the simulations. As worst-case shared
buffering has a single buffer with a size of B independent
of the nodal degree, it has a buffer capacity of only a single
link in input or output buffering.

III. EVALUATION

This section describes the simulation methodology and
presents the simulation results. We investigated and com-
pared optical-buffered switch architectures and pacing al-
gorithms for minimizing the buffer requirements of OPS
switches. We first simulated a wide range of XCP parameters
to find the optimum XCP parameters for two mesh topolo-
gies. In the second step, we simulated both topologies with
four different switch architectures to compare their perfor-
mance under standard TCP traffic, XCP-paced standard TCP
traffic, and paced TCP traffic.

A. Simulation Settings

The proposed network architecture and buffering mod-
els were implemented over the ns simulator version 2.32
[15]. The simulator used cut-through packet switching and
buffering for data wavelengths. There was a single store-
and-forward switching slow control wavelength dedicated
to probe packets. The edge nodes had 0.25 s of electronic
buffering, which is commonly used on the Internet. However,
core routers only used small optical RAM for buffering
optical packets on data wavelengths. The contention of
probe packets on the control-wavelength was resolved by
an electronic RAM as O/E/O conversion was not a problem
in the control-wavelength due to its low speed. As the IP

datagram for TCP data (ACK) packets was 1500 Bytes (40
Bytes), the TCP data (ACK) segment was 1480 Bytes (20
Bytes). Maximum segment size (MSS) was 1500 Bytes. The
size limit of the congestion window was 20 packets. The
target utilization (TU) parameter of XCP was set to 100%
at both core and edge links to maximize link utilization.

B. NSFNET Results

Figure 3 plots the simulated NSFNET topology. The
nodes numbered from 0 to 13 are the core nodes and the
rest are the edge nodes connected to the core nodes. All
links (including edge and core links) had a single data
wavelength and the same XCP target utilization. We selected
a propagation delay for links between the core and edge
nodes of 0.1 ms. We selected an XCP control period for core
routers and the sending interval of probe packets for edge
routers of 50 ms by taking extra processing and queuing
delays in the core routers into account. The capacity of the
data and XCP control wavelengths were set to 1 Gbps for
the former and 100 Mbps for the latter. TCP Reno traffic was
applied between the edge nodes of the network. Throughout
the simulation, 1586 TCP flows entered the network between
randomly selected edge-node pairs according to a Poisson
arrival process. The total simulation duration was 40 s. Only
the simulation results in the last 5 s were used for the
evaluation.

1) Optimization of XCP Parameters: XCP’s α, β and γ
parameters were chosen as 0.2, 0.056, and 0.1 in Alparslan
et al. [1]. In this paper, we first optimized XCP parameters to
demonstrate what effect XCP parameters had and to increase
overall performance. Figure 4 plots the average goodput of
TCP flows under XCP pacing and packet drop rate at the
core nodes when shared buffering is used. The x-axis is the
γ parameter and each line plots a different α value. Figures
4a and 4c use a small shared buffer with a size of 1 KByte
per link, while Figure 4b uses a larger shared buffer with a
size of 100 KBytes per link. As no packets were dropped
in the core when the shared buffer size per link was 100
KBytes, this has not been plotted. Figures 4a and 4c indicate
that when the buffer is small, the average flow goodput and
core packet drop rate increase with increasing α values,
while they are relatively less sensitive to the γ parameter.
Therefore, there is a tradeoff between the drop rate and
goodput as we change α. This is an expected result, because
XCP behaves more aggressively and utilizes links faster with
an increasing α value, which causes more frequent buffer
overflows and thus packet drops as a side effect in the core
routers. However, XCP may become unstable when α is
too large. Katabi et al. [9] proved that the system is stable
independent of delay, capacity, or the number of sources
when α and β satisfy

0 < α <
π

4
√
2

(3)

162

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 200000

 400000

 600000

 800000

 1e+06

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

γ

α=0.1
α=0.2
α=0.3
α=0.4
α=0.6

(a) Goodput (1 KByte buffer per link)

 0

 200000

 400000

 600000

 800000

 1e+06

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

γ

α=0.1
α=0.2
α=0.3
α=0.4
α=0.6

(b) Goodput (100 KBytes buffer per link)

 0.0001

 0.001

 0.01

 0.1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
ac

k
et

 d
ro

p
 r

at
e

γ

α=0.1
α=0.2
α=0.3
α=0.4
α=0.6

(c) Packet drop rate in the core nodes (1 KByte buffer per link)

Figure 4. Optimization of parameters in NSFNET

and
β = α2

√
2. (4)

Figure 4b shows that when the buffer is larger, goodput
becomes more sensitive to the γ parameter. As γ decreases
or α increases, the average goodput increases. The reason for
this is that XCP encounters a well-known max-min fairness
problem under various special conditions. XCP’s mechanism
to control congestion in a multi-bottleneck environment can
cause a flow to receive an arbitrarily small fraction of its
max-min allocation, which may cause some bottleneck links
to be under-utilized [16]. XCP may end up utilizing only
80% of the bottlenecked bandwidth in the worst case with
the default XCP parameters in Katabi et al. [9]. As they give
a high goodput in Figure 4, we chose α=0.4 and β=0.226,
which are the default values suggested in Katabi et al. [9].
However, we chose γ=0.1, which is half the default value
in Katabi et al. [9]. Although choosing a lower γ than the
default value decreases the speed of fairness convergence,

XCP achieves better max-min fairness and higher worst-case
link utilization with higher average goodput as seen in Figure
4b.

2) Comparison of Switches and Algorithms: After XCP
parameters were optimized, we simulated the NSFNET
topology by using the four different switch architectures
shown in Figure 2. The switch architecture was a parameter
in the simulations, which was applied to all nodes in
the network. We compared the performance of the switch
architectures under standard TCP, paced TCP, and XCP-
paced standard TCP traffic. Figure 5 plots the average
goodput of TCP flows on different switch and network
architectures based on the optical RAM buffer size per link.
In all the figures, the x-axis is the buffer size per link,
which is designated as B in Figure 5 on a log scale and
the y-axis is the average TCP goodput on a linear scale.
Figure 5a plots the TCP goodput when our XCP pacing
algorithm was applied to standard TCP Reno traffic. We

163

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 200000

 400000

 600000

 800000

 1e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

XCP Paced, combined ACK(SB)
XCP Paced, combined ACK(WCSB)

XCP Paced, combined ACK(IB)
XCP Paced, combined ACK(OB)

(a) XCP pacing (combined ACK)

 0

 200000

 400000

 600000

 800000

 1e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

XCP Paced, ACK macro(SB)
XCP Paced, ACK macro(WCSB)

XCP Paced, ACK macro(IB)
XCP Paced, ACK macro(OB)

(b) XCP pacing (separate ACK macroflow)

 0

 200000

 400000

 600000

 800000

 1e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

Paced TCP(SB)
Paced TCP(WCSB)

Paced TCP(IB)
Paced TCP(OB)

(c) TCP pacing

 0

 200000

 400000

 600000

 800000

 1e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

Standard TCP(SB)
Standard TCP(WCSB)

Standard TCP(IB)
Standard TCP(OB)

(d) Standard TCP

Figure 5. Goodput comparison of algorithms and switch architectures in NSFNET

can see that input, output, and worst-case shared buffered
switches yield almost the same goodput when the buffer
size is less than a 1 MSS or more than around 6 MSS.
However, shared buffering yields a much higher goodput
than the others even though its per node buffer capacity
is the same as that for input and output buffering. If we
can use a single shared buffer instead of splitting it into
input or output links, it clearly yields much higher goodput
as a small buffer capacity is being used with maximum
efficiency. When we compare input and output buffering, we
can see that when the link buffer is between 1–6 MSS, input
buffering yields higher goodput while using the smallest
switch in switch architectures. This result was expected,
because input buffering can handle packet contentions better
than output buffering when the input traffic is sufficiently
smooth. For example, let us assume that we have a switch
with only single packet capacity output buffers. When there
is contention with five packets arriving from five input links

that are going to the same output link, if the buffers and links
are idle, one packet will be sent to the output link, one packet
will be buffered in the output buffer, and the remaining three
packets will be dropped as there is no more buffer left.
However, if we use an input buffered switch, one packet will
be sent to the output link and the other four packets will be
buffered at the input ports. As buffered packets can be sent
to the output link as the link becomes idle, its tendency to
drop packets when there is a contention is lower than that
for output buffering. Input buffering greatly benefits from
pacing as it smooths the packet arrival from its link, which
gives it time to drain its queue. When we check the goodput
of worst-case buffering, we can see that it is very close to
output buffering even though the whole switch in worst-case
buffering has the same buffer capacity of only a single link in
output buffering. In other words, worst-case shared buffering
yields almost the same goodput as output buffering with a
much smaller buffer capacity per node.

164

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 200000

 400000

 600000

 800000

 1e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

XCP Paced, ACK macro(SB)
XCP Paced, combined ACK(SB)

Paced TCP(SB)
Standard TCP(SB)

(a) Goodput

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06

P
ac

k
et

 d
ro

p
 r

at
e

Buffer size per link (Bytes)

XCP Paced, ACK macro(SB)
XCP Paced, combined ACK(SB)

Paced TCP(SB)
Standard TCP(SB)

(b) Core packet drop rate in the core nodes

Figure 6. Comparison of algorithms in NSFNET with shared buffering

The packet level tracing of simulations with our XCP pac-
ing algorithm revealed that there was actually still room for
improvement. We saw that the well-known ACK compres-
sion problem [17] had caused some utilization inefficiencies,
which decreased the average goodput. It is possible in our
architecture to solve this problem and increase utilization
by simply using separate XCP macroflows for TCP ACK
packets [12]. Figure 5b plots the TCP goodput when our
optical rate-based paced XCP architecture was used with
separate XCP macroflows for TCP ACK packets on the same
wavelength. We can see that TCP goodput becomes higher
than XCP with the combined ACK architecture in Figure
5a.

Figure 5c plots the TCP goodput when paced TCP Reno
is used without XCP control. We can see that its goodput
pattern is very similar to that in Figures 5a and 5b when the
buffer size per link is less than around 6 MSS. When the
buffer size per link was larger than 6 MSS, the simulations
yielded some varying results. Figure 5d plots the TCP
goodput when standard TCP Reno was used without XCP
control. We can see that it has much lower goodput than
the simulated paced architectures had. More than 10-fold
buffering is necessary to achieve utilization that is as high
as that of paced architectures. When the buffer is small, the
goodput of input buffering is almost the same as that of
output buffering, which indicates that pacing is necessary to
surpass the goodput of output buffering.

As shared buffering has the highest goodput for all
simulated architectures, we did a general comparison of
algorithms with shared buffering. Figure 6 plots the average
goodput and core packet drop rate of XCP-paced standard
TCP, paced TCP, and standard TCP on a shared buffered
switch architecture based on the optical RAM buffer size
per link. We can see that when the buffer is small, XCP
pacing methods yield higher goodput and lower packet drop

Figure 7. Abilene topology

rates in the core nodes than paced and standard TCP.

C. Abilene Topology Results

Abilene is an Internet backbone network for higher ed-
ucation and part of the Internet2 initiative. The Abilene-
inspired topology in Figure 7 from Li et al. [18] was used
in the simulations. The topology has a total of 869 nodes
that are divided into two groups of 171 core nodes and 698
edge nodes. A total of 2232 TCP flows started randomly
and sent traffic between randomly selected edge node pairs.
The total simulation time was 40 s. There was a single data
wavelength on the links. The propagation delay of the edge
and core links corresponded to 0.1 ms and 1 ms. All the
links had a 1 Gbps capacity.

1) Optimization of XCP Parameters: First, we simulated
a range of α and γ parameters to optimize the XCP param-
eters on the Abilene topology. Figure 8 plots the average

165

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

γ

α=0.1
α=0.2
α=0.3
α=0.4
α=0.6

(a) Goodput (1 KByte buffer per link)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

γ

α=0.1
α=0.2
α=0.3
α=0.4
α=0.6

(b) Goodput (100 KBytes buffer per link)

 0.0001

 0.001

 0.01

 0.1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
ac

k
et

 d
ro

p
 r

at
e

γ

α=0.1
α=0.2
α=0.3
α=0.4
α=0.6

(c) Packet drop rate in the core nodes (1 KByte buffer per link)

Figure 8. Optimization of parameters in Abilene topology

goodput of TCP flows and packet drop rate at the core
nodes when shared buffering was used. We can see that
both the average goodput and packet drop rate in the core
nodes increase with increasing α as occurs in optimizing
the NSFNET topology. However, under-utilization due to
the max-min fairness problem is more visible in the Abilene
topology in Figure 8b. Changing the α or γ parameter yields
a wider change in goodput than in NSFNET. Figure 8 shows
that the α, β, and γ values selected in Sec. III-B give high
goodput, so we chose the same values as those in NSFNET.
If the time for fairness convergence is not a concern, a lower
γ value can be chosen to further increase goodput.

2) Comparison of Switches and Algorithms: Figure 9
plots the average goodput of TCP flows on different switch
and network architectures based on the optical RAM buffer
size per link. We can see that the goodput plots of XCP
pacing in the Abilene topology in Figures 9a and 9b are
similar to those of the NSFNET simulations in Figures

5a and 5b. However, the goodput gap between worst-case
shared buffering and output buffering is higher due to the
higher nodal degree of the Abilene topology. Figure 9c
shows that as we increase the buffer size, the goodput of
TCP pacing in the Abilene topology yields even wider
fluctuations than those in NSFNET. It seems that output
buffering can handle the paced TCP traffic better than other
switch architectures and even surpasses the goodput of
shared buffering greatly when the buffer is small. Figure
9d shows that output buffering with standard TCP yields
a performance boost over input buffering in the Abilene
topology, because output buffering can handle bursty TCP
traffic in a node with a high nodal degree better.

As a last step, we did a general comparison of algorithms
in the Abilene topology with shared buffering. In Figure 10,
we can see that when the buffer is very small, XCP pacing
methods yield almost the same goodput as TCP pacing.
However, when the shared buffer is larger than 1 MSS,

166

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

XCP Paced, combined ACK(SB)
XCP Paced, combined ACK(WCSB)

XCP Paced, combined ACK(IB)
XCP Paced, combined ACK(OB)

(a) XCP pacing (combined ACK)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

XCP Paced, ACK macro(SB)
XCP Paced, ACK macro(WCSB)

XCP Paced, ACK macro(IB)
XCP Paced, ACK macro(OB)

(b) XCP pacing (separate ACK macroflow)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

Paced TCP(SB)
Paced TCP(WCSB)

Paced TCP(IB)
Paced TCP(OB)

(c) TCP pacing

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

Standard TCP(SB)
Standard TCP(WCSB)

Standard TCP(IB)
Standard TCP(OB)

(d) Standard TCP

Figure 9. Goodput comparison of algorithms and switch architectures in Abilene topology

the goodput of TCP pacing stalls and XCP pacing methods
yield higher goodput than TCP pacing. XCP pacing methods
reach their maximum goodput when around 2–3 MSS per
link of shared buffer is used. However, paced TCP and
standard TCP require around 30–60 MSS per link of shared
buffer to reach the goodput of XCP pacing methods. When
the buffer is larger, standard TCP and paced TCP achieve
slightly higher utilization than XCP due to the max-min
fairness problem with XCP, which causes some bottleneck
links to become under-utilized. However, as our aim is to
increase performance with small buffers, the difference in
goodput with such large buffers is not a concern. Optical
RAM is not expected to attain a large capacity, so shared
buffering is good. Figure 10b shows that XCP pacing yields
a lower packet drop rate in the core nodes than paced or
standard TCP just like in the NSFNET simulations. When
we compare the two XCP pacing methods in Figure 10, we
can see that their goodput and packet drop rates are very

close, which indicates that the ACK compression problem
in the Abilene topology is much less than that in NSFNET.

IV. CONCLUSION AND FUTURE WORK

We investigated and compared optical-buffered switch
architectures and pacing algorithms for minimizing the
buffer requirements of OPS switches. By using two mesh
topologies, our simulations revealed that even under bursty
TCP traffic, using our architecture based on optical rate-
based paced XCP, which is a modified version of XCP
adapted to work as an intra-domain traffic shaping and
congestion control protocol in an OPS network domain,
could yield equal or higher TCP goodput and lower packet
drop rates in the core nodes than using paced TCP, which
is the solution that has generally been proposed in the
literature. Moreover, simulations in the Abilene topology
revealed that the goodput of paced TCP might exhibit some
fluctuating behaviors, which adversely affect its performance
even with relatively small buffers.

167

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1000 10000 100000 1e+06

A
v
er

ag
e

fl
o
w

 g
o
o
d
p
u
t

(B
y
te

s/
s)

Buffer size per link (Bytes)

XCP Paced, ACK macro(SB)
XCP Paced, combined ACK(SB)

Paced TCP(SB)
Standard TCP(SB)

(a) Goodput

 0.0001

 0.001

 0.01

 0.1

 1000 10000 100000 1e+06

P
ac

k
et

 d
ro

p
 r

at
e

Buffer size per link (Bytes)

XCP Paced, ACK macro(SB)
XCP Paced, combined ACK(SB)

Paced TCP(SB)
Standard TCP(SB)

(b) Packet drop rate in the core nodes

Figure 10. Comparison of algorithms in Abilene topology with shared buffering

There are many advanced switch architectures in the
literature like combined input output buffered switches, but
most of them have have high scheduling complexity, which
may become a bottleneck at ultra high speed of optical
networks, so we limited our work to simpler architectures
with lower scheduling complexity. When we compared the
small buffered switch architectures simulated in this work,
we could see that shared buffering yielded much higher
TCP goodput than input or output buffering as it used small
buffer capacity in the node more effectively. When the traffic
was paced, input buffering yielded higher TCP goodput
than output buffering while using much smaller switches.
In NSFNET topology, where the nodal degree of nodes was
small, worst-case shared buffering yielded almost the same
goodput as output buffering with a much smaller buffer
capacity per switch. Therefore, output buffering looks as
though it is the worst choice as a switch architecture for
small buffered optical networks with a low nodal degree.

Overall, the combination of applying XCP pacing and
using shared buffered switches generally yielded the highest
performance in terms of goodput and packet drop rate for
small buffered OPS networks. Our XCP pacing proposal
only operates at the edge/core routers of OPS domains
and there are still no optical-RAM-buffered OPS networks
deployed on the Internet, so it can be applied to OPS
networks when they become commercially available, while
paced TCP solution is harder to deploy as this requires
replacing the TCP stack of computers on the Internet.

As a future work, we will work on the max-min fairness
problem of XCP, which causes some bottleneck links to be
under-utilized. Our work has revealed that shared buffering
requires much less buffering than input and output buffering,
but the required buffer size is not clear. Therefore, we will
try to formulate the relationship between the number of
wavelengths, traffic type, nodal degree, and the required

shared buffer size. We intend to simulate other state-of-the-
art congestion control algorithms and pacing methods with
different types of traffic to gain a broader understanding of
their performance in different switch architectures in future
work.

ACKNOWLEDGMENTS

This work was partly supported by the National Institute
of Information and Communications Technology (NICT).

REFERENCES

[1] O. Alparslan, S. Arakawa, and M. Murata, “Packet switch
architectures for very small optical RAM,” in Proceedings
of The First International Conference on Evolving Internet
(INTERNET 2009), 2009, pp. 106–112.

[2] C. Villamizar and C. Song, “High performance TCP in
ANSNET,” Computer Communication Review, vol. 24, no. 5,
pp. 45–60, 1994.

[3] T. Aoyama, “New generation network(NWGN)
beyond NGN in Japan,” Web page: http://akari-
project.nict.go.jp/document/INFOCOM2007.pdf, 2007.

[4] G. Appenzeller, J. Sommers, and N. McKeown, “Sizing router
buffers,” in Proceedings of ACM SIGCOMM, 2004, pp. 281–
292.

[5] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden, “Part III: Routers with very small buffers,”
ACM SIGCOMM Computer Communication Review, vol. 35,
pp. 83–90, 2005.

[6] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the
dynamics of a congestion control algorithm: The effects of
two-way traffic,” in Proceeedings of ACM SIGCOMM, 1991,
pp. 133–147.

[7] G. Theagarajan, S. Ravichandran, and V. Sivaraman, “An
experimental study of router buffer sizing for mixed TCP and
real-time traffic,” in Proceedings of IEE ICON, 2006.

168

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] O. Alparslan, S. Arakawa, and M. Murata, “Rate-based pacing
for small buffered optical packet-switched networks,” Journal
of Optical Networking, vol. 6, no. 9, pp. 1116–1128, Septem-
ber 2007.

[9] D. Katabi, M. Handley, and C. Rohrs, “Congestion control
for high bandwidth-delay product networks,” in Proceedings
of ACM SIGCOMM, 2002, pp. 42–49.

[10] G. Papadimitriou, C. Papazoglou, and A. Pomportsis, “Op-
tical switching: Switch fabrics, techniques, and architectures,”
Journal of Lightwave Technology, vol. 21, no. 2, pp. 384–405,
2003.

[11] O. Alparslan, S. Arakawa, and M. Murata, “Rate-based pacing
for optical packet switched networks with very small optical
RAM,” in Proceedings of IEEE Broadnets, September 2007,
pp. 300–302.

[12] ——, “XCP-based transmission control mechanism for op-
tical packet switched networks with very small optical RAM,”
Photonic Network Communications, vol. 18, no. 2, pp. 237–
243, October 2009.

[13] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking
the tightrope: Responsive yet stable traffic engineering,” in
Proceedings of ACM SIGCOMM, 2005, pp. 253–264.

[14] N. McKeown and T. E. Anderson, “A quantitative comparison
of iterative scheduling algorithms for input-queued switches,”
Computer Networks, vol. 30, no. 24, pp. 2309–2326, 1998.

[15] S. McCanne and S. Floyd, “ns Network Simulator,” Web
page: http://www.isi.edu/nsnam/ns/, July 2002.

[16] S. Low, L. Andrew, and B. Wydrowski, “Understanding XCP:
equilibrium and fairness,” in INFOCOM, 2005, pp. 1025–
1036.

[17] J. C. Mogul, “Observing TCP dynamics in real networks,” in
Proceedings of ACM SIGCOMM, 1992, pp. 305–317.

[18] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A first-
principles approach to understanding the Internet’s router-
level topology,” in Proceeedings of ACM SIGCOMM, 2004,
pp. 3–14.

169

International Journal on Advances in Internet Technology, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

