Frequency-aware Reconstruction of Forwarding Tables in
Name-based Routing

Haesung Hwangt Shingo Ata! Masayuki Muratat
h-hwang@ist.osaka- ata@info.eng.osaka- murata@ist.osaka-u.ac.jp
u.ac.jp cu.ac.jp

fGraduate School of Information Science and Technology, Osaka University

*Graduate School of Engineering, Osaka City University

ABSTRACT

In the future Internet, routing on contents or resources is antici-
pated as the post-Internet Protocol (IP) routing. The final goal of
our research is to realize routing based on the name of a resource
in the network layer. Towards this purpose, we use the ‘name’ for
routing, particularly the ‘fully qualified domain name (FQDN)’ to
show the feasibility of name-based routing and to generalize it to
resource-based routing. When writing the routing information of
hierarchically structured FQDN into a hierarchical virtual topol-
ogy, mismatch between the virtual topology and physical topology
can occur if the virtual topology lacks the physical topology’s infor-
mation. In addition, routing tables should be reorganized to reflect
the different access frequency among the FQDNSs. In this paper,
we propose an algorithm for reconstructing routing tables to bet-
ter map a virtual topology to the physical topology. As a result,
we show that using the access frequency and physical topology’s
information increases the efficiency for searching FQDN.

1. INTRODUCTION

Network architectures such as the ones that perform routing us-
ing information instead of conventional internet protocol (IP) ad-
dresses are anticipated for the future Internet [4]. However, prob-
lems such as reserving memory capacity at routers, minimizing
topology changes in the network, and devising deployment strate-
gies arise in order to realize routing in the network layer based on
resources.

As a first step in showing the feasibility of resource-based rout-
ing, we investigate routing on the basis of names, which is a typical
type of resource. Currently, there are a number of standardized
names to represent resource information. Examples are the com-
mon language equipment identifier (CLEI) [20], the extensible re-
source identifier (XRI) [16], the life science identifiers (LSID) [13],
and the digital object identifier (DOI) [6]. A CLEI identifies a com-
munication device and is globally unique. The ID’s ten alphanu-
meric characters represent the device’s technology, type, function,
and manufacturer, as well as provide complementary data. The XRI
is independent of domain, location, and application (syntax (1) in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CFI ’10 June 16-18, 2010, Seoul, Korea

Copyright 2010 ACM x-xXXXX-XX-X/XX/xX ...$10.00.

(1) xri://authority/path?query#fragment
(2) urn:lsid:authority.org:namespace:object:revision
(3) prefix/suffix

(4) scheme name:hierarchical part?query#fragment

Figure 1: Syntax of standardized names used to represent re-
source information

Figure 1). The LSID identifies biologically significant resources
using syntax (2) in Figure 1, and the DOI identifies content objects
in a digital environment using syntax (3) in Figure 1 where pre-
fix and suffix identify the registrant and single object, respectively.
These uniform resource identifiers (URIs) [2] are commonly used
to identify abstract and physical resources and are compatible with
syntax (4) in Figure 1. Most of the naming schemes have a hi-
erarchical structure, i.e., a tree structure containing a number of
domains each of which having names and/or lower-level domains.
Particularly, the ‘authority’ part in the names in Figure 1 show the
hierarchical structure, ideally suited to a more distributed registra-
tion scheme [12].

In addition, the hierarchical structure of the naming scheme has
an affinity for storing themselves in the forwarding table of routers
deployed in a network. Routers in a network also have hierarchi-
cal structure: backbone, local gateway, and edge. Information re-
garding the top-level domain name is stored in backbone routers,
second-level domain name is stored in local gateway routers, and
third-level domain name is stored in edge routers. We show the
case of mapping fully qualified domain names (FQDNs), which
is a typical example of hierarchical naming structure, into routers
in Figure 2 [1]. To store hierarchical names, a virtual topology is
constructed hierarchically shown as the left part of Figure 2. The
top level ring topology is constructed for the top level domains, in
which each node has a pointer to the ring for the second level do-
mains. Also a node of the second level ring has a pointer to the
ring for third level domains. On the other hand, the current Internet
topology is also hierarchical as shown in the right part of Figure 2.
From the similarity of natures of both topologies, it is easy to map
the virtual topology to the physical topology, i.e., a virtual topology
is constructed by ring-shaped connections between routers at the
same level. Ring-shaped connections are now common in overlay
networks such as distributed hash tables (DHT) [17, 19]. However,
one of the problems with overlay networks is a potential mismatch
between the logical and physical topologies [8, 14]. A mismatch
can result in routing delays because the routing may be from a node
to an apparent neighbor node based only on their IDs, when in ac-
tuality they are physically far apart. Network architectures using

Top level domain e

net \;‘j. R "_:\,_\
com o [TR AN ¢ 7
=~ 7’ 3 ¥ - . \
A \ ! / V%
2nd level domain ~ — (&= -
- - . N 3
b.com—_ et \:f ~\]
clp ajpr r =
S 7 b A
3rd level domain — ?_‘\\\‘ oy e
T # S

Figure 2: Virtual topology for storing hierarchical names and
physical network topology

logical topologies should reflect the physical topology information
to minimize delays due to such mismatches.

In our approach, on the other hand, name-based routing is per-
formed within the routers, i.e., in the network layer. Routers have
the forwarding table for names, and packets have names for their
source and destination addresses. Packets are forwarded according
to the name instead of IP addresses. This eliminates the need for
servers to resolve resource names to IP addresses. Moreover, the
end nodes, which generally have less processing capabilities and
reliability than routers, no longer need to forward packets, espe-
cially in the overlay network environment. As a result, the overall
network reliability increases because the routers, not the end nodes,
search for resources and information. However, the mismatch be-
tween the location of routing information in the virtual topology
and the actual source of the query still remains. In other words,
the routing information that the source node requires is not always
stored near the source nodes.

In this paper, we develop an algorithm for location-aware virtual
topologies that takes into account the physical topology and recon-
structs the routing tables so that the frequency of access to objects
is considered. Simulation show that using such reconstructed tables
reduces the number of hops by about 20%.

The rest of this paper is organized as follows. Section 2 dis-
cusses previous work on location- and access-frequency-aware log-
ical topologies. Section 3 describes the algorithm we developed for
reconstructing the routing tables. The simulation settings and eval-
uation results are presented in Section 4, Section 5 concludes the
paper with a summary of the main points and an outlook on a de-
scription of future work.

2. RELATED WORK

In this section we summarize previous work on location-aware
logical topologies and consider how the node load is affected by
the frequency of access to objects.

One of the popular methods used in previous work to solve the
mismatch between the logical overlay network and physical under-
lying network is utilizing routing redundancy, where nodes have
multiple next-node candidates when forwarding queries. In the al-
gorithm described by Ratnasamy et al. [15], each node forwards
packets to the node with the shortest round-trip-time (RTT) and in
the algorithm proposed by Datta et al. [5], the next hop node with
the lowest load is selected. Landmark clustering is utilized by the
algorithm of Xu et al. [21], where neighboring nodes are located
close to a certain landmark node. However, these previous efforts
are suboptimal solutions in the application layer and what to do
with the data itself still remains an open problem.

Caching and replication of the data key is used to solve the hot-
spot problem, which occurs when certain nodes have a high load
due to having popular objects. Serbu et al. [18] suggested using the
load of each node to reconstruct the routing tables. The forwarding

jp.t* ~ w*
» Second level

other .
TLDs jp.conference.a.*

jp.a* ~ c* jp.conference.b.*
jp.conference.c.*

jp.d* ~ g*

et

& jp.crat ~c*
jp.agriculture.* -
jp.biology.* .ck.d* ~ g*
;E.confgrénce.* » o jp.a*.*
jp.b*.*
Third level

(a) Hierarchical Longest Alphabet Match (HLAM)

- Second level
Jp.(#10)

ip.(#20) other
- TLDs
{ ip.(#50) H(economy)=30
) H(biology)=30
A jp.(#50).(#30)
H(renesas)=50 ¢ 7 Nt
H(osaka-u)=50 Jp-(#50).(#25) ip.(#50).%
Third level

(b) Hybrid Distribution (HD)

Figure 3: Examples of FQDN entry distribution using HLAM
and HD algorithms

load of a node A that is receiving many requests is reduced by
deleting the path to A from the previous node B and adding another
entry with the same prefix as node A to the routing table in B.
However, there is additional overhead of keeping track of the load
on each other node and maintaining this information in its routing
table.

In this paper, we propose an algorithm that reconstructs the rout-
ing tables considering the frequency of access to each entry. Unlike
the algorithm in [18], maintaining the status of each node’s load is
unnecessary, therefore reducing the storage overhead.

Before mentioning this paper’s contribution and algorithm in the
following sections, we briefly summarize our previous work. We
demonstrated in [9] the feasibility of storing the routing informa-
tion in FQDNSs in ternary content addressable memory (TCAM),
which is the high-speed memory used in modern routers. The re-
quired number of routers for the storage is less than two orders of
magnitude compared to the number of currently deployed routers [9].
The algorithms used to distribute the routing tables which con-
tain domain names to multiple routers were hierarchical longest
alphabet match (HLAM) and hybrid distribution (HD), which are
illustrated in Figure 3. The HLAM algorithm was inspired by the
longest prefix match [7] algorithm and expresses domain names us-
ing American standard code for information interchange (ASCII).
Names that start with the same letter, i.e., that have bits in common,
can be stored in the same router. For example, since the ASCII for
a, b, and c of domain names jp.ax*, jp.b*, and jp.c* are
1100001, 1100010, and 1100011, respectively, they can all
be expressed as 11000+« using the don’t care bit ‘x’ of TCAM.
The major advantage of HLAM is using this don’t care bit, which
can be either 0 or 1, makes high-speed search possible in TCAM.
The HD algorithm first groups FQDNs by their top-level domain
and hashes the second level domain and below. Domain names that
have the same hash value are stored in the same router. For ex-
ample, if the hash values of abc (part of abc.co. jp) and xyz
(part of xyz.ac. jp) are the same, the FQDNs are stored in the
same router. The use of this hash function means that FQDNs are

- £~ § Before
J) W o=

=
b - —
Regular path N XTIV yszowosx
= z *
s - B=%
. v

=) = VX
.

p Shortcdtpath | X After o%
o * B N 0[Y»x
v H[E

B =%
o V->X

(a) Shortcut path

i Before
I g W a= Y

— :} Y YSZSWSX
z : B %
ey

ST S VX
L X
LT After
Y % B Xy, @D
i v
*
B=

VoOW->Z-5Y

(b) Entry migration

Figure 4: Scenarios 1 and 2

distributed more equally than with the HLAM algorithm, so fewer
routers are needed. We also evaluated the feasibility of robustly
updating the routing information database entries and showed that
there are no drastic changes in the routers’ forwarding tables [10].

3. RECONSTRUCTION OF
ROUTING TABLES

In this section, we discuss scenarios for quickly responding to
queries regarding routing information for highly accessed FQDNs.
The routing table’s initial state represents the state of the routing
tables immediately after database distribution using the HLAM or
HD algorithm and before routing table reconstruction. Here, re-
quest frequency means the degree of requests from the source and
access frequency means the degree of accesses that the destination
receives. The gateway router of the source or the routers along the
path to the object receive ‘requests,” and the router with the object
receives ‘accesses.’

3.1 Scenario 1: Shortcut Path

One scenario for quickly answering queries regarding routing in-
formation for highly accessed FQDNs is to add entries to the rout-
ing table. These entries are shortcuts to routers with high access
frequencies (i.e., the routers that have routing information for the
destination FQDN) from a router that has a high request frequency.
As shown in Figure 4(a), router Y adds an entry to reach router X
directly depending on the number of requests to the node/resource
‘x’. After the shortcut is established, other routers in the same ring
as router Y can use it to effectively reach router X. Therefore, the
other nodes in the ring are notified about Y — X.

Adding entries for shortcuts makes it unnecessary to traverse the
upper layers in the hierarchy. In addition, the routers can receive
information about network changes as soft-state updates and rese-
lect neighboring nodes, which increases robustness [21]. However,
it is not always possible to create shortcut paths through different
Internet service providers.

3.2 Scenario 2: Entry Migration

Another scenario for quickly answering queries regarding rout-
ing information for highly accessed FQDN:ss is to delete the routing
information for entries that have a high access frequency from the
initial state router and to add entries that have a high request fre-
quency to the router. As shown in Figure 4(b), with this ‘migrat-
ing entry’ scenario, the routing information for node/resource ‘x’
is moved from router X to router Y when the number of requests
exceeds a threshold. If it is moved, notification is sent to the routers
in the same ring as X, to upper layer router W, to router Y’s upper
layer router (Z), and to the routers in the same ring as Y.

Migrating an entry from a router with a high access frequency to

one with a high request frequency enables the routing information
for the entry to be deleted from the initial router. This results in
better utilization of the router memories. In addition, routing infor-
mation is stored in a router with a high request frequency or in one
close to where there are many requests, which speeds up query re-
sponse. However, overhead is increased because other routers have
to be notified of the change.

3.3 Scenario 3: Combination

The third scenario for quickly answering queries regarding rout-
ing information for highly accessed FQDNs is a combination of
scenarios 1 and 2. The algorithm uses two parameters.

1. P, (%) is the number of accesses to an item P. It is the sum of
the number of accesses from the router ¢ that has the routing
information for P and from the routers that have the same
TLD as i.

2. P.(j) is the number of requests to an item P. It is the sum of
the number of requests from the router j that is on the path
from the source to P and from the routers that have the same
TLD of j.

The algorithm has three steps.

1. If P.(j) > Pa(4), add a shortcut path from j to 4
2. If P.(j) > Pa(7) over a time period ¢, move item P to j

3. Repeat (1) and (2) depending on the request/access frequency

4. EVALUATION

We evaluate the static placement of routing tables and the adap-
tive placement (reconstruction) of routing tables in accordance with
the access frequency. We first distribute the database using the
HLAM and HD algorithms, which are also referred to here as the

‘name-based’ and ‘hash-based’ algorithms. We use the FQDN database

for January 2010 from the Internet Systems Consortium (ISC) [11],
which has approximately 732 million entries. To shorten the simu-
lation time, only 1% of the entries (7.3 million) are used. The size
of the TCAM in a router is also reduced, to 1.8 Mbit x 1 TCAM =
1.8 Mbit compared to 18 Mbit x 10 TCAMs = 18 Mbit used in our
previous work.

4.1 Simulation Settings

We compare static placement, which does not reconstruct the
routing tables, with adaptive placement, which reconstructs the rout-
ing tables in accordance with the request/access frequency of the
destination FQDN. The evaluation metric is the average number
of hops between the source and the destination. Since the average

(%2}

»
«n

s

il wﬁwwwﬂ I

1 U TRNREEN R

w
n

£
% 2.5 —Hash-static
g 2 ——Hash-adaptive
< 1.5 =——Hash-round2
1
0.5
0

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701
Unit time

Figure 5: Average number of hops (hash-based)

number of hops in a general DHT ring with n nodes is O(logn),
we estimate it as logn. The number of hops between a router in
the lower level and one in the upper level is set to 1, on the basis
of the single-connection intra-group structure described by Zoels
et al. [22]. This is considered to be a desirable structure in a hier-
archical DHT system, in which multiple peers are connected to a
super peer. Furthermore, it is assumed that the nodes in each lower
level make a ring of their own.
There are two rules for selecting the source/destination pairs.

1. Determine the destination first. The destination has a Zip-
fian distribution with the index factor 1 [3]. In other words,
of N = 732,740 pairs, the 2nd most popular destination has
half the number of accesses as the most popular destination.
In addition, it is assumed that general (g) TLDs are accessed
more often than country-code (cc) TLDs. The top three des-
tinations are selected from the pool of gTLDs.

2. The rules for selecting the source depend on whether the des-
tination is a gTLD or a ccTLD. To bias the origin of the
source, three popular sources are selected to have a distribu-
tion of 40%, 20%, and 10% when the destination is a gTLD.
The remaining 30% are selected randomly. When the desti-
nation is a ccTLD, 90% of the sources are selected to have
the same TLD to impart a locality characteristic.

The number of hops is calculated for static and adaptive place-
ment using the selected pairs. The condition P,.(j) > P,(i) is
checked after 5 time unit have passed. Here, 1,000 communications
(i.e., source requests for destination FQDN) occur in each unit time.
Therefore, if P.(j) > Pa(%) holds after 5,000 communications, a
shortcut path is established. Time ¢ is when P,.(j) > P,(?) holds
even after the shortcut path is established. In other words, if there is
an attempt to create a shortcut when one already exists, the source
and destination pair is considered to be very popular, resulting in
entry migration.

4.2 Simulation Results

Figure 5 shows the average number of 1,000 hops in each unit
time for hash-based static, adaptive, and adaptive-round 2. ‘Adap-
tive round 2’ uses the content of the forwarding tables from the
‘adaptive’ and the same source-destination pairs are used in the
evaluation. An average of approximately 4.1 hops per unit time
was maintained with static placement while the average dropped to
about 3.4 hops after 730 time units with adaptive placement. This
may seem as a small amount of reduction but shows a potential in

developing a mapping algorithm to reach the destination with the
shortest path possible.

Figure 6 shows the number of requests for the three different
path types with the hash-based algorithm. ‘Regular path’ means
the source reached the destination using the path given in the initial
state. ‘Shortcut path’ and ‘Moved path’ are self-explanatory. When
the number of communications using the shortcut path increased,
the number using the ‘regular path’ decreased. In addition, more
source and destination pairs used the ‘shortcut path’ initially, but
as these popular destinations migrated, more pairs used the ‘moved
path’. In Figure 6(b), the number of requests using each path are
stable, maintaining the values of Figure 6(a). The results shown in
this paper are only example cases.

The result of name-based is not shown due to the small difference
in the numbers which is thought to be caused by the relatively small
database used in the simulation. Since the name-based algorithm
distributes the database in accordance with the name’s ASCII, it
creates a less balanced distribution of the database, so more routers
are needed for storage than with the hash-based algorithm.

S. CONCLUSION

We have investigated the feasibility of using name-based routing,
particularly routing using FQDNSs, as a first step towards resource-
based routing. We investigated the mapping of the logical topol-
ogy to the physical topology and described an algorithm for recon-
structing routing tables on the basis of the differences in access fre-
quency between objects. Simulation of the proposed algorithm us-
ing an FQDN database showed that using such reconstructed tables
reduces the number of hops by approximately 20%, demonstrat-
ing that this approach is feasible. Future work includes developing
an algorithm to handle end nodes with mobility and generalizing
name-based routing to resource-based routing.

Acknowledgment

This research was supported by the National Institute of Informa-
tion and Communications Technology (NICT) of Japan.

6. REFERENCES

[1] Abilene Network,
http://www.internet2.edu/network/ .

[2] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986:
Uniform Resource Identifier (URI), Jan 2005.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and
Implications. In Proc. of IEEE INFOCOM, volume 1, pages
126-134, Mar 1999.

[4] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A Routing
Scheme for Content-Based Networking. In Proc. of IEEE
INFOCOM, Mar 2004.

[5] A. Datta, R. Schmidt, and K. Aberer. Query-load Balancing
in Structured Overlays. In Proc. of the 7th IEEE CCGRID,
pages 453-460, May 2007.

[6] Digital Object Identifier (DOI), http://www.doi.org/.

[71 W. Doeringer, G. Karjoth, and M. Nassehi. Routing on
longest-matching prefixes. IEEE/ACM Transactions on
Networking, 4:86-97, Feb 1996.

[8] B. Hariri, S. Shirmohammadi, and M. R. Pakravan.
LOADER: A Location-Aware Distributed Virtual
Environment Architecture. In Proc. of the IEEE VECIMS,
pages 97-101, July 2008.

1000 Regular (hash)

==Shortcut (hash)
2 800 ——Migrate (hash)
4]
>
g 600
G
£ 400
€
=]
=z
200
0
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701
Unit time
(a) Round 1

Number of requests

1000

800

600

400

200

Regular (hash-r2)
——Shortcut (hash-r2)
——Migrate (hash-r2)

ity TR)

WMMMMMW

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701
Unit time

(b) Round 2

Figure 6: Number of requests via regular, shortcut, and migrated paths

[9] H. Hwang, S. Ata, and M. Murata. A Feasibility Evaluation
on Name-based Routing. In Proc.of IEEE IPOM, pages
130-142, Oct 2009.

[10] H. Hwang, S. Ata, and M. Murata. The Impact of FQDN
Database Updates on Name-based Routing Architecture. In
to be presented at 5th IFIP/IEEE BcN, Apr 2010.

[11] Internet Systems Consortium (ISC),
http://www.isc.org/index.pl?/ops/ds/.

[12] C. Kozierok. The TCP/IP Guide: A Comprehensive,
1llustrated Internet Protocols Reference. No Starch Press,
2005.

[13] Life Sciences Identifiers (LSID),
http://lsids.sourceforge.net/.

[14] T. Qiu, G. Chen, M. Ye, E. Chan, and B. y. Zhao. Towards
Location-aware Topology in both Unstructured and
Structured P2P Systems. In Proc. of International
Conference on Parallel Processing, pages 30-37, Sep 2007.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proc. of the SIGCOMM, pages 161-172, Aug 2001.

[16] D. Reed and D. McAlpin. Extensible Resource Identifier
(XRI) Syntax V2.0.

(17]

(18]

(19]

[20]

[21]

[22]

http://www.oasis-open.org/committees/
download.php/15376#_Tocl17301832.

A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-scale Peer-to-peer
Systems. IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 11:329-350, Nov 2001.
S. Serbu, S. Bianchi, P. Kropf, and P. Felber. Dynamic Load
Sharing in Peer-to-Peer Systems: When Some Peers Are
More Equal than Others. IEEE Internet Computing,
11(4):53-61, July 2007.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. Proceedings of the
SIGCOMM, 31(4):149-160, Aug 2001.

K. Tesink and R. Fox. RFC 4152: A Uniform Resource
Name (URN), August 2005.

Z. Xu, C. Tang, and Z. Zhang. Building Topology-aware
Overlays using Global Soft-state. In Proceedings of
International Conference on Distributed Computing Systems,
volume 23, pages 500-508, May 2003.

S. Zoels, Z. Despotovic, and W. Kellerer. On Hierarchical
DHT Systems—An Analytical Approach for Optimal
Designs. Computer Communications, 31(3):576-590, 2008.

