Robustness of Receiver-driven Multi-hop Wireless Network with Soft-state Connectivity Management

Daichi Kominami¹, Masashi Sugano², Masayuki Murata³, Takaaki Hatauchi⁴

¹Osaka University
²Osaka Prefecture University
³Fuji Electric Systems Co., Ltd.

The Fifth International Conference on Systems and Networks Communications (ICSCN 2010), August 22-27

Outline
- Background of our research
- Intermittent Receiver-driven Data Transmission (IRDT)
- Our goal
- Soft-state connectivity management
- Performance evaluation by computer simulation
- Conclusion

Outline
- Background of our research
- Intermittent Receiver-driven Data Transmission (IRDT)
- Our goal
- Soft-state connectivity management
- Performance evaluation by computer simulation
- Conclusion

Intermittent operation for energy saving
- Intermittent operation of sensor node
 - Alternating ‘active’ / ‘sleep’ states repeatedly at the intermittent interval
 - Communicating in ‘active’ state
 - Saving energy consumption with ‘sleep’ state
- Intermittent Receiver-driven Data Transmission (IRDT)

Intermittent operation for energy saving
- Intermittent operation of sensor node
 - Alternating ‘active’ / ‘sleep’ states repeatedly at the intermittent interval
 - Communicating in ‘active’ state
 - Saving energy consumption with ‘sleep’ state
- Intermittent Receiver-driven Data Transmission (IRDT)

Wireless sensor networks
- Consisted of a number of sensor nodes
 - Collect data over a large area
 - “Temperature”, “humidity”, “light”, and etc.
- Limited batteries
 - Energy saving is necessary
- Low reliability
 - Robustness is necessary
- Nodes are prone to failure
- Poor quality of wireless channel

Wireless sensor networks
- Consisted of a number of sensor nodes
 - Collect data over a large area
 - “Temperature”, “humidity”, “light”, and etc.
- Limited batteries
 - Energy saving is necessary
- Low reliability
 - Robustness is necessary
- Nodes are prone to failure
- Poor quality of wireless channel

IRDT: MAC layer
- Receiver nodes
 - Transmit own ID periodically
 - Sleep to save energy
- Sender nodes
 - Wait for a receiver’s ID
 - Return an SREQ according to the routing layer
- Sender nodes can communicate with multiple receivers
 - Decrease of sender nodes’ active time
 - Save energy!
 - Construction of mesh networks
 - Improve robustness?
 - Depending on routing layer!

IRDT: MAC layer
- Receiver nodes
 - Transmit own ID periodically
 - Sleep to save energy
- Sender nodes
 - Wait for a receiver’s ID
 - Return an SREQ according to the routing layer
- Sender nodes can communicate with multiple receivers
 - Decrease of sender nodes’ active time
 - Save energy!
 - Construction of mesh networks
 - Improve robustness?
 - Depending on routing layer!

IRDT: Routing layer
- Based on distance vector routing
 - All nodes have hop count tables and exchange them
 - SREQ transmission depends on minimum hop routing
- Hard-state management of neighbor node in hop count table and neighbor nodes’ hop count tables
- Slow response to environmental changes

IRDT: Routing layer
- Based on distance vector routing
 - All nodes have hop count tables and exchange them
 - SREQ transmission depends on minimum hop routing
- Hard-state management of neighbor node in hop count table and neighbor nodes’ hop count tables
- Slow response to environmental changes

Flexible route selection!
Our goal

- Improve robustness of wireless sensor network using IRDT
 - Robustness: the property that allows network performance to maintain or recover against environmental changes
 - Propose a soft-state management of routing information in IRDT

Performance evaluation by using computer simulation
- Evaluate overhead of soft-state management
- Evaluate robustness of soft-state management

Soft-state management

- Periodical ID transmission in IRDT is used as update message
- Each node listens channel for obtaining IDs every T_i

Management of neighbor node
- Register ID-sender in hop count table as a neighbor node
- Delete a neighbor node from hop count table if the neighbor node’s ID cannot be arrived during T_i

Management of neighbor node’s hop count table
- Exchange hop count table after receiving ID
- Delete the neighbor node’s hop count table if the neighbor node’s ID cannot be arrived during T_i

Simulation Model

- 100 sensor nodes are randomly deployed
- 2 sink nodes are arranged at two corners

Overhead evaluation
- Compare with sender-driven MAC (AX-MAC)
- Against sink node failure

Robustness evaluation
- Small T_i: soft state
- Larger T_i: hard state

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission speed</td>
<td>100 kbps</td>
</tr>
<tr>
<td>Transmission range</td>
<td>100 m</td>
</tr>
<tr>
<td>Data packet generation rate</td>
<td>0.003 packet/s/node</td>
</tr>
<tr>
<td>Current consumption (TX)</td>
<td>20 mA</td>
</tr>
<tr>
<td>Current consumption (RX)</td>
<td>25 mA</td>
</tr>
<tr>
<td>Current consumption (Sleep)</td>
<td>0 mA</td>
</tr>
<tr>
<td>Packet size (ID, SREQ)</td>
<td>24 byte</td>
</tr>
<tr>
<td>Packet size (RACK, DACK)</td>
<td>22 byte</td>
</tr>
<tr>
<td>Packet size (DATA)</td>
<td>128 byte</td>
</tr>
</tbody>
</table>

Simulation Model

- IRDT (1.0 s) and AX-MAC (0.1 s) are unaffected

Evaluation of overhead of soft-state management

Traffic overhead

- Mainly caused by hop count table exchanges
- Small T_i decreases packet collection ratio
- IRDT (1.0 s) and AX-MAC (0.1 s) are unaffected
Evaluation of overhead of soft-state management

Energy overhead

- Mainly caused by update message listening
- Nodes must listen at least for one intermittent interval
- Energy consumption of IRDT (1.0 s) is smallest
- Packet collection ratio of IRDT (1.0 s) is highest

Evaluation of robustness against sink node failure

Robustness of energy consumption

- Soft-state management improves robustness of maximum energy consumption
- Average energy consumption slightly increases

Conclusion

- Evaluate overhead of soft-state management in IRDT
 - On packet collection ratio, traffic overhead is very low
 - On energy consumption, lower overhead than sender-driven MAC protocol
- Evaluate robustness against sink node failure in IRDT with soft-state management
 - 44 % improvement of packet collection ratio 1000 s after sink node failure
 - 87 % reduction of 90 % recovery time of packet collection ratio
 - 63 % reduction of maximum energy consumption
- Future work
 - Improvement of scalability in IRDT
 - All nodes use N^2 size of hop count table (N is the number of nodes)

Thank you