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Abstract—An emerging new generation network is requested
to accommodate an enormous numbers of nodes with high
diversity and a wide variety of traffic and applications. To
achieve higher scalability, adaptability, and robustness than
ever before, in this paper we present new network architecture
composed of self-organizing entities. The architecture consists
of the physical network layer, service overlay network layer,
and common network layer mediating them. All network
entities, i.e., nodes and networks, behave in a self-organizing
manner, where the global behavior emerges through their
operation on local information and direct and/or indirect
mutual interaction intra- and inter-layers. We show several
results to demonstrate how self-organizing network control
behaves based on our architecture.

Keywords-new generation network; network architecture;
self-organization; bio-inspired algorithms

I. INTRODUCTION

To satisfy a wide range of requirements and desire of
people and to support our daily life in many aspects, a
variety of fixed devices such as PCs, servers, home electric
appliances, and information kiosk terminals, mobile devices
such as that equipped with people and vehicles, and small
and scattered devices such as RFID tags and sensors, are
and will be distributed in the environment. They are and
will be connected with each other and organize networks.
They cooperate with each other in sharing and exchanging
obtained or generated information and controlling each
other to provide people with desired services for safe and
comfortable environment.

Those devices generate a great variety of traffic including
voice, video, computer, sensing, identification, control, and
management data in accordance with a type of device,
application, service, and context. Traffic characteristics also
have the diversity, e.g., constant/intermittent, low/high rate,
and small/large amount. Furthermore, the number, type,
location, and usage of devices, condition of communication
environment, and traffic characteristics dynamically and con-
siderably change every moment.

It means that new generation networks is requested to ac-
commodate an enormous numbers of heterogeneous devices
and a wide variety of traffic with substantial fluctuation un-
der dynamically changing communication environment [1].

Therefore, a network would often face unexpected or unpre-
dictable user behavior, usage of network, and traffic pattern,
which are beyond the scope of the assumption in designing
and building the network. As a result, the performance
considerably deteriorates or at worst the network completely
collapses. Consequently, the conventional network design
methodology, where structures, functionalities, algorithms,
and control parameters are optimized to accomplish the
best performance assuming certain operating environment,
and fault detection, avoidance, and recovery mechanisms
are prepared and preprogrammed for expected failure, is no
longer feasible.

Taking into account requirements for a new generation
network stated above, in [2] we propose new network
architecture, which is more scalable to the number of nodes
and scale of network, more adaptive to a wide variety of
traffic patterns and their dynamic change, and more robust
to expected and unexpected failure independently of size
and duration, than ever before. Our basic idea is to organize
and control the whole network system in a self-organizing
manner where the global behavior emerges from mutual
interaction among localized behavior of small entities. A
network has a layered architecture; the physical network
layer, the service overlay network layer, and the common
layer, which mediates inter and intra layer interaction. Be-
havior of all entities constituting a network system, i.e.,
node, network, and layer, is self-organized. A node performs
MAC, scheduling, routing, congestion control, and other
control by using nonlinear functional modules called self-
organization engines, which operate based on local infor-
mation obtained through observation of environment and
information exchange with neighboring nodes. Nodes further
organize and control a network through localized behavior
and mutual interaction among them. Networks within a
layer also behave in a self-organizing way and interact with
each other directly by exchanging messages and/or indirectly
by changing operating environment shared among them.
In addition to the intra-layer interaction, service overlay
networks and physical networks interact with each other
through mediation of the common network layer.

In the following sections, we introduce the self-organizing
network architecture first starting with basic concept and
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Figure 1. Self-organizing network architecture

followed by node architecture and components. We also
show examples of combination of multiple self-organization
engines and hierarchical control of network by a single
self-organization engine. Then, we conclude the paper by
mentioning related work and future issues.

II. SELF-ORGANIZING NETWORK ARCHITECTURE

In this section, we briefly describe our network architec-
ture together with some sample biological models for self-
organized control of new generation networks.

A. Basic Concept

As the number of nodes and the size of network in-
crease, a centralized mechanism becomes ineffective for
considerable maintenance overhead to collect up-to-date
information on the whole network system and distribute the
decision to all nodes. Especially when we consider wireless
communication, such control overhead occupies the limited
bandwidth and disturbes regular data communication. Even
semi-distributed mechanisms, such as a table-driven routing
protocol, where nodes in a network perform a distributed
control algorithm, requires nodes to keep the same and
consistent up-to-date view of network. Therefore, we need
fully distributed and autonomous control mechanisms, which
enable a node to operate without the need for global infor-
mation, but purely on local information obtained through
observation of its surroundings and messages exchanges
with neighbors. With such autonomous mechanisms, it also
is possible to avoid letting a single and local failure, e.g.,
link disconnection, involve the whole system by propagating
the failure information to update the topology information
that all nodes maintain.

In addition, a conventional adaptation mechanism where
the whole system is periodically re-optimized based on the
up-to-date status information puts too much burden on a
large-scale network to adapt to frequent changes in the
operating environment. As the temporal order of changes
in network condition becomes small in new generation
networks, frequency of information update increases and
becomes more harmful. Therefore, we need self-adaptive
and self-configuration control mechanisms, which are local
and distributed. Each node should autonomously and locally

adapt control parameters, behavior, and even algorithm and
mechanism in accordance with the state of surrounding
environment.

Furthermore, a conventional network system acquires
the robustness by implementing a variety of detection,
avoidance, and recovery mechanisms against failure, error,
abuse, extreme operating condition, and critical event. Such
design methodology makes a network system complicated,
monolithic, and even fragile. Therefore, we need simple and
module-based control mechanisms where a node, network,
and network system are constituted by autonomous, simple,
and interacting functional control modules. When a part
of the modules halts for unexpected failure, the remaining
modules provide the minimum level of network service and
provoke adaptive behavior of other modules and entities.
Consequently, the whole network system adapts to the new
environment.

In summary, we need a self-organizing network system
where a node consists of autonomous and simple control
mechanisms, mutual and local interaction among nodes
organizes a network, and inter and intra layer interaction
among networks organizes the whole network system. Such
a network system can keep providing network services to
users and applications independently of the size of system
and condition of operating environment, the degree of their
diversity and dynamic change, and the scale and duration
of failure. The self-organizing network architecture we pro-
pose has three layers. They are the physical network layer
consisting of wireless and wired access networks and optical
core networks, the service overlay network layer consisting
of service or application-oriented overlay networks, and the
common network layer, which mediates interaction among
entities within a layer and interaction among the two layers.
These layers are self-organized through inter and intra-
layer mutual interaction among entities. The architecture is
illustrated in Figure 1.

B. Node Architecture

In the self-organizing network architecture, each of phys-
ical and overlay nodes is composed of communication
and sensing module, knowledge database module, and self-
organization engines, and network control functionalities
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(see Figure 2). The communication and sensing module
obtains local information through message exchange with
neighboring nodes and observation of environmental con-
dition by probing or sensing for example. The module
also collects status information of node itself. Obtained
information is deposited into the knowledge database to be
used by self-organization engines.

A self-organization engine is a basic component for self-
organizing behavior of node. It operates on local information
in the knowledge database and reacts to its dynamic change.
By using self-organization engines, a node realizes and
performs MAC, scheduling, routing, congestion control, and
other network control functionalities.

Behavior of a node changes the operating environment and
affects neighbors. For example, emission of a message con-
sumes the wireless bandwidth and may cause collisions and
congestion. Neighbors would react to the change and behave
accordingly. Such changes in the operating environment and
neighbors’ behavior are observed by the communication and
sensing module and fed back to the node itself.

C. Self-Organization Engines

A self-organization engine is a nonlinear functional mod-
ule and a core of self-organization. It operates on a nonlinear
mathematical model in the form of differential equation.
Examples of nonlinear models include a pulse-coupled os-
cillator model [3], a reaction-diffusion model [4], a response
threshold model [5], and an attractor selection model [6]. All
of these models are derived from self-organizing behavior of
biological systems, which are inherently fully-distributed,
autonomous, and self-organizing. As a typical example,
it is well known that a group of social insects such as
ants, termites, and honey bees often exhibits sophisticated
and organized behavior, e.g., ant trail, cemetery formation,
brood sorting, and division of labor, which is beyond mere
collection of simple behavior of individuals. Such collective
intelligence, called swarm intelligence, emerges from mutual
and local interaction among simple agents [7]. By adopting
such bio-inspired mathematical models to network control,
we can expect to achieve a robust, scalable, and adaptive
self-organizing network system.

In this subsection, we first introduce the above mentioned

four nonlinear functions and how they are applied to specific
network control. Then we give two examples of extended
model, i.e., a combination of two nonlinear modules and a
layered nonlinear module. We should note here that not all
modules are incorporated to the proposed architecture and
presented results are obtained by independent implementa-
tion and experiments.

1) Pulse-coupled Oscillator Model: A pulse-coupled os-
cillator model explains synchronized behavior observed in a
group of flashing fireflies [3]. A firefly periodically flashes
based on its biological timer keeping its intrinsic frequency
when it is alone. When fireflies form a group, a flash of
firefly stimulates non-flashing fireflies. A stimulated firefly
advances its timer by a small amount. When the advanced
timer reaches a certain threshold, the stimulated firefly
flashes as well. At this moment, these fireflies are considered
synchronized. By repeatedly stimulating each other through
flashes, a group of fireflies eventually get synchronized
and they begin to flash at the same time and at the same
frequency.

In a pulse-coupled oscillator model, an oscillator main-
tains a timer. It fires when the phase of timer φ reaches
one and then the phase goes back to zero. The dynamics of
phase φ is formulated as,

dφi

dt
=

1
Ti

+
Δ(φi)

|{j|j ∈ Ni, φj = 1}|
∑
j∈Ni

δ(1 − φj). (1)

In (1), Ti stands for the intrinsic interval of oscillator i’s
timer. Ni is a set of oscillators coupled with oscillator i.
Oscilalltors coupled with a firing oscillator are stimulated.
Δ(φi) is a monotonically increasing nonlinear function,
which determines the amount of stimulus when oscillator
i receives a fire. The global synchronization, where all
oscillators flash simultaneously at the same frequency, can
be accomplished without all-to-all coupling. As far as the
network of oscillators is connected, oscillators with similar
intrinsic interval are eventually synchronized. Depending on
parameters and functions, so-called phase-lock condition,
where oscillators fire alternately keeping the constant phase
difference, can also be accomplished and a traveling wave
appears.

A direct application of the pulse-coupled oscillator model
is synchronization or scheduling. By regarding a wireless
sensor node as a firefly and radio signal transmission as
flash of a firefly, we can self-organize synchronization in
a wireless sensor network. In Figure 3, phase transition in
a network of 100 nodes randomly distributed in the region
of 100 m×100 m is shown. The communication range is
identical among nodes and set at 20 m. Intrinsic frequency
Fi = 1/Ti is chosen within the range of [0.9,1.1] at random
considering timer drift and error. Initial phase φ i is also cho-
sen at random taking into account error and asynchronous
power activation. The x-axis of the figure corresponds to
time and the y-axis shows state transition. Initially, phases



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7

ph
as

e

time

Figure 3. Synchronization in a wireless sensor network

are different among nodes. At different rate depending on
intrinsic frequency, phases shift toward one. As one of the
nodes broadcasts a message, other nodes are stimulated and
some of them are brought to broadcast a message. As a
result of chain of stimulation, nodes are eventually merged
into several groups, in which nodes broadcast a message
simultaneously. Finally, the global synchronization emerges
as a consequence of mutual interactions among nodes.
Although delay is not considered in the experiment, a pulse-
coupled oscillator model has been applied to a variety of
network control such as clock and timer synchronization [8]
and scheduling [9], [10], where communication delay exists.

2) Reaction-Diffusion Model: Next a reaction-diffusion
model describes emergence of periodic patterns such as
spots, stripes, and maze on the surface of animal coat
through chemical interaction among cells [4]. In a reaction-
diffusion model, two hypothetical morphogens, i.e., activator
and inhibitor, are considered. The activator activates both of
the activator and inhibitor to increase their concentrations.
On the other hand, the inhibitor inhibits generation of
morphogens. The dynamics of morphogen concentrations is
formulated as,

du

dt
= F (u, v) + Du∇2u (2)

dv

dt
= G(u, v) + Dv∇2v (3)

where u and v are concentrations of activator and in-
hibitor, respectively. The first term of right-hand side of the
equations is called a reaction term and expresses chemical
reactions, i.e., activation and inhibition among morphogens.
The second term called a diffusion term is for interaction
among neighboring cells. To generate a pattern, the condition
Du < Dv, i.e., the speed of diffusion of inhibitor is faster
than that of activator, must be satisfied.

Let us consider the field of morphogens where the mor-
phogen concentrations are the same and stable. Now assume
that small perturbation makes the activator concentration
slightly larger than the inhibitor concentration at a point in
the field. The increased activator activates morphogenesis

Figure 4. Spot pattern Figure 5. Clustered wireless sen-
sor network

generation at the point. Although both of activator and in-
hibitor increases at the point, the generated inhibitor diffuses
around for the faster diffusion rate than the activator. As
a consequence, the concentration of inhibitor at the point
becomes smaller than that of activator. At the same time,
the diffused inhibitor inhibits generation of morphogens and
then the concentration of activator becomes small at the
diffused area. Eventually, we observe the spatial distribution
of nonuniform morphogen concentrations, i.e., a pattern.

Autonomously generated patterns can be used in several
network controls where a pattern of communication and
control appears, such as routing, clustering, and placement
of nodes, agents, or contents. For example, a spot pattern
generated by the reaction-diffusion model in Figure 4 resem-
bles to the clustered structure of a wireless sensor network
in Figure 5. In [11], a node evaluates the reaction-diffusion
equations by using the morphogen concentrations of itself
and neighboring nodes. Eventually a spot pattern appears
where each spot is centered at a node with the highest
activator concentration in the proximity, which becomes
a cluster head. Neighboring nodes, i.e., cluster members,
send their sensor data following the gradient of activator
concentration to a cluster head. By taking account of the
residual energy in the morphogen concentrations, energy-
efficient clusters can be formed in a self-organizing manner.
It is shown that the near-optimal clusters can be formed by a
reaction-diffusion based mechanism with only 8.4% increase
in the energy×delay cost from the optimal solution. Another
example of applications of a reaction-diffusion model is
scheduling of spatial TDMA MAC protocol [12].

3) Response Threshold Model: A response threshold
model explains division of labor in a colony of social
insects [5]. The ratio of individuals engaged in a certain task
is autonomously controlled in accordance with the demand.
The demand s of a task changes as,

ds

dt
= δ − αNact

N
, (4)

where δ corresponds to the per-time increase in demand,
N is the total number of individuals, and Nact means the
number of individuals engaged in the task. When Nact is not
sufficiently large, the demand increases. The probabilities
that individual i starts or stops performing the task are given



as,

P (xi = 0 → xi = 1) =
s2

s2 + θ2
i

, P (xi = 1 → xi = 0) = p.

(5)
xi indicates the state of individual i, where xi = 1 corre-
sponds to performing the task. θi is a response threshold of
individual i against the task, which implies the willingness
or hesitation in doing the task. p is a constant. Adaptive di-
vision of labor or specialization emerges from the following
learning function.

dθi

dt
=

{ −ξ if xi = 1
ϕ if xi = 0 (6)

This adaptation leads to division of labor in two groups,
specialists actively participating in task having a small
threshold and idle ones having a large threshold. When some
of specialists accidentally die, the demand begins to increase.
Then, individuals belonging to the latter group eventually
start to perform the task. Finally the appropriate ratio Nact

N
recovers.

Examples of application of a response threshold model
include task allocation for mobile sensor network cover-
age [13] and sensor and actuator networks [14]. In II-C6,
we incorporate the response threshold model with the pulse-
coupled oscillator model to achieve an energy-efficient and
adaptive surveillance control.

4) Attractor Selection Model: Finally, an attractor se-
lection model duplicates non-rule adaptation of E. coli
cells to dynamically changing nutrient condition in the
environment [6]. A mutant E. coli cell has a metabolic
network consisting of two mutually inhibitory operons, each
of which synthesizes different nutrient, i.e., glutamine and
tetrahydrofolate. When a cell generates one nutrient more,
it does the other nutrient less. If a cell is in a neutral
condition where both nutrients exist, the concentrations of
mRNAs dominating protein production are at a similar level.
Therefore, a cell synthesize either of nutrients. Once one of
nutrient becomes insufficient, the level of gene expression of
operon for the missing nutrient eventually increases so that
a cell can live in the new environment by compensating
for the insufficient nutrient. However, there is no signal
transduction, i.e., embedded rule-based mechanism, from the
environment to the metabolic pathway to switch between two
operons.

The dynamics of concentration of mRNAs is formulated
in a general form as,

d�x

dt
= f(�x) · α + �η, (7)

where �x corresponds to the concentrations of mRNA. f(�x)
is a function for chemical reaction on the metabolic net-
work. α represents the cellular activity such as growth rate
and expresses the goodness of current behavior, i.e., gene
expression. Finally, �η expresses internal and external noise
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Figure 6. Attractor selection model

affecting the cell behavior. In the case of the E. coli’s
experiments, the first term is formulated as [6],

dm1

dt
=

s(α)
1 + m2

2

− d(α)m1 + η1 (8)

dm2

dt
=

s(α)
1 + m2

1

− d(α)m2 + η2. (9)

m1 and m2 are mRNA concentrations and s(α) and d(α)
are functions of synthesis and decomposition, respectively.
Due to the mutually inhibiting relationship, the dynamics of
the above nonlinear equations has two attractors, m1 > m2

and m1 < m2. An attractor is a state where a nonlinear
dynamical system converges and becomes stable. If the cur-
rent attractor, i.e., morphogen generation, is suitable for the
current nutrient condition, the activity becomes high. Then
the basin of the current attractor becomes deep and the cell
stays there. Now the environment changes and the current
attractor becomes inappropriate. The activity decreases and
the basin becomes shallow accordingly. Being driven by the
noise term, the mRNA concentrations of the cell change
randomly. When the mRNA concentration corresponding to
the missing nutrient becomes larger, the activity slightly
increases. It makes the basin of the appropriate attractor
deeper. As a consequence of entrainment, the cell eventually
reaches the new appropriate attractor and adapts to the new
environment (see Figure 6).

Since a new generation network would often face environ-
mental changes and even unexpected condition, adaptation
is one of fundamental mechanisms that self-organizing net-
work controls should have. In applying to network control,
�x represents control parameters or control policy. When the
current control is appropriate for the environment, activity
α reflecting the goodness of the control becomes high
and the deterministic control f(�x) dominates the system
behavior. Once the environmental condition changes and
the control becomes inappropriate, activity α decreases and
relative influence of the noise term �η becomes dominant.
The system looks for new appropriate control, i.e., a good
attractor, by being driven by random and stochastic control.
Eventually the system finds and reaches a new good attractor.



Figure 7. Performance comparison among ad-hoc routing protocols

An attractor selection model has been applied to multipath
routing in overlay networks [15] and adaptive routing in
mobile ad-hoc networks [16].

In Figure 7 a simulation result demonstrating the robust-
ness of an attractor-selection based ad-hoc routing is shown.
In our proposal, each node evaluates attractor selection
equations to decide a next-hop node, to which a packet
to be forwarded. Attractors correspond to neighbor nodes
and the mRNA concentrations express the goodness of a
neighbor node as the next hop. The activity is derived at
a destination based on the number of hops that a packet
travelled and it is fed back to all intermediate nodes. When a
node chooses a neighbor, which contributes to establishment
of a shorter path, the activity increases and a node keeps
choosing the neighbor as next hop. When the path becomes
longer or is broken, the activity decreases and a node begins
to find a new good neighbor. In simulation experiments,
256 immobile nodes are uniformly distributed in a region of
1500×1500 m2. Each node can communicate with neighbors
within about 510 m using IEEE 802.11b. Between a fixed
pair of source and destination nodes, a CBR session of 8
kbps, which sends 10 packets per second, is established. The
x-axis corresponds to the number of failure occurance during
a 1000-seconds simulation run. For example, with 10 failure
occurance, each failure lasts for 100 seconds where ran-
domly chosen 25% of nodes remain halted. At the end of the
duration of 100 seconds, they resume operation and another
set of randomly chosen 25% of nodes halt. In comparison
to the standard AODV [17], AODV with local route repair
feature (AODV+L), AODV with both local route repair
and RREP response by intermediate node (AODV+LI), and
another bio-inspired routing protocol AntHocNet [18], it is
apparent that our proposal, i.e., MARAS, is more robust to
failures than the others.

As one may notice, those models take the form of nonlin-
ear temporal differential equations. It means that a system
operating on self-organization engines always adapts to tem-
poral changes in the environment. Adaptation is inherent in
regular network control. In addition, no global information is
required and each entity can determine its behavior by itself
and in relation to neighbors. In the conventional approach,
adaptation is implemented as an additional mechanism to
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regular network control. In the case of routing for example,
next hop selection and routing table update are different
and independent mechanisms. A routing table is updated on
receiving intermittent control messages whereas next hop is
selected on a per-packet basis.

5) Layered Attractor Selection Model: In [19], we adopt
a hierachical attractor selection model of interacting a gene
regulartory network and a metabolic network to virtual
network topology control (see Figure 8). Genes form a
gene ragulartory network of activation-inhibition relation-
ships. A metabolic network expresses a series of production
of substrates from other substrates. Chemical reaction is
catalyzed by proteins, whose expression levels are controlled
by genes. The dynamics of expression level of proteins is
described in the form of (7), where the activity corresponds
to the cell growth rate. The cell growth rate is determined
as an increasing function of concentrations of substrates.
A gene regulartory network adaptively and dynamically
controls expression levels to achieve the high growth rate
in accordance with nutrient condition.

By regarding a WDM network as a gene network, an IP
network as a metabolic network, and IP-level performance,
i.e., inverse of the maximum link utilization, as growth
rate or activity, a WDM network adaptively and dynami-
cally configures virtual network topology (VNT) by setting
lightpaths between IP routers. Figure 9 shows a result of
preliminary experiments, where the x-axis corresponds to
the degree of change and the y-axis shows the probability
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that a WDM network successfully accommodates IP traffic
and suppresses the maximum link utilization. As shown,
our VNT control outperforms a conventional method, called
ADAPTIVE, where lightpath establishment is done heuristi-
cally [20]. That is, our proposal is more robust and adaptive
to dynamically changing conditions.

6) Combination of Multiple SO Engines: Now, we show
an example of combination of multiple self-organization
engines. Assume an application of periodic data gathering in
a wireless sensor network consisting of a variety of sensor
nodes, e.g., thermometer and CO gas sensor, in a plant.
Under a usual condition, all sensors obtain and send their
sensor data to a sink at the regular and same intervals.
However, once an unusual event occurs, some sensors begin
to report sensor data more frequently. The number of sensors
for frequent sensing should be adapted in accordance with
the degree of emergency. For example, temperature changes
slowly in the order of hours and, once it becomes high, it
stays high for a long period. Therefore, sensors are required
to monitor temperature frequently when changes are de-
tected, while they can decrease the sensing frequency under
stable conditions. On the other hand, since gas existence
itself is harmful, CO gas sensors should perform frequent
sensing if CO gas exists.

In [21], taking remote surveillance of a shaft furnace in a
steel plant as an application, we used a pulse-coupled oscil-
lator model to accomplish energy-efficient sleep scheduling
adaptive to sensing frequency, which is dynamically con-
trolled by a response threshold model, see Figure 10. In
Figure 11, we show how sensor nodes adapt their sensing
frequency to dynamically changing sensing requirements.

frequency f1
frequency f2>f1

communication
      range

stimulation through
inter-network connection

merged to a single network (frequency f2)

frequency f1
frequency f2frequency f2>f3>f1

connected with mediation of border nodes (frequency f3)

Figure 12. Fusion and connection of wireless sensor networks

200 sensor nodes are distributed in the monitored region,
which further divided into four areas for the sake of expla-
nation. Each cross indicates the time instant that a sensor
node wakes up, obtaines sensor information, and emits a
message. At the beginning, nothing happens in the region
and sensor nodes report sensor information at the regular
data gathering intervals of 160 seconds. At 500 seconds,
temperature begins to increase in the area D. Detecting the
increase, sensor nodes in the region D begins to operate more
frequently as dense crosses show. At 1000 seconds, CO gas
leakage is observed in the region C and it moves to the area
A as time passes. Therefore, sensor nodes in the region first
start frequent sensing. As the CO gas moves, those nodes
that perform frequent sensing change as the movement of
the dense area in Figure 11 indicates. At 1500 seconds,
temperature stops increasing and stays high. Since there is
no change in the temperature, sensor nodes, which adopt the
high sensing frequency resume the normal operation.

D. Intra-layer Interaction

Nodes operating on self-organization engines directly
interact with neighboring nodes by exchanging messages
for stimulation in a pulse-coupled oscillator model and
morphogen diffusion in a reaction-diffusion model, for ex-
ample. Furthermore, they indirectly interact with each other
through environmental change. The autonomous behavior
of node would change the environment, by consuming the
bandwidth for example. In reaction to such environmental
changes, other nodes would change their behavior. Such
indirect interaction induced by environmental change is
called Stigmergy [7] and it is one of important principles
of self-organization. Through direct and/or indirect mutual
interaction among nodes, a network is self-organized.

Physical networks and service overlay networks also
interact with each other in the physical network layer and
the service overlay network layer, respectively. Direct inter-
action among networks is accomplished by direct message
exchanges or mediation of the common network layer. In
case that there is no means of direct message exchanges,
e.g., communication among different node devices belonging
to different networks, the common layer having multiple
interfaces to those networks relays messages between them.
Examples of cooperative networking can be found in some
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Figure 13. Layered sensor-overlay network

literatures [22], [23], [24], where networks interact with each
other, they are connected with each other, and even they are
merged into one depending on degree of cooperation and
benefit.

For example, wireless sensor networks deployed in the
same region or meeting with each other, e.g., sensor network
in a room and that carried by a user entering the room, need
to exchange information to provide users or applications
with information or environmental control appropriate for
time, place, and occasion. It is a natural assumption that they
operate on the different operational frequency for energy-
efficient and application-oriented control. When these net-
works adopt the pulse-coupled oscillator model as a self-
organizing engine for frequency control, fusion, connection,
and seperation of networks can easily be accomplished (see
Figure 12).

E. Inter-layer Interaction

Recently especially in the field of wireless network, a
concept of cross-layer design has been attracting many
researchers [25]. In a cross-layer architecture, each layer
optimizes its behavior taking into account information and
status of other layers. For example, route establishment
based on the wireless link quality expressed by the received
signal strength and the amount of residual energy on nodes
incorporate network layer, physical layer, and even manage-
ment plane.

In the self-organizing network architecture, the common
network layer allows entities belonging to different layers
communicate with each other in order to exchange and share
control information, get feedback from the other layer, and
even control the other layer. We should note here that inter-
layer interaction should be kept ’loose’ not to introduce
unnecessarily strong interdependency, which makes a system
fragile and causes unintended consequences. For example,
if an overlay network and a physical wireless network

are strongly coupled with each other, the overlay network
becomes too sensitive to small perturbation in the quality
of wireless links and the physical topology. It changes its
topology and routes actively and frequently and the resultant
performance drastically deteriorates.

In a new generation network constructed on the layered
self-organization architecture, small-scale perturbation such
as local congestion, link disconnection, and node failure is
handled by localized and prompt reaction of surrounding
nodes. On the contrary, a network system adapts to large-
scale variation, such as injection of the vast amount of
traffic by flooding and spatial and simultaneous failure, by
a series of reactions induced by mutual interaction among
nodes and networks and spreading over the whole network,
layer, and network system. Furthermore, from an inter-layer
control viewpoint, influence of small-scale physical failure
is absorbed in the physical network layer and hidden from
the service overlay network layer. On the other hand, against
large-scale physical failure, the physical network layer tries
to avoid affecting the performance and control of the service
overlay network layer, while the service overlay network
layer adapts to changes in physical network configuration.
As a result of such cooperative and self-organizing behavior,
the system-level adaptability, stability, and robustness can be
accomplished.

As an example of inter-layer interaction, we consider a
layered sensor-overlay network. Assume that there are mul-
tiple wireless sensor networks consisting of heterogeneous
sensor nodes. For the sake of energy saving, they adopt
sleep control and their interval are different from each other.
We consider that an overlay network is deployed over the
wireless sensor networks for periodic data gathering from all
or some of sensor nodes to an observatory point as illustrated
in Figure 13. If all nodes involved in data gathering belong
to the same wireless sensor network, the data gathering delay
is the minimum. Otherwise, the delay becomes considerably
large, because a node having a message to send has to wait
for a next-hop node belonging to a different network to wake
up. A possible way that an application can do for delay
reduction without knowledge of the wireless sensor network
is to adapt and find the overlay network topology leading
to the minimum delay. The other adaptation in the wireless
sensor network layer is synchronization. By allowing a node
to addtionally synchronize with the sleep schedule of other
network, the data gathering delay can be reduced very much
at the sacrifice of additional energy consumption. Their
adaptive behavior can be modeled by the attractor selection
as,

d�xO

dt
= f(�xO) · α + �ηO, (10)

d�xW

dt
= f(�xW ) · α + �ηW , (11)

where �xO and �xW corresponds to selection of overlay
topology in the overlay network layer and selection of
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Figure 14. Average data gathering delay

schedule to synchronize in the wireless sensor network layer,
respectively. These layers share the same information, i.e.,
activity α, which is defined by the data gathering delay. Both
layers behave in an adaptive manner to minimize the data
gathering delay as a whole. We call this model sharing the
same activity in multiple attractor selection-based controls
the attractor composition model.

We evaluate the effectiveness of layered control based
on the attractor composition model. 150 sensor nodes are
randomly distributed in 200 m×200 m region. The com-
munication range is set at 25 m. Each sensor node has its
own intrinsic operational interval randomly chosen among
5, 10, and 15 minutes. That is, there are three groups of
sensor nodes. An overlay network consists of one randomly
chosen sink node and four source nodes randomly chosen
among remaining 149 nodes. The data gathering interval is
set at 10 minutes. Sensor data are obtained every 10 minutes
at source nodes and wait for transmission.

We compare four different scenarios, i.e., Static, ON,
WSN, and ON+WSN, depending on whether the attractor
selection or composition is performed or not. In the Static
scenario, the topology of overlay network is kept the same
and sensor nodes follow their intrinsic operational intervals
only. In the case of ON, an overlay network alone tries to
minimize the data gathering delay by changing the logical
topology. On the contrary, sensor nodes adaptively synchro-
nize with other operational intervals in the WSN scenario.
Finally, the attractor composition-based dynamic adaptation
is performed in the case of ON+WSN.

Figure 14 shows the transient behavior of layered adap-
tation control, where the adaptation intervals of overlay
network and wireless sensor network are set at 500 minutes
and 50 minutes, respectively. Comparing the figures in Fig-
ure 14, it is apparent that the data gathering delay gradually
decreases from the left figure to the right by introduction of
adaptation mechanisms. In the case of ON and ON+WSN,
an overlay network stays at a certain attractor after about
1000 minutes and 1500 minutes, respectively.

Figure 15. Screenshot of simulator

F. Evaluation Methodology

The purpose of the self-organizing network architecture
is not to improve performance in terms of conventional
measures such as packet delivery ratio, response time, and
throughput, but to acquire higher scalability, adaptability,
and robustness than ever before. However, quantitative eval-
uation of such *-ties and *-ness property is not trivial.

Since self-organization engines are based on nonlinear
mathematical formulas, some basic characteristics such as
stability, convergence, and adaptability of each control
mechanism can be theoretically or analytically discussed.
For example, when we consider reaction-diffusion equations
of F (u, v) = max{0, min{au − bv + C, M}} − du and
G(u, v) = max{0, min{eu + f, N}}− gv [26], the discrete
step Δ in implementing the model must satisfy 0 < Δt <
min{ 2

d+4Du(Δx−2+Δy−2) ,
2

g+4Dv(Δx−2+Δy−2)} for a pattern
to converge from mathematical analysis of a bistable reaction
diffusion model. In a case of the pulse coupled oscillator
model, a stimulus function Δ(φi) determines the speed of
synchronization, but faster synchronization results in higher
vulnerability to small perturbation in timer drift. However,
these analytical results are obtained for a single and inde-
pendent mathematical model. Basically it is not trivial to
mathematically analyse and predict interaction among differ-
ent self-organizing control mechanisms and their emergent
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behaviors. Therefore, we consider incorporating mathemat-
ical analysis for fundamental understanding of nonlinear
control and simulation experiment for in-depth analysis of
emergence of self-organization. For this purpose, we are now
developing a novel simulator where the behavior of entities
is defined by nonlinear equations and we can observe and
investigate their behavior visually (see Figure 15).

Another issue is definition of range of parameters and
conditions to consider. Do we need to explore the unlimited
range to show the robustness against unexpected failure and
condition? This still remains as future work.

III. DISCUSSION AND FUTURE ISSUES

In this paper, we present the self-organizing network
architecture where each of node, network, layer, and network
system is self-organized through intra and inter-layer mutual
interaction.

Hierarchical architecture of self-* modules can also be
found in autonomic computing [27] and autonomic net-
work [28] and there are worldwide efforts for a “clean-slate”
design such as [29]. Although the main goal is the same
or similar, but our architecture is different from them in
organizing the whole network system by self-organization
principle based on nonlinear mathematical models.

Because of self-organization, each node does not need
to obtain and maintain the global information and they
only need to communicate with neighbor nodes to obtain
the local information. This contributes to the robustness of
control [30] and the scalability where the complexity of
control does not depend on the number of nodes or the size
of network. Since each node only needs to calculate a set of
differential equations to determine its behavior, the protocol
to implement is easy, simple, and lightweight.

Although our preliminary result of a specific application
scenario demonstrates the superiority of our architecture,
our knowledge and experience suggest that a self-organizing
system is not necessarily optimal and does not always
guarantee the best performance. However, we consider it
is worth sacrificing performance to some extent to achieve
scalability, adaptability, and robustness.

In addition to the suboptimal performance, there are some
drawbacks in self-organization based control. One is that in

some class of self-organization, it takes time for a system
to converge and become stable. For example, as shown
in Figure 3, the synchronization does not emerge at once.
Therefore, the pulse-coupled oscillator model cannot be used
for synchronization in the frequently changing environment,
e.g., with very high mobility. Another drawback is that it
would be difficult to maintain and control the whole system.
Since there is no central control unit, which collects up-to-
date global information, nobody knows the current status
of the system. Of course it is possible to make all entities
report their status to a center, it only wastes bandwidth and
energy. As stated in Section I, our approach is to leave from
the conventional control relying on the global or consistent
information.

As Figure 16 implies, when the operational conditions
stay within the expected range, a conventional and optimally
designed network achieve better and even optimal perfor-
mance than a self-organizing network. However, we argue
that this lower performance will eventually be compensated
by the advancements in network technologies, such as the
increase in channel capacities and the development of new
devices. Instead, we should direct our attention to the adapt-
ability and robustness of self-organizing systems rather than
their performance. In fact, self-organizing biological systems
never intend to achieve the optimal performance since they
slowly evolve while adapting to a dynamically changing
environment. There is always some amount of spare or even
idle resources left and sometimes even inefficient control can
be observed. Such unused resources are the actual reason
for their adaptability and robustness, and similar strategies
to tradeoff between quantity and quality are also essential
properties for future network technologies.

Although it is also possible for a conventional system
to improve its adaptability and robustness by introducing
additional and redundant network resources and more so-
phisticated recovery mechanisms, this would only result in
slightly shifting the critical point to the right in Figure 16,
which is still far below the range of adaptation capability
and tolerance that a self-organizing system possesses.
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