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Abstract— Video streaming services using Transmission
Control Protocol (TCP) as a transport layer protocol—
represented by YouTube—are becoming increasingly popu-
lar and, accordingly, have come to account for a significant
portion of Internet traffic. TCP is greedy; that is, it tries to
exhaust the entire bandwidth. Thus, video streaming over
TCP tends to unnecessarily take bandwidth from competing
traffic.

In this paper, we first investigate the data transfer
mechanisms of the current video streaming services using
TCP and show that they perform data transfer at much
higher rates than the video playback rate. We then propose
a new transfer mechanism for video streaming over TCP,
one that controls the data transfer rate based on the network
congestion level and the amount of buffered video data
at the receiver. Simulation results show that the proposed
mechanism has two characteristics lacked by current video
streaming over TCP, specifically (1) a low frequency of
buffer underflow at the receiver and (2) a lack of excessive
bandwidth “stealing” from competing traffic.

Index Terms— Transmission Control Protocol (TCP), Con-
gestion Control, Video Streaming, YouTube

I. INTRODUCTION

With the rapid increase in network bandwidth, video
streaming services have gained popularity in recent years.
A number of these services utilize User Datagram Pro-
tocol (UDP) as a transport layer protocol. Also, such
leading video players as Windows Media Player [1] and
Real Player [2] utilize UDP if it is available. Because
UDP does not conduct congestion control or retransmit
packets discarded in the network, UDP-based applications
are able to adjust their data transfer rate. However, UDP-
based communications are often intercepted by firewalls
and/or Network Address Translations (NATs), creating
environments where such video streaming services cannot
be offered. Transmission Control Protocol (TCP), on the
other hand, can easily bypass firewalls and NATs. For
this reason, most of the current video streaming services,
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such as YouTube [3] and nicovideo [4], support TCP-
based streaming.

It has been pointed out, however, that TCP is not
suitable for video streaming due to its congestion con-
trol [5]. When TCP detects a packet loss, it markedly
shrinks the congestion window size, causing the TCP
transfer rate to decrease significantly. Since constant-rate
data transmission is desirable for video streaming, this
behavior is not suitable for such a service. Furthermore,
TCP, because of its greedy nature, tries to exhaust the
entire bandwidth when the network bandwidth is larger
than the video playback rate. Thus, video streaming over
TCP has the problem that TCP increases its transfer rate
regardless of the video playback rate and unnecessarily
takes the bandwidth from other competing traffic.

In this paper, we address the problem of video stream-
ing over TCP. First, we investigate the characteristics of
the data transfer mechanisms of current video streaming
services using TCP and show that they perform data
transfer at a much higher rate than the video playback
rate. We then propose an application-based data transfer
mechanism that resolves this issue. Our proposed mecha-
nism acquires TCP state variables to estimate the level of
network congestion and the buffered video data size at the
receiver, and then controls data transfer at an application
layer according to the network congestion level and the
buffered video data size at the receiver. By simulation
experiments, we show that the proposed mechanism (1)
decreases the frequency of buffer underflow at the receiver
and (2) avoids excessively taking bandwidth from com-
peting traffic. Note that the current mechanism of TCP
video streaming fails to achieve either.

Much research has been conducted on new transport
layer protocols for video streaming [6]–[12]. For instance,
transport layer protocols proposed in [6]–[8] do not,
relative to TCP, rapidly increase/decrease the congestion
window size, yet remain TCP-friendly. In [9], the authors
proposed a new transport layer protocols that conducts
the TCP-friendly rate control. These protocols [6]–[9],



however, still do not tackle the issue in video streaming
over TCP, caused by greedy nature of TCP.

Moreover, in [10]–[12], the authors propose modifica-
tions to TCP to maintain the data transfer rate requested
by upper-layer applications. For instance, in [11], [12], the
authors propose mechanisms to stabilize TCP throughput
by concealing packet loss from TCP by installing a
Forward Error Correction (FEC) layer in the lower part of
a transport layer at both the sender and receiver. However,
the redundancy of FEC causes these mechanisms to
transmit excessive traffic to the network.

Also presented are application layer protocols for me-
dia streaming [13], [14]. Real Time Streaming Protocol
(RTSP) [13] is used by Windows Media Player and Real
Player, and generally uses Real-time Transport Protocol
(RTP) [15] as its lower layer protocol. RTP is used for
real-time applications, and although usage over TCP is
supported, it almost always utilizes UDP for its transport
layer protocol. In addition to unicast/multicast network
services, RTSP provides operations, such as playback,
pause, and record, for audio or video streaming clients.

Real Time Messaging Protocol (RTMP) [14] is a pro-
prietary protocol of Adobe Systems and is not wholly
open. While, like RTSP, RTMP is independent of its
underlying protocol, it uses TCP as its transport layer
protocol. It provides operations such as playback, pause,
and seek for clients and splits the message into chunks
and transfers them. Chunk size is determined by the
server according to the data size requested by the clients.
Currently, both RTSP and RTMP only offer operations
for viewing and listening to streamed media; they do not
directly control the data transfer, instead relying upon
their lower protocols. Thus, they do not resolve the
problem of streaming traffic unnecessarily taking away
bandwidth from competing traffic. As mentioned above,
although there are a great number of studies on video
streaming, to the best of our knowledge, there is currently
no study that address the issue of having too much
throughput unnecessarily in video streaming over TCP.

The reminder of this paper is organized as follows.
First, in Section II, we investigate the characteristics of
the data transfer mechanisms of current video streaming
services using TCP. In Section III, we explain our data
transfer control mechanism. We then evaluate the perfor-
mance of our proposed mechanism in Section IV. Finally,
in Section V, we present a conclusion and discuss future
works.

II. INVESTIGATION OF CURRENT VIDEO STREAMING
MECHANISMS USING TCP

In this section, we investigate the currently utilized
video streaming services using TCP and clarify the fea-
tures and problems of their data transfer mechanisms.
Specifically, we examined YouTube and nicovideo.

In the investigation, we observed data transfer in video
streaming at a packet level using tcpdump at a receiver.
The receiver is located at Osaka Electro-Communication
University in Shijonawate-shi, Osaka, Japan. We acquired

video sequences from servers thought to be in Japan
(although both YouTube and nicovideo do not disclose
the location of their servers, we conclude that the servers
investigated here are located in Japan from the results
of traceroute). We measured 10 video sequences
on YouTube, and nicovideo, respectively, and ran five
measurements for each video sequence. The playback
time of the YouTube video sequences was 10 [m] and
the quality was 1080p (the playback rate was about
3.60 [Mbit/s]). The playback time of the nicovideo video
sequences was about 10 [m] and the playback rate was
about 500 [Kbit/s].

We disabled the TCP delayed Acknowledgement
(ACK) option since we wanted to observe typical TCP
behaviors. Moreover, we configured the advertising win-
dow size, which is the buffer size of the receiver TCP, to
224 [KByte], a size sufficiently large to avoid throughput
limitations.

A. YouTube

From the observation results, we found that YouTube
utilizes two mechanisms for video data transfer. More-
over, by conducting five time experiments against the
same video sequence from the same server, we could
not determine the detailed conditions for selecting one of
those two mechanisms. We found that the data transfer be-
havior of YouTube is independent of available bandwidth
between the server and the receiver. We confirmed these
characteristics by experiments under various bandwidth
limitations on the link connected to the receiver. We refer
to these two mechanisms below as mechanism(i) and
mechanism(ii), respectively.

Mechanism(i) has two phases: a first and a second
phase. Figure 1(a)–(c) shows the receiving timing of data
packets in the first phase, at phase transition, and in the
second phase, respectively. The y axis of the graphs rep-
resents the byte-count sequence number (mod 100,000)
of received TCP data packets. The x axis represents the
time, which is zero when the first data packet is received.

In mechanism(i), a server transmits roughly 80 [MByte]
data in the first phase, whereupon it interrupts data
transfer. The average transfer rate in the first phase is
about 43.4 [Mbit/s], which is excessively high compared
to the video playback rate. Some of the short interruptions
in packet transmission apparent in Fig. 1(a) are not caused
by packet losses; instead, the server may stop packet
generation for some reasons. We believe that YouTube
conducts such a greedy, high-rate data transmission at the
beginning of the transfer to buffer sufficient amount of
video data at the receiver.

Several seconds after the first phase has finished,
YouTube shifts to the second phase. In the second phase,
YouTube transmits data and then switches over to dis-
continuous data spurts that continue until finishing the
data transfer. The server sends between 32 [KByte] and
128 [KByte] of data within one round-trip time duration.
Then, once the server sends a total of about 2.20 [MByte]
data, it interrupts the data transfer for several seconds. The
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(a) First phase
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(b) Phase transmission
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(c) Second phase

Figure 1: YouTube data packet receiving: mechanism(i)

average transmission rate at the time of data transfer in
the second phase was about 6.13 [Mbit/s], which is also
larger than the video playback rate.

With regards to mechanism(i), we find that YouTube
transmits data at a higher rate than the video playback
rate in both the first and the second phase. The reason
for the decreased transfer rate in the second phase, we
presume, is that the receiver is thought to have buffered
enough video data in the first phase. Moreover, throughout
experiments at different bandwidth limitations, we found
that the data transfer size and rate are largely independent
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Figure 2: YouTube data packet receiving: mechanism(ii)

of the network bandwidth. We believe that the server
dose not “care” the network status but rather the such
differences in transfer sizes/rates are attributable to server
conditions, such as CPU load, and number of TCP con-
nections to connect.

Next, we explain mechanism(ii) of YouTube. In mecha-
nism(ii) of YouTube, unlike in mechanism(i) of YouTube,
we found that there is no special control. The server sends
video data at an extremely high rate from the beginning to
the end of the video sequence. The average data transfer
rate is about 45.1 [Mbit/s], which is much higher than
the video playback rate. From these observations, it is
apparent that the data transfer mechanism for transmits
video data at a rate far beyond what is necessary.

B. nicovideo

The video data transfer mechanism of nicovideo is
differentiated by level of user privileges. Figure 3 shows
the receiving timing of data packets for normal users.
In data transfer for normal users, the server first trans-
mits the 512 [KByte] of data at the beginning. It then
transmits the 32 [KByte] chunks of data until finishing
the data transfer. The average transfer rate for normal
users is 583.7 [Kbit/s], which is slightly larger than the
video playback rate. Moreover, the measurements under
different bandwidths at the receiver reveal that for service
for normal users, the data size transmitted at the beginning
and chunks that follow is constant within each.

On the contrary, for premium users, the server sends
video data at an extremely high rate from the beginning to
the end of the video sequence. The average transfer rate
for premium users is 52.0 [Mbit/s], which is 100-times
larger than the video playback rate. From these observa-
tions, it is apparent that the data transfer mechanism for
premium users transmits video data at a rate far beyond
what is necessary. From the experiments with changing
bandwidth limitation at the receiver, we also found that
the data transfer behavior of nicovideo is independent
of the available bandwidth between the sender and the
receiver.
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Figure 3: nicovideo data packet receiving: normal users

C. Summary of results

We found that both of YouTube and nicovideo (pre-
mium users) transfer video data at the extremely high
rate relative to the video playback rate. This is good from
the viewpoint of enabling continuous playback. However,
it is a serious problem from the viewpoint of needless
competition with other applications.

It is more desirable to transmit a small chunk of data
for every interval, such as the case with transmissions
for nicovideo normal users. However, optimal chunk size
and chunk transmitting interval are strongly dependent on
the network. Video streaming with such fixed parameters
may overflow/underflow network capacity and produce
failures in video playback at the receiver. Actually, the
playback did stop frequently during our measurements
under nicovideo normal users conditions.

III. NON BANDWIDTH INTRUSIVE VIDEO STREAMING
OVER TCP

In this section, we propose a new data transfer mech-
anism for video streaming over TCP that transfers video
data at the minimum required rate and dose not unneces-
sarily deprive the other competing traffic of bandwidth. It
does this by transmitting a sufficient amount of data such
that buffer underflows do not occur at the receiver.

A. Outline of our Data Transfer Mechanism

The proposed mechanism is assumed to be installed as
an application program at the sender and receiver. More-
over, the sender-side application requires the mechanism
to acquire TCP state variables from a TCP connection
transmitting video data. It is easily possible to acquire
TCP state variables by using web100 [16] in the case of
Linux or interactive TCP [17] for FreeBSD. Note that
we do not modify any TCP operations, including the
congestion control mechanism. We can expect that service
providers would accept this modification. Moreover, since
our proposed mechanism based on the end-to-end mecha-
nism, we do not need to introduce it to all servers at once,
but we can introduce it in a stepwise manner. Therefore,

TABLE I.
TCP STATE VARIABLES TO ACQUIRE

Time Variables
congestion window size
TCP slow-start threshold

once in one RTT smoothed RTT
retransmission timer value
maximum segment size

immediately occurrence of a packet loss
packet loss detection method

we believe that deployment of our mechanism for the
large scale service such as YouTube is not so difficult.

The receiver-side application notifies the sender-side
application of the amount of buffered video data (bdst)
per one round-trip time (RTT) using the TCP connection
for data transfer. The sender-side application, while con-
sidering the network congestion level and the buffered
video data size at the receiver, calculates the application-
level window size (apwnd) and the amount of video data
to send in the next RTT to avoid buffer underflow and
playback interruption. Control of the proposed mechanism
operates in the unit of one RTT.

B. TCP State Variables to acquire

In the proposed mechanism, the sender-side application
acquires the TCP state variables to estimate the net-
work congestion level. Specifically, the sender application
acquires the current congestion window size (cwnd),
smoothed RTT (srtt), retransmission timer value (RTO),
slow-start threshold (ssthresh), and maximum segment
size (MSS). These variables are obtained at every RTT.
In addition, when a packet loss is detected at TCP, the
sender-side application is immediately informed of the
occurrence of the packet loss and its detection method:
reception of three duplicate ACKs (TD-ACKs) and oc-
currence of a timeout (TO). We summarize the TCP
state variables that the sender-side application acquires
in Tab. I.

C. Congestion Level Estimation

We estimate the number of packets queued throughout
the network as an index of the network congestion level.
Henceforth, we use the network congestion level in the
sense of the number of packets queued over the entire
network. Therefore, the unit of congestion level is a
packet. Based on the mechanism in TCP Vegas [18], the
network congestion level cl(i) in ith RTT is calculated as

cl(i) =
baseRTT (i − 1)

MSS
×(

apwnd(i − 1)
baseRTT (i − 1)

− apwnd(i − 1)
RTT (i − 1)

)
(1)

where apwnd(i − 1), baseRTT (i − 1), RTT (i − 1)
and MSS are the application-level window size of the
proposed mechanism, the minimum srtt, the srtt, and the
maximum TCP segment size, respectively. apwnd(i− 1)
is the variable of our mechanism and our mechanism



knows its value. baseRTT (i−1), RTT (i−1), and MSS
are informed by TCP.

D. Target Value of Video Data to be buffered

We first introduce bret(i), bdup(i) and bTO(i). Here,
bret(i), bdup(i) and bTO(i) are the amount of video data
to be buffered to avoid buffer underflow when one packet
loss is detected by TD-ACKs, that when two or more
packet losses are detected by TD-ACKs, and that when
packet losses are detected by a TO, respectively.

bret(i) is the amount of video data buffered at the
receiver to avoid buffer underflow when a packet loss
occurs, it is detected by TD-ACKs, and no additional
packet loss occurs until the cwnd recovers to catch up
with the video rate. Using the TCP congestion window
size cwnd(i − 1) and the video playback rate rate, both
are informed by TCP, bret(i) in ith RTT is given by

bret(i) = (3 + max (nwnd(i − 1) − bcwnd(i − 1)/2c, 0))

× RTTmax(i − 1) · rate − MSS

nwnd(i−1)∑
k=bcwnd(i−1)/2c

k

(2)

where nwnd(i) is the congestion window size to achieve
the video playback rate. nwnd(i) is given by

nwnd(i) = RTTmax(i) · rate/MSS (3)

RTTmax(i) is given by

RTTmax(i) = RTT (i) + γRTTstd(i) (4)

where RTT (i) is the exponential weighted moving av-
erage of the RTT with weight β, and RTTstd(i) is the
standard deviation of the RTT. The reason for not using
the current RTT is to take account of the RTT fluctuation.

bdup(i) is the amount of video data buffered at the
receiver to avoid the buffer underflow when a packet loss
occurs, it is detected by TD-ACKs, and additional packet
losses occurs until the cwnd recovers to nwnd(i). Taking
into account the worst case, we consider a situation
whereby the window size is reduced to one by occurring
two or more packet losses. bdup(i) is given by

bdup(i) = (3 + nwnd(i − 1) − 1)RTTmax(i−1)·rate

− MSS

nwnd(i−1)∑
k=1

k. (5)

bTO(i) is the amount of video data buffered at the
receiver to avoid buffer underflow when packet losses are
detected by a TO. bTO(i) is given by

bTO(i) =
{

RTO(i− 1) +
(
4 + blog2ssthresh(i− 1)c

+nwnd(i−1)−2blog2ssthresh(i−1)c)RTTmax(i−1)
}

rate

−
( blog2ssthresh(i−1)c∑

k=0

2k+
nwnd(i−1)∑

k=2blog2ssthresh(i−1)c

k
)
MSS

(6)
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Figure 4: Calculation of the target values for video data

where RTO(i− 1) is the retransmission timer value and
ssthresh(i−1) is the threshold value for TCP slow-start,
both are informed by TCP.

We then introduce dupmin and TOmin. Here, dupmin

and TOmin are the threshold values to calculate the
amount of video data should be buffered to avoid receiver-
side buffer underflow. When the sender-side application
is notified of an occurrence of a packet loss by TCP, it
records the current network congestion level (cl) and the
packet loss detection method. From cls and the detection
methods that were recorded, the sender-side application
calculates dupmin and TOmin, with dupmin and TOmin

being the lower bound of 95% confidence interval of cls
when packet losses are detected by TD-ACKs, and that
when packet losses are detected by a TO, respectively. We
calculate dupmin and TOmin from cls of the last α [h].

A sender-side application calculates the amount of
video data should be buffered to avoid receiver-side buffer
underflow. In ith RTT, the amount of data that a receiver-
side application should buffer in order to play back video
continuously, btgt(i), is given by the following function
of cl(i), and Fig. 4 illustrates this function.

btgt(i) =



bdup(i)−bret(i)
dupmin

cl(i) + bret

(0 ≤ cl(i) < dupmin)
bT O(i)−bdup(i)
TOmin−dupmin

(cl(i) − dupmin) + bdup(i)

(dupmin ≤ cl(i) < TOmin)

bTO(i) (TOmin ≤ cl(i))
(7)

When cl(i) satisfies 0 ≤ cl(i) < dupmin, we assume
that network packet losses do not happen very often. In
this case, in order to avoid buffer underflow, the proposed
mechanism buffers video data in preparation for a packet
loss. As cl(i) increases, the network is considered to be
in an increasingly dangerous state; packet losses more
serious than a single packet loss are considered likely to
occur. Here, we simply increase the amount of video data



to be buffered linearly to cl(i).
When cl(i) satisfies dupmin ≤ cl(i) < TOmin, the

network is considered to be in a congestion level at
which packet loss detection by TD-ACKs may occur.
In this case, the proposed mechanism buffers video data
in preparation for a packet loss detected by TD-ACKs
and additional packet losses until the cwnd recovers to
nwnd(i). Moreover, the amount of video data to be
buffered increases linearly to cl(i), similarly to the case
in which 0 ≤ cl(i) < dupmin is satisfied.

When cl(i) satisfies TOmin ≤ cl(i), we assume that
the network is at a serious congestion level where a
TO may happen. Here, we believe that enough video
data should be buffered to avoid a buffer underflow
even should a TO occur. However, we do not target a
network with a congestion status so severe that packet
losses occur repeatedly after a TO until the cwnd recovers
nwnd(i). Here, we resign ourselves to the observation
that video streaming of the video playback rate within
such a network simply cannot be performed at a rate
specified by the application.

Since we cannot estimate the network congestion level
until the first packet loss occurs, the target value btgt(i) is
set equal to bTO(i) until the first packet loss occurs. We
also configure the initial value of dupmin and TOmin to
be sufficiently large.

E. Controlling Transfer Rate

The proposed mechanism controls data transfer in a
sender-side application. This is performed by adjusting
the amount of video data apwnd(i) passed from an
application to TCP in one RTT. By using bdst(i) and
Eqs. (4)(7), apwnd(i) is given by

apwnd(i) = min (max(RTTmax(i − 1) · rate + btgt(i)
− bdst(i),MSS), 2apwnd(i − 1)) . (8)

The proposed mechanism determines the amount of data
passed to TCP in one RTT based on the difference be-
tween btgt(i), the target value of video data to be buffered,
and bdst(i), the amount of buffered video data at the
receiver. The minimum of apwnd(i) accords with TCP
minimum window size. It also acts to prevent resetting
of the TCP congestion window. Furthermore, in order to
keep from increasing the transfer rate too rapidly, the
maximum value is set at the twice of apwnd(i − 1),
which is based on TCP slow-start phase. We summarize
the notations used in this section in Tab. II. In the table,
x(i) means the value of x in the ith RTT.

IV. PERFORMANCE EVALUATION BY SIMULATION
EXPERIMENTS

Using ns-2 simulator [19], we ran extensive simulation
experiments at the packet level to confirm the effec-
tiveness of our proposed mechanism. Figure 5 shows
the network model for the experiments, where five TCP
connections for video streaming, TCP connections for File
Transfer Protocol (FTP), and one UDP flow share the

TABLE II.
DEFINITION OF NOTATIONS

cwnd(i) congestion window size
apwnd(i) application-level window size
nwnd(i) congestion window size to achieve a video playback rate
ssthresh threshold value for TCP slow-start
cl(i) congestion level
dupmin lower bound of 95% confidence interval of a congestion

level when packet losses are detected by TD-ACKs
TOmin lower bound of 95% confidence interval of a congestion

level when packet losses are detected by a TO
bdst(i) amount of buffered video data at a receiver
btgt(i) target value of video data to be buffered
bret(i) amount of video data to be buffered

to avoid buffer underflow by single TD-ACKs
bdup(i) amount of video data to be buffered

to avoid buffer underflow by double or more TD-ACKs
bTO(i) amount of video data to be buffered

to avoid buffer underflow by a TO
RTT (i) smoothed RTT
baseRTT (i) minimum smoothed RTT
RTTmax(i) maximum RTT
RTO(i) retransmission timer value

Video Streaming

UDP, 10[Mbit/s]
FTP

100[Mbit/s], 5[ms]
100[Mbit/s], 20[ms]

100[Mbit/
s], 5[ms]

Figure 5: Simulation model

single bottleneck link having a capacity of 100 [Mbit/s].
The arrival of UDP packets follows a Poisson process,
with an average arrival rate of 10 [Mbit/s]. For comparison
purposes, we utilized two kinds of YouTube-like trans-
fer mechanisms, to which we refer below as YouTube-
like(i) and YouTube-like(ii). Both of YouTube-like(i) and
YouTube-like(ii) operate based on measurement results
like those described in Section II. YouTube-like(i) has
two phases such as in mechanism(i) in Subsection II. In
the first phase, 80.0 [MByte] of video data is transferred.
Then, YouTube-like(i) stops sending for 2.0 [s], after
which it enters the second phase. It then sends video
data in on-off fashion, where transmission of 2.2 [MByte]
data (it is divided into chunks of 128 [KByte] and one
chunk is transmitted in one RTT) followed by a 1.5 [s]
pause are repeated. In contrast, YouTube-like(ii) transfers
video data without any control in an application layer. In
simulation experiments, we use the following parameters
for the proposed mechanism: α = 1 [h], β = 0.2, and
γ = 1.

In simulation experiments, the UDP flow and the TCP
connection(s) for FTP begin data transfer when a simu-
lation starts to create background traffic and competing
traffic in the network. At 30 [s], TCP video streaming
connections start data transfer. The playout delay of video



streaming at the receiver is 5 [s] and the packet size is
1500 [Byte]. The simulation finishes when the transfer
of all video data is completed. We use the simulation
result (excluding the first 30 [s] of the simulation time) to
calculate such performance metrics as average throughput,
average packet loss probability and average underflow
time experienced by the receiver-side application. The
video sequence has 270 [MByte], the playback rate is
3.6 [Mbit/s], and the playback time is 600 [s], which is
equivalent to YouTube’s 1080p video.

Figure 6 exhibits simulation results as a function of
the number of TCP connections. Figures 6(a)–(d) show
(a) the average throughput of TCP connections for video
streaming, (b) the average total buffer underflow time per
video streaming connection, (c) the average packet loss
probability in the network during the experiments, and (d)
the average total throughput of TCP connections for FTP,
respectively. In Fig. 6(a), we see that the YouTube-like(ii)
transfer rate is much higher than the video playback rate,
while the transfer rates under the proposed mechanism
and under YouTube-like(i) are almost equal rate to the
video playback rate. Note that it is not necessary to
transfer video data at a much higher rate than the video
playback rate (as in the case with YouTube-like(ii)) to
maintain continuous video playback.

Figure 6(b) shows that buffer underflow does not oc-
cur often under the proposed mechanism and YouTube-
like(ii). On the other hand, under YouTube-like(i), we
found that as the number of TCP connections for FTP
increases, the buffer underflow time becomes large. This
is because YouTube-like(i) controls video data transfer
independently of network status. In this case, YouTube-
like(i) dose not obtain sufficient throughput and so buffer
underflow occurs when YouTube-like(i) competes with
other TCP connections.

We next focus on the packet loss probability in the
network. Figure 6(c) shows that the packet loss probability
of the proposed mechanism is lower than that of YouTube-
like(ii). This is because YouTube-like(ii) performs video
data transfer without any controls. Thus, TCP tries to
exhaust the entire bandwidth due to its greedy nature.
Therefore, the network congestion level of YouTube-
like(ii) is higher than that of the proposed mechanism,
which controls the data transfer rate in accordance with
congestion level and video playback status at the receiver.
Conversely, the packet loss probability of the proposed
mechanism is higher than that of YouTube-like(i). This
can be explained as follows. When the network congestion
level becomes high, the proposed mechanism increases
the target value for video data to be buffered at the
receiver. In other words, the propose mechanism acts to
increase the data transfer rate. On the other hand and as
mentioned above, YouTube-like(i) transmits packets inde-
pendently of the network congestion status. Consequently,
the packet loss probability of the proposed mechanism is
higher than that of YouTube-like(i). Note that YouTube-
like(i) experiences buffer underflow for long durations,
especially when network congestion is serious, as a price

to pay for low packet loss probability.
Finally, we focus on the total throughput of background

traffic. From Fig. 6(d), we see that the total throughput of
background traffic when using the proposed mechanism
is higher than that when using YouTube-like(ii). This is
because YouTube-like(ii) transfers video data at a high
rate regardless of the video playback rate. As the result,
the video streaming connections steal the bandwidth from
background traffic. On the other hand, the total through-
put of background traffic when using YouTube-like(i) is
higher than that when using the proposed mechanism.
As explained earlier, the proposed method increases the
number of packets sent to the network when network con-
gestion gets worse. Thus, the video transfer rate becomes
large, driving down the throughput of competing traffic.
Throughout the simulation experiments, we find that the
proposed mechanism is effective in (1) suppressing the
occurrence of the buffer underflow (2) avoiding unnec-
essarily diversion of bandwidth background traffic. Note
that the current video streaming mechanisms do not have
these two characteristics.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a non bandwidth-
intrusive video streaming mechanism and have shown its
effectiveness by simulation. First, we have investigated
data transfer mechanisms of the current video streaming
services using TCP. Our investigation has shown that
video streaming over TCP is currently performed at a
much higher rate than the video playback rate. We have
proposed a new data transfer mechanism to resolve this
problem. The proposed mechanism transfers video data
without unnecessarily taking the bandwidth from compet-
ing traffic. In simulation experiments, we have shown that
proposed mechanism suppresses the occurrence of buffer
underflow and dose not unnecessarily divert bandwidth
from background traffic.

As future works, it is important to evaluate the perfor-
mance of the proposed mechanism in a real network. We
also plan to extend the proposed mechanism so that it can
be operate solely by a sender-side application. Moreover,
it would be interesting to consider what type of data
transfer control is preferred for the network, where an
increase in transfer rates for continuous video playback
acts to worsen the network congestion and exacerbates
video playback interruptions.
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