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Abstract

In recent years, online services such as cloud computing have become popular, and the amount

of data, required to be processed by such online services, is increasing. To handle such a large

amount of data, data centers with hundreds of thousands of servers have been built. In a data

center, a large amount of data is handled by distributed computing frameworks, which require the

communication between servers. Thus, the data center network should provide communication

with sufficiently large bandwidth and small delay between all servers so that the data center can

handle a large amount of data efficiently. On the other hand, energy consumption of the data center

network should be reduced, because energy consumption of the data center network occupies the

non-negligible fractions of the total energy consumption in the data center.

In this thesis, we introduce the virtual network configured over the data center network con-

structed of the optical cross connects (OXCs) and the electronic switches. In this network, the core

of the data center network is constructed by using the OXCs and optical fibers. Then, the elec-

tronic switches, deployed in each server rack, are connected to the core network by connecting

them to OXCs. The virtual network topology (VNT) is constructed by establishing the lightpath

between the electronic switches. In our method, we minimize the energy consumption of the data

center network by minimizing the number of ports of electronic switches used in the VNT and

shutting down the unused ports.

Though the VNT control methods have been proposed in many papers, they are not applicable

to a data center network because they do not consider the situation that the traffic changes within

a second, or their calculation time is too large for a data center network.

Therefore, we also propose a method to reconfigure the VNT suitable for a data center network.

In this method, the traffic changes in a short period are handled by the load balancing over the
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VNT. We design the VNT so as to achieve sufficiently large bandwidth and small delay with small

energy consumption, considering the load balancing. Then, if the current VNT is not suitable

to the current demands considering the load balancing, the VNT is reconfigured. Our method

reconfigures the VNT by setting parameters of a topology so as to avoid large calculation time

in a data center. As the topology used in the VNT configuration, we propose the topology called

Generalized Flattened Butterfly (GFB), and a method to set its parameters so as to suit the current

condition.

In our evaluation, we first check whether our method satisfies the requirements of the band-

width and the maximum number of hops by changing the number of ToR switches in the virtual

network, the target traffic volume from each ToR switch and the target maximum number of hops.

From the result, we clarify that our method satisfies all the requirements used in our evaluation.

In addition, we compare the topology constructed by our method with the existing data center net-

work topologies. We clarify that our method achieves the sufficient bandwidth by using a smaller

number of virtual links than the existing data center networks; the number of ports used by our

method is about a half of the number of ports used by the flattened butterfly.We also clarify that

our method achieves the target maximum number of hops between ToR switches by using the sim-

ilar number of virtual links to the existing data center networks. Finally, we evaluate our method

when the number of ToR switches connected to the virtual network changes. From the results,

we clarify that our method keeps the requirements of the bandwidth and the maximum number of

hops satisfied even when the changes of the number of ToR switches occur.
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1 Introduction

In recent years, online services such as cloud computing have become popular, and the amount

of data, required to be processed by such online services, is increasing. To handle such a large

amount of data, large data centers with hundreds of thousands of servers have been built.

In a data center, data is stored in the memories or storages of multiple servers by using dis-

tributed file systems such as Google File System [1]. Then, we handle the data by using the

distributed computing frameworks such as MapReduce [2] or Hadoop [3]. The distributed file

systems or disrtibuted computing frameworks require the communication between servers within

a data center. Thus, the data center network affects the performance of the data center.

Data center network should provide communication with high bandwidth and small delay

between all servers so that the data center can handle a large amount of data efficiently. The lack

of bandwidth or large delay between servers may prevent the communication between servers,

and degrade the performance of the application of the data center handling a large amount of

data. However, the traditional data center network, which is constructed as a tree topology, cannot

provide communication with sufficiently large bandwidth and small delay between servers; in the

traditional data center network, the root of tree topology becomes the bottleneck, and the number

of hops between servers becomes large as the number of servers in a data center increases.

Energy consumption is another problem in a data center network. Energy consumption of

the data center network occupies a non-negligible fraction of the total energy consumption in

the data center [4], and becomes large as the size of the network increases. Thus, to reduce

energy consumption of a data center, the energy consumption of the data center network should

be reduced.

There are many researches to construct a data center network [5–13]. Al-Fares et al. have

proposed the topology called FatTree [5], that provides sufficient bandwidth between all server

pairs. The FatTree is a tree with multiple root nodes. In this topology, each node uses a half of its

ports to connect it to the nodes of the upper layer, and the other half of its ports to connect it to

the nodes of the lower layer. Another topology to provide sufficient bandwidth has been proposed

by Kim et al. [6]. This topology is called the flattened butterfly. The flattened butterfly provides

enough bandwidth between servers, and makes the number of hops between servers small, by

using nodes with a large number of ports instead of constructing the tree.
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The methods to connect a large number of servers using a small number of switches have also

been proposed by C. Guo et al. [7,8], D. Guo et al. [9], and Li et al. [10], and Liao et al. [11]. These

topologies use the servers having multiple ports, and are constructed by directly connecting server

ports. Though these topologies make their energy consumption small by reducing the number of

required switches and links, they may not provide enough bandwidth between all servers.

The topology suitable to the data center network depends on the applications and the current

load of the data center. For the application where the servers exchange a large amount of data with

each other, the network should provide large bandwidth between all servers related to the applica-

tion. On the other hand, in the case of the application, where the servers exchange only a small

amount of data, the small bandwidth is sufficient, and the topology whose energy consumption is

small is preferable.

However, the demands of the data center may change. Servers related to the application, which

suddenly become popular, may start exchanging a large amount of data. Additional servers related

to the application may be implemented to handle the suddenly increased demand for the applica-

tion. As a result, the data center network becomes no longer suitable for the current applications

and loads. Though we can avoid the lack of bandwidth or large delay by constructing a redundant

network, this approach consumes large energy.

In this thesis, we introduce the virtual network configured over the data center network con-

structed of the optical cross connects(OXCs) and the electronic switches. In this network, the core

of the data center network is constructed by using the OXCs and optical fibers. Then, the electronic

switches, deployed in each server rack, are connected to the core network by connecting them to

OXCs. A lightpath is established between two electronic switches by configuring the OXCs along

the route between the electronic switches. A set of the lightpaths forms a virtual network topology

(VNT). Traffic between electronic switches is carried over the VNT.

In our method, we minimize the energy consumption of the data center network by minimizing

the number of ports of electronic switches used in the VNT and shutting down the unused ports,

because energy consumption of electronic switches is much larger than that of OXCs. In the cases

of the changes of demands, we keep the sufficiently large bandwidth, small delay between servers

and low energy consumption by reconfiguring the VNT.

Dynamic reconfiguration of the VNT constructed over the optical network has also been dis-

cussed in many papers [14–18]. However, most of them aim to optimize the VNT for the monitored
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or estimated current traffic demand, and are not applicable to the data center network, where the

traffic changes within a second [19]. Moreover, their calculation time is too large for a data center.

Therefore, we propose a method to reconfigure the VNT suitable for a data center network.

In our method, the traffic changes in a short period are handled by the load balancing [20] over

the VNT. We design the VNT so as to achieve sufficiently large bandwidth and small delay with

low energy consumption, considering the load balancing. Then, if the current VNT is not suitable

to the current demands, the VNT is reconfigured. Our method reconfigures the VNT by setting

parameters of a topology so as to avoid large calculation time in a data center. As the topology

used in the VNT configuration, we propose the topology called Generalized Flattened Butterfly

(GFB). We also propose a method to set the parameters so as to suit the current condition.

The rest of this thesis is organized as follows. In Section 2, we explain the overview of the

data center network using the OXCs and the electronic switches. In Section 3, we discuss the

VNT suitable to optical data center networks, and we propose the GFB. In Section 4, we propose

a method to control the VNT by setting the parameters of the GFB. Then, we evaluate our method

and clarify that our method can provide enough communication performance between servers with

low energy consumption in Section 5. Finally, Section 6 provides a conclusion.
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2 Virtual Networks on an Optical Data Center Network

Control VNTToRswitchLight pathServer Rack
Virtual Network

OXC
Server RackToRSwitch

Physical Network

Figure 1: Data Center Network Using OXCs

In this thesis, we construct the data center network using optical cross connects (OXCs) and

electronic packet switches as shown in Figure 1. In this network, similar to the traditional data cen-

ter networks, electronic switches are deployed in the server rack. We call the electronic switches

in server racks top-of rack (ToR) switches. All servers in a server rack are connected to a ToR

switch in the rack with an 1 Gbps link.

In our data center network, we construct the core network by using OXCs. In the core network

of our data center, OXCs are connected by the optical fibers, and the wavelength multiplexed

signals are sent between OXCs. In each OXC, the input signals are demultiplexed into the signals

of each wavelength, and relayed to the destination ports. Then, the signals are multiplexed into

wavelength multiplexed signals and sent to the next OXCs. In this network, we can set lightpaths

for each wavelength. By setting the lightpaths, the signals of the lightpaths are sent along the

defined routes.

In our data center network, each ToR switch has multiple ports that can terminate the lightpath.

We connect the ToR switch to the core network by connecting the ports to OXCs. We set the
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lightpath between the ports of the ToR switches. A set of the lightpath forms a VNT, which is

constructed of the ToR switches and virtual links between ToR switches. Traffic between ToR

switches is carried over the VNT. The VNT can be easily reconfigured by adding or deleting

lightpaths if the current VNT is no longer suitable.

In our data center network, most of energy is consumed by the ToR switches, because energy

consumption of OXCs is much smaller than that of ToR switches. Thus, we focus on the energy

consumption of the ToR switches. In this thesis, we assume that we can shut down each port of

ToR switches. Then, we reduce the energy consumption by minimizing the number of ports of

ToR switches used in the VNT and shutting down the unused ports.
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3 Virtual Network Topologies Suitable to Optical Data Center Net-

woks

Because it is difficult to obtain the optimal topology for a large data center network in a short time,

our VNT reconfiguration method constructs the VNT by setting parameters of a topology, which

is suitable for data center networks, instead of calculating the optimal topology.

In this section, we discuss the requirements for the topology used by our VNT reconfiguration,

and investigate the properties of the existing network topology for the data center network. Then,

we propose a new topology called generalized flattened butterfly, which can construct various data

center networks by setting parameters.

3.1 Requirement

The virtual network should satisfy the following requirements.

Low Energy Consumption Energy consumption of the network occupies a non-negligible frac-

tion of the total energy consumption in the data center. To reduce energy consumption of the data

center, energy consumption of the data center network should be reduced.

In the data center network used in this thesis, most of energy is consumed by the ToR switches,

and the energy consumption of the ToR switches can be reduced by shutting down their un-

used ports. Thus, by constructing the virtual network using the smallest number of ports of ToR

switches, the energy consumption of the data center network is minimized.

Large Bandwidth between Servers In some applications such as distributed file system, a large

amount of data is exchanged between servers. The bandwidth provided between servers is impor-

tant for such applications; the lack of bandwidth increases the time required to transport data.

Therefore, the VNT should provide sufficient bandwidth between servers.

Small Delay between Servers A data center handles a large amount of data by using the dis-

tributed computing frameworks. In the distributed computing frameworks, a large number of

servers communicate with each other. If the delays between servers are large, it takes time to

obtain the required data from other servers, and the performance of the data center is degraded.
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Thus, the delay should be kept small enough for the application of the data center.

The delays between servers are difficult to forecast when constructing the VNT, because the

delays are affected by traffic load. In our thesis, we keep the small delay between servers by con-

structing the VNT which can provide sufficient bandwidth and make the number of hops between

servers small.

3.2 Existing Data Center Network Topologies

3.2.1 FatTree

Figure 2: FatTree

Al-Fares et al. have proposed the method to construct the topology called FatTree by using

switches with a small number of ports [5]. The FatTree is a tree topology constructed of multiple

roots and multiple pods containing multi-layer of switches as shown in Figure 2.

Each pod is regarded as the virtual switch having a large number of ports constructed by

multiple switches having a small number of ports. Pods are constructed as the butterfly topology,

where each switch uses a half of its ports to connect it to the switches of the upper layer, and the

other half of its ports to connect it to the switches of the lower layer. The switches at the lowest

layer are connected to the servers.

Though the method proposed by Al-Fares et al. [5] constructs the 3-layer FatTree, which is

constructed of root switches and the pods containing two layers of switches, we can construct the

higher-layer FatTree topologies. The k-layer FatTree constructed of switches with n ports includes

(2k − 1)n2
k−1 switches.

In the FatTree, the number of links from the lower-layer switch equals the number of links to
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the upper-layer switch at each switch. That is, the sum of bandwidth from a switch to the upper

layer equals that from the lower layer to the switch. Therefore, any switch does not become a

bottleneck, and we can provide sufficiently large bandwidth between all servers.

However, in the FatTree, a large number of switches or switches with a large number of ports

are necessary to construct large data center networks, which leads to large energy consumption.

Dimension 3 Dimension 2 Dimension 1
Figure 3: Flattened Butterfly

3.2.2 Flattened Butterfly

Kim et al. [6] have proposed the data center network topology called flattened butterfly. The

flattened butterfly is constructed by flattening the butterfly topology as shown in Figure 3; we

combine the switches in each row of the butterfly topology into a single switch.

The flattened butterfly provides sufficiently large bandwidth between all servers with lower

energy consumption than the FatTree [5]. However, the energy consumption of the flattened but-

terfly is still large because the flattened butterfly requires the switches with a large number of ports

to construct a large data center network.
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Figure 4: DCell

3.2.3 DCell

Guo et al. have proposed a data center network called DCell, which is constructed from a small

number of switches and servers with multiple ports as shown in Figure 4 [7]. DCell uses a

recursively-defined structure; the level-0 DCell is constructed by connecting one switch with n

ports to n servers, and the level-k DCell is constructed by connecting servers belonging to differ-

ent level-k − 1 DCells.

By directly connecting server ports, DCell reduces the number of switches required to con-

struct a large data center network. However, DCell is not used as the topology of the virtual

network introduced in this thesis, which is constructed of ToR switches.

Therefore, we introduce the topology called switch-based DCell, where the level-0 DCell is

replaced with the fully-connected network constructed of switches as shown in Figure 5. Similar to

the DCell, the switch-based DCell can construct a large data center network by using the switches

with a small number of ports. That is, the switch-based DCell achieves low energy consumption.
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Figure 5: Switch-based DCell

However, the switch-based DCell cannot provide large bandwidth between all servers, because the

switch-based DCell has only one link between each lower-level DCells.

3.3 Generalized Flattened Butterfly

layer GFBs * 

Links connected to Other GFBs * (Per ToR switch)

Figure 6: Generalized Flattened Butterfly

As discussed in the previous subsection, the switch-based DCell consumes only small energy,

and is suitable when the traffic volume between servers is small. However, it may not provide

sufficient bandwidth for the application where servers generate a large amount of traffic. On the

other hand, the flattened butterfly can provide large bandwidth between servers but consumes large

energy. That is, the topology suitable to the data center network depends on the applications and
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current loads.

In this subsection, we propose a topology called Generalized Flattened Butterfly (GFB). The

GFB is constructed hierarchically as shown in Figure 6; the upper-layer GFB is constructed by

connecting multiple lower-layer GFBs. The GFB has the following parameters.

• Number of layers: k

• Number of links per node used to construct layer-k GFB: Lk

• Number of layer-k − 1 GFBs used to construct layer-k GFB: Nk

• Minimum number of links constructed between layer-k − 1 GFBs: Mk

By setting these parameters, we can construct various topologies; the switch-based DCell is con-

structed by setting L0 = N0 and Lk = 1 for k > 1, and the flattened butterfly is constructed by

setting Lk = Nk.

In the GFB, the number of required ports, the maximum number of hops and the bandwidth

provided between servers can be changed by setting the parameters. Therefore, we construct the

topology suitable for the requirements of the application and current traffic loads by setting the

parameters of the GFB.

3.3.1 Steps to Construct the Generalized Flattened Butterfly

The layer-k GFB is constructed by the following two steps.

• Construct the connections between the layer-k − 1 GFBs.

• Select the switches connected to the links between each layer-k − 1 GFB pair

In each step, we use the ID assigned for the GFBs of each layer. The switch can be identified by

the set of IDs of the GFBs the switch belongs to. We denote the ID of the layer-k GFB the switch

s belongs to as Dgfb
k (s). We also define the ID of the switch s in the layer-k GFB by

Dsw
k (s) = (

∑
1≤i<k

Dgfb
i (s))

k−1∏
j=1

Nj .
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Connections between layer-k− 1 GFBs We construct the connections between the layer-k− 1

GFBs by the following steps.

Step 1 Calculate the number of links used to connect one layer-k − 1 GFB to the other layer-

k − 1 GFBs, Lgfb
k , by

Lgfb
k = Lk

k−1∏
i=1

Ni (1)

Step 2 If Lgfb
k is larger than Mk(Nk − 1), we can connect all layer-k− 1 GFB pairs with more

than Mk links. Thus, add ⌊Lk
∏k−1

i=1 Ni

Mk(Nk−1) ⌋Mk links between all layer-k − 1 GFB pairs.

Step 3 If Lgfb
k is smaller than Mk(Nk−1), construct the ring topology by connecting the GFBs

having the nearest ID with Mk links.

Step 4 Calculate the number of the residual links L
′gfb
k which can be used to connect one

layer-k − 1 GFB to the other layer-k − 1 GFBs by

L
′gfb
k = Lgfb

k − L̄gfb
k (2)

where L̄gfb
k is the number of links per layer-k − 1 GFB constructed at Steps 2 and 3.

Step 5 Connect the GFB of ID Dgfb
k−1(a) to the GFB of ID Dgfb

k−1(b) when the following equa-

tion is satisfied;

Dgfb
k−1(b) = (Dgfb

k−1(a) + Cpk) mod Nk, (3)

where C is a integer value and

pk =
Nk

L
′gfb
k + 1

. (4)

Selection of the switches used to connect layer-k−1 GFBs After constructing the connections

between layer-k − 1 GFBs, we select the switches that are used to connect the layer-k − 1 GFB

pair. We select the switch used to connect the GFB of ID Dgfb
k−1(a) and the GFB of ID Dgfb

k−1(b)

from the switches belonging to the GFB of ID Dgfb
k−1(a) by the following steps.

Step 1 Calculate the rank of ID of the GFB, R(Dgfb
k−1(b)) indicating that Dgfb

k−1(b) is the R(Dgfb
k−1(b))-

th smallest ID among the IDs of the GFBs connected to the GFB of ID Dgfb
k−1(a).
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Step 2 Select the candidate switches whose switch ID Dsw
k (s) satisfy the following equation.

Dsw
k (s) = R(Dgfb

k−1(b)) +

 Cn
Dgfb

k−1(a)

l
(Dgfb

k−1(a),D
gfb
k−1(b))


where C is a integer value, n

Dgfb
k−1(a)

is the number of switches in the GFB of ID

Dgfb
k−1(a), and l

(Dgfb
k−1(a),D

gfb
k−1(b))

is the number of links to be constructed between GFBs

of IDs Dgfb
k−1(a) and Dgfb

k−1(b).

Step 3 Select the switch with the smallest number of ports used to connect to the GFB of ID

Dgfb
k−1(b) among the candidate switches.

Step 4 Check whether the switch selected at Step 3 has residual ports to be used to connect

layer-k − 1 GFBs. If yes, designate the switch selected at Step 3 as the switch used to

connect to the GFB of ID Dgfb
k−1(b). Otherwise, designate the switch having the nearest

switch ID to the switch selected at Steps 3 and having the residual ports used to connect

layer-k − 1 GFBs as the switch used to connect the GFB.

3.3.2 Properties of the Generalized Flattened Butterfly

In the GFB, the maximum number of hops or the number of paths passing each link can be calcu-

lated from the parameters as described below.

Maximum Number of Hops The maximum number of hops between switches in the layer-k

GFB, Hk is calculated by

Hk = (hk + 1)Hk−1 + hk, (5)

where hk is the largest number of links between layer-k − 1 GFBs passed by the traffic between

layer-k− 1 GFBs. Hk is obtained by calculating hk. In the rest of this paragraph, we discuss how

to calculate hk from the parameters of the GFB.

If Lgfb
k defined by Eq. (1) is larger than Mk(Nk − 1), we add links between all pairs of layer-

k − 1 GFBs. Thus, hk = 1.

If Lgfb
k is smaller than Mk(Nk − 1) and L

′gfb
k defined by Eq. (2) is zero, the connections

between layer-k − 1 GFBs form a ring topology. In this case, hk is ⌊Nk
2 ⌋.
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If Lgfb
k is smaller than Mk(Nk − 1) and L

′gfb
k is a positive value, we add links to the GFBs

satisfying Eq. (3). In this case, we discuss the calculation of hk by dividing the topology con-

structed of layer-k − 1 GFBs into modules so that each module includes the GFBs whose IDs are

within the range from Cpk to (C+1)pk where C is a integer variable and pk is defined by Eq. (4).

Then, we calculate the maximum number of hops from the source GFB whose ID is zero. Since

all low-layer GFBs play the same role in the high-layer GFB, hk is calculated by calculating the

maximum number of hops from the GFB whose ID is zero.

The maximum number of hops to the GFBs in each module depends on whether pk is odd

or even. Figures 7 and 8 show the examples of the cases that pk is even or pk is odd. In these

figures, each circle indicates a layer-k − 1 GFB, and numbers in the circles indicate the number

of hops from the source GFB. As shown in these figures, if the source GFB does not belong to the

module of the destination GFB, the maximum number of hop counts is ⌊pk2 ⌋ + 1. If the source

GFB belongs to the module of the destination GFB and pk is even, the maximum number of hops

is ⌊pk2 ⌋. Unless the number of modules is two, the module which does not include the source GFB

exists. The number of modules becomes two when L
′gfb
k is 1. Thus, hk is ⌊pk2 ⌋ only when L

′gfb
k

is 1 and pk is even. Otherwise, hk is ⌊pk2 ⌋+ 1. 1 2 3
21 30

0 1 2
21 3

SourceGFB SourceGFB
Source GFB belongs to the module of the destination GFB Source GFB does not belong to the module of the destination GFB

Figure 7: Example of number of hops in the topology constructed of low-layer GFBs (pk is odd)
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0 1 221Source GFB belongs to the module of the destination GFB

1 2 321
0

SourceGFB SourceGFB
Source GFB does not belong to the module of the destination GFB

Figure 8: Example of number of hops in the topology constructed of low-layer GFBs (pk is even)

Summarizing the above discussion, hk is calculated by

hk =



1 (Lgfb
k ≥ Mk(Nk − 1))

⌊Nk
2 ⌋ (Lgfb

k < Mk(Nk − 1) and L
′gfb
k = 0)

⌊pk2 ⌋ (Lgfb
k < Mk(Nk − 1) and L

′gfb
k = 1 and pkis even)

⌊pk2 ⌋+ 1 (Otherwise)

(6)

Eq. (5) assumes that the paths with the maximum number of hops pass the routes with the

maximum number of hops in each layer. If there are multiple links between a certain GFB pairs,

there may be routes from a switch to the outside of the GFB that do not pass the routes with

the maximum number of hops in a layer. Thus, the calculated Hk may be larger than the actual

maximum number of hops. However, Hk is useful because we can construct the topology where

the maximum number of hops is less than a threshold by making Hk less than the threshold.

Number of Flows through a Link We calculate the number of flows passing each link when

one flow is generated between each switch pair. In the GFB, all switches play the same role. Thus,

the number of flows passing a link depends only on the layer of the GFBs the link connects. Xk

denotes the number of flows passing the link between layer-k − 1 GFBs.

The flows between layer-k− 1 GFBs are balanced among all links between layer-k− 1 GFBs.
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Thus, Xk is the sum of the number of flows passing the links between layer-k − 1 GFBs divided

by the number of the links. That is,

Xk = Tk

∑hk
i=1 isk(i)

Lk
∏k

i=1Ni

(7)

where Tk is the number of flows between each layer-k− 1 GFB pair, sk(i) is the number of layer-

k − 1 GFB pairs whose flow passes i links between layer-k − 1 GFBs. Thus, Xk is obtained by

calculating sk(i) and Tk.

sk(i) is calculated by the similar manner to hk as follows.

If Lgfb
k defined by Eq. (1) is larger than Mk(Nk − 1), links are added between all pairs of

layer-k − 1 GFBs, and the numbers of hops between all GFB pairs are 1. In this case, sk(1) =

Nk(Nk − 1) and sk(i) = 0 for i > 1.

If Lgfb
k is smaller than Mk(Nk − 1) and L

′gfb
k is zero, the connections between layer-k − 1

GFBs form a ring topology. In this case, the number of layer-k − 1 GFBs i hops away from a

certain GFB is two for i < hk. The number of layer-k − 1 GFBs hk hop away from a certain

layer-k − 1 GFB depends on whether Nk is odd or even; the number of layer-k − 1 GFBs hk hop

away from a certain layer-k − 1 GFB is two if Nk is odd, or one if Nk is even.

If Lgfb
k is smaller than Mk(Nk − 1) and L

′gfb
k is a positive value, we add links to the GFBs

satisfying Eq. (3). In this case, each layer-k− 1 GFB has Lk
∏k−1

i=1 Ni links. Thus, sk(1) is NkLk∏k−1
i=1 Ni.

To calculate sk(i) for i > 1 in the case that links are added between GFBs satisfying Eq. (3),

we divide the topology constructed of layer-k − 1 GFBs into modules similar to the steps to

calculate hk, and calculate the number of GFBs i hops away from the source GFB whose ID is

zero.

Each module has two GFBs i hops away from the source GFB for 1 < i < hk. Thus,

Nk(
Nk
pk

− 2) for 1 < i < hk.

The number of GFBs hk hops away from the source GFB depends on whether pk defined by

Eq. (4) is even or odd, and the number of modules. When the number of modules is two, each

module includes the GFBs hk hops away from the source GFB. The number of GFBs hk hops

away from the source GFB in each module is 2 if pk is odd, or 1 if pk is even.

When the number of modules is more than two, two modules include the source GFB, and

the other modules do not include the source GFB. As shown in Fig. 7, if pk is odd, the modules
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including the source GFB do not have the GFB hk hops away from the source node, and each

module that does not include the source GFB has one GFB hk hops away from the source GFB.

In this case, sk(hk) = Nk(
Nk
pk

− 2). If pk is even, the modules including the source GFB have one

GFB hk hop away from the source GFB, and each module that does not include the source GFB

has two GFB hk hops away from the source GFB. In this case, sk(hk) = Nk(2(
Nk
pk

− 2) + 2).

Summarizing the above discussions, sk(i) is calculated by

sk(1) =

 Nk(Nk − 1) (Lgfb
k ≥ Mk(Nk − 1))

NkLk
∏k−1

i=1 Ni (otherwise)
,

sk(i) = 2Nk
Nk

pk
for 1 < i < hk,

sk(hk) =



Nk(Nk − 1) (Lgfb
k ≥ Mk(Nk − 1))

Nk(
Nk
pk

− 2) (Lgfb
k < Mk(Nk − 1) and L

′gfb
k > 1 and pk is even)

Nk(2(
Nk
pk

− 2) + 2) (Lgfb
k < Mk(Nk − 1) and L

′gfb
k > 0 andpkis odd)

2Nk
Nk
pk

(otherwise)

.

We calculate the number of flows between each layer-k−1 GFB pair, Tk. Hereafter, we discuss

the calculation of the number of flows from the source layer-k− 1 GFB s to the destination layer-

k − 1 GFB d in the layer-k GFB A. Since all layer-k − 1 GFB play the same role in the layer-k

GFB, the number of flows between each layer-k − 1 GFB pair depends only on the layer of the

GFB. Thus, Tk is calculated by calculating the number of flows from the source layer-k − 1 GFB

s to the destination layer-k − 1 GFB d in the layer-k GFB A.

Flows from the layer-k−1 GFB s to the layer-k−1 GFB d include three types of the flows; (1)

the flows whose source switches belong to the layer-k− 1 GFB s and destination switches belong

to the layer-k− 1 GFB d, (2) the flows whose destination switches belong to the layer-k− 1 GFB

d but source switches do not belong to the layer-k GFB A, (3) the flows whose source switches

belong to the layer-k− 1 GFB s but destination switches do not belong to the layer-k GFB A, and

(4) the flows whose source and destination switches do not belong to the layer-k GFB A.

Tk is calculated by

Tk = T in
k + T inward

k + T outward
k + T through

k (8)

where T in
k is the number of flows passing between each layerk− 1 GFB pair whose source switch

belong to the layer-k−1 GFB s and destination switches belong to the layer-k−1 GFB d, T inward
k
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is that whose destination switches belong to the layer-k − 1 GFB d but source switches do not

belong to the layer-k GFB A, T outward
k is that whose source switches belong to the layer-k − 1

GFB s but destination switches do not belong to the layer-k GFB A, and T through
k is that whose

source and destination switches do not belong to the layer-k GFB A.

T in
k is calculated by the product of the number of switches included in the layer-k − 1 GFB s

and that included in the layer-k − 1 GFB d. That is,

T in
k =

k−1∏
i=1

(Ni)
2. (9)

The number of flows whose source switches belong to the layer-k − 1 GFB s and destination

switches do not belong to the layer-k GFB A is calculated by the product of the number of switches

in the layer-k − 1 GFB s and that outside the layer-k GFB A. T outward
k is the number of flows

that go out of GFB A through the layer-k− 1 GFB d. Thus, we calculate T outward
k by dividing the

number of flows whose source switches belong to the layer-k − 1 GFB s destination switches do

not belong to the layer-k GFB A by the number of layer-k − 1 GFBs in the layer-k GFB A.

T outward
k =

(
∏k−1

i=1 Ni)(
∏K

i=1Ni −
∏k

i=1Ni)

Nk
. (10)

Similarly, T inward
k is calculated by

T inward
k =

(
∏k−1

i=1 Ni)(
∏K

i=1Ni −
∏k

i=1Ni)

Nk
. (11)

T through
k is the number of flows that come from the outside of the layer-k GFB A via the

layer-k − 1 GFB s and go to the outside of the layer-k GFB A via the layer-k − 1 GFB d. The

number of flows coming from the outside of the layer-k GFB A via the layer-k − 1 GFB s is the

sum of flows on the links that connect switches in the layer-k − 1 GFB and the switches outside

the layer-k GFB A, which is calculated by
∏k−1

j=1 Nj
∑K

i=k+1(XiLi). We obtain the number of

flows that come from the outside of the layer-k GFB A via the layer-k − 1 GFB s and are sent

to the layer-k − 1 GFB d by dividing
∏k−1

j=1 Nj
∑K

i=k+1(XiLi) by the number of the layer-k − 1

GFBs in the layer-k GFB A.
∏k−1

j=1 Nj
∑K

i=k+1(XiLi)

Nk
includes the flows whose destination switches

belong to the layer-k − 1 GFB d, whose number is T inward
k . Therefore, T through

k is calculated by

T through
k =

∏k−1
j=1 Nj

∑K
i=k+1(XiLi)

Nk
− T inward

k . (12)
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Because all switches belong to the top-layer GFB, T inward
K , T outward

K , and T through
K are 0,

and TK = T in
K where K is the number of layers of the constructed GFB. In other layers, Tk is

calculated by using Eq. (8) through (12).

Finally, the number of flows on links Xk is obtained by substituting the calculated value of Tk

and sk(i) to Eq. (7).
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4 Virtual Network Topology Control to Achieve Low Energy Con-

sumption

4.1 Outline

In our method, the VNT is constructed so as to minimize the number of used ports considering

two kinds of requirements; bandwidths and delay between servers.

One approach to provide sufficient bandwidths between servers is to construct the VNT that

can accommodate the current traffic demands between servers. However, in a data center, traffic

may change within a second [19]. Thus, if the VNT is optimized for the current traffic demands,

the VNT may be required to be reconfigured every second.

In our method, to avoid too frequent reconfiguration, the traffic changes in a short period are

handled by the load balancing [20] over the VNT. And, we design the VNT so as to achieve

sufficiently large bandwidth and small delay with small energy consumption, considering the load

balancing.

In this thesis, we use one of the load balancing technique called Valiant Load Balancing

(VLB) [20]. In the VLB, we select the intermediate nodes randomly regardless of the destina-

tion to avoid the concentration of traffic on certain links even when traffic volume of a certain

node pair is large. Then, traffic is sent from the source node to the intermediate node and from

the intermediate node to the destination node. By applying the VLB, the amount of traffic be-

tween each switch pair is the sum of traffic amount from and to a switch divided by the number of

switches in the network. Thus, we provide sufficient bandwidth by making the number of flows

passing a link less than a threshold, which is calculated by dividing the capacity of the link by the

traffic amount between each switch pair calculated considering the VLB.

The delay is also hard to forecast when designing the virtual network. In this thesis, we avoid

too large delay by providing enough bandwidth and making the maximum number of hops less

than a threshold.

In our method, the VNT is designed by setting the parameters of the GFB so as to satisfy the

above requirements. If the demands change and new switches are added in the virtual network

or some of switches currently belonging to the virtual network disappear, we check whether the

current VNT satisfies the requirements described above. If the current VNT does not satisfy the re-

25



quirements, we reconfigure the VNT suitable to the current environment by setting the parameters

of the GFB again.

In subsection 4.2, we propose a method to set the parameters of the GFB so as to satisfy the

requirements. Then, in subsection 4.3, we explain a method to keep the requirements satisfied

when some switches are added to the virtual network or deleted from the virtual network.

4.2 Topology Control to Satisfy the Requirements

In this subsection, we propose a method to set the parameters of the GFB so as to minimize the

number of used ports and satisfy the requirements of the bandwidth and the maximum number of

hops between servers. In this method, the parameters of the GFB are set by the following steps. In

the following steps, the number of switches connected in the virtual network Nall, the threshold to

the number of hops Hmax, the sum of the maximum traffic volume from a ToR switch TSWfrom,

the sum of the maximum traffic volume to a ToR switch TSWto, and the capacity of a virtual link

B are given.

Step 1 Set the maximum number of layers K. The numbers of layers less than K are regarded

as the candidates of the number of layers.

Step 2 Set the number of the GFB in each layer Nk for all candidates of the number of layers.

Step 3 Set the number of virtual links between GFBs in each layer Lk so as to make the number

of hops between switches less than the threshold for all candidates.

Step 4 Check whether the GFB with the parameters set at Steps 2 and 3 can provide the suffi-

cient bandwidth for all candidates. If all candidates can provide the sufficient bandwidth

go to Step 6. Otherwise, go to Step 5.

Step 5 Modify Lk so as to provide the sufficient bandwidth for the candidates that cannot

provide the sufficient bandwidth.

Step 6 Construct the topology which uses the smallest number of virtual links among the can-

didates.

Step 7 End.
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Setting the maximum number of layers We set the maximum number of layers so as to make

the maximum number of hops less than a threshold. The maximum number of hops of the layer-k

GFB is minimized when hk = 1 in Eq. (5) for all layers. Thus, the maximum number of layers K

must satisfy the following condition to make the maximum number of hops less than a threshold

Hmax.

Hmax ≥ 2K − 1 (13)

In our method, all numbers of layers K satisfying the above condition are regarded as the candi-

dates of the number of layers of the GFB.

Setting Nk Nk should satisfy the following conditions.

• Nk of the low-layer GFB is smaller than Nk of the high-layer GFB.

Each layer-k − 1 GFB has
∏k−1

i=1 Ni switches and each switch has Lk links for the con-

nections between layer-k − 1 GFBs. Each layer-k − 1 GFB can use Lk
∏k−1

i=1 Ni links to

connect it to other layer-k − 1 GFBs. Considering the case that Lk is minimized to achieve

low energy consumption, the low-layer GFB can use only a small number of virtual links to

connect it to other GFBs. Thus, if we set Nk to a large value in the low layer, the number

of hops between the GFBs becomes large. On the other hand, the high-layer GFB can use

more links than the low-layer GFB, and we can keep the number of hops small even when

we set Nk to a large value.

• The GFB can connect more than Nall switches.

The number of switches that can be connected in the layer-K GFB
∏K

i=1Ni should be larger

than Nall to connect all switches required to be connected.

One approach to set Nk so as to satisfy the above conditions is to set Nk by

Nk =
k−1∏
i=1

Ni + 1, (14)

and set N1 so as to satisfy

Nall ≤
K∏
i=1

Ni. (15)

Eq. (14) sets the number of GFBs in each layer to the similar manner to the DCell [7].
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Setting Nk by Eq. (14), the increment of N1 by 1 may dramatically increase the number of

switches that can be connected in the layer-K GFB. Thus, it is possible that the number of switches

that can be connected in the GFB whose N1 is set to n1 is much larger than Nall though the GFB

whose N1 is set to a value n1 − 1 cannot connect Nall switches.

In our method, Nk is set by the following equation instead of Eq. (14).

Nk =

∏k−1
i=1 Ni

d
+ 1, (16)

where d is one of the divisors of
∏k−1

i=1 Ni. By setting Nk by Eq. (16), we avoid the number of

switches to be connected in the GFB becoming too large.

Setting Lk to satisfy the requirements of the maximum number of hops In our method, we

initially set L1 to 2 and Lk to 1 for k > 1, which are the minimum values of Lk required to connect

all switches. Then, we check whether the maximum number of hops calculated by Eq. (5) is less

than Hmax. If the maximum number of hops calculated by Eq. (5) is larger than Hmax, we modify

Lk to make the maximum number of hops less than Hmax.

Setting Nk by Eq. (16), all layer-k − 1 GFB pairs in the layer-k GFB are connected if k > 1

even when Lk = 1. The increment of Lk for k > 1 cannot reduce the maximum number of

hops. Therefore, if the maximum number of hops calculated by Eq. (5) is larger than Hmax, we

increment L1 until the maximum number of hops calculated by Eq. (5) becomes less than Hmax.

Setting Lk to provide sufficient bandwidth In our method, to avoid too frequent reconfigura-

tion, the traffic changes in a short period are handled by the VLB [20] over the VNT. In the VLB,

the traffic is sent via the intermediate switch that is randomly selected regardless of the destination.

That is, the amount of traffic between each switch pair TSWpair satisfies the following equation.

TSWpair ≤ TSWfrom + TSWto

Nall
(17)

We define T̂SWpair = TSWfrom+TSWto

Nall . We provide the sufficient bandwidth by making the

number of flows passing each link less than B
T̂SWpair

.

The number of flows passing a link in each layer is calculated by Eq. (7). In our method, we

check whether Xk calculated by Eq. (7) is less than B
T̂SWpair

for each layer k. If Xk is larger than
B

T̂SWpair
, we increment Lk until Xk becomes smaller than B

T̂SWpair
to provide sufficient bandwidth.
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4.3 Topology Control against Server Addition or Delition

When the demand for the data center increases, the additional servers may be implemented to

handle the increased demand. When the demand decreases, some of the servers related to the

application may be shut down to reduce energy consumption. In such cases, the number of ToR

switches required to be connected to the virtual network may also change.

The VNT should satisfy the requirements even when the number of ToR switch connected to

the virtual network changes. In this subsection, we describe the method to control the parameters

of the GFB when the number of ToR switches connected to the virtual network changes.

Control against Server Addition We denote the number of ToR switches which can be con-

nected to the GFB of the current parameter as Nmax. Nmax is calculated by

Nmax =

K∏
i=1

Ni (18)

If the number of ToR switches added to the virtual network Nadd satisfies the following equation,

Nadd ≤ Nmax −Ncurrent, (19)

where Ncurrent is the number of ToR switches connected to the current virtual network, we connect

all additional ToR switches without changing any parameter of the GFB. In this case, we connect

the additional ToR switches to the layer-k−1 GFB including the smallest number of ToR switches.

When Nadd does not satisfy Eq. (21), we set the new parameters of the GFB by the method

described in Section 4.2.

Control against Server Deletion If the number of ToR switches required to be connected be-

comes small, we remove some ToR switches from the layer-1 GFB including the largest number

of ToR switches. By removing the ToR switches from the layer-1 GFB including the largest num-

ber of ToR switches, we avoid the significant difference between the numbers of ToR switches

included in the layer-1 GFBs, since the difference between the numbers of ToR switches included

in the layer-1 GFBs may cause the concentration of traffic on certain links.

If more than one ToR switches are removed from all layer-1 GFBs, the GFB after removing

the ToR switch becomes the GFB whose N1 is decremented. In this case, since the number of

virtual links between the layer-1 GFBs is also reduced, we may not provide sufficient bandwidth
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between servers. Thus, the parameters of the GFB should be newly set by the method described

in Section 4.2.

Unless more than one ToR switches are removed from all layer-1 GFBs, we can keep the

required bandwidth and number of hops. Hereafter, we discuss the condition that we can keep the

requirements satisfied without changing the parameters of the GFB.

The number of the layer-1 GFBs in the virtual network NGFB1 is calculated by

NGFB1 =
K∏
i=2

Ni. (20)

Among the layer-1 GFBs, Nmax − Ncurrent layer-1 GFBs includes only N1 − 1 ToR switches.

Thus, if the number of deleted ToR switches Ndel satisfies

Ndel ≤ NGFB1 − (Nmax −Ncurrent), (21)

some of the layer-1 GFBs still include N1 ToR switches after the deletion. In this case, the param-

eter of N1 of the GFB is not changed, and we also do not have to change the other parameters.
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5 Evaluation

5.1 Outline of Our Evaluation

Our method connects the target number of ToR switches considering two kinds of requirements

for the VNT, the bandwidth required between ToR switches and the maximum number of hops

between ToR switches. The bandwidths required between ToR switches are given by the sum of

the maximum volume of traffic from each ToR switch, TSWfrom, and the sum of the maximum

volume of traffic to each ToR switch, TSWto. In all of our evaluation, we set TSWfrom = TSWto.

In the first evaluation, we check whether our method can construct the VNT satisfying the

above requirements, by changing the target number of ToR switches Nall, the sum of traffic vol-

ume from or to each ToR switches TSWfrom or TSWto, and the acceptable maximum number of

hops Hmax.

Then, we investigate the number of ports of ToR switches required to achieve the requirements.

In this comparison, we compare the topology constructed by our method with four topologies,

FatTree, Torus, Switch-based DCell and Flattened Butterfly. Unlike the FatTree topology proposed

by Al-Fares et al. [5] , we assume that the traffic is generated not only from the switches at the

lowest layer but also from the switches at the upper layer in the FatTree used in this evaluation,

since powering up additional switches consumes more energy. In our evaluation, the parameters

of each topology are set so as to minimize the number of ports required by the topology under the

constraint that it can provide the sufficient bandwidth and the maximum number of hops is less

than Hmax.

Finally, we evaluate our VNT control method under the condition that the number of ToR

switches changes. In this evaluation, we add or delete a randomly selected number of ToR switches

at each step. Then, we check whether our method can keep the requirements satisfied even in this

case.

In all of these evaluations, we assume that the number of wavelengths on optical fibers is

sufficient. We set the bandwidth of one link to 10 Gbps.

5.2 Properties of the Constructed Topology

In this subsection, we first check whether our method can construct the VNT satisfying the re-

quirements. In this evaluation, we change the requirements for the VNT by changing the target
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number of ToR switches Nall, the sum of traffic volume from or to each ToR switches TSWfrom

or TSWto, and the acceptable maximum number of hops Hmax. Table 1 shows the requirements

for the VNT used in our evaluation and the parameters of the GFB set by our method for each

requirement.

Table 2 shows the performance of the VNT constructed by our method. As shown in this

table, the VNT constructed by our method satisfies the requirements in all cases; the maximum

number of hops in the constructed VNT is smaller than the required value, and the maximum link

utilization is less than 1.0.

Table 1: The requirements for the VNT and parameters of the GFB set by our method for the

requirements

Requirements The parameter of the GFB calculated by our method

Maximum Maximum volume Number Number

number of traffic from of of N1 N2 N3 L1 L2 L3

of hops each ToR switch ToR switches layers

11 1Gbps 930 3 5 6 31 2 1 1

11 3Gbps 930 3 5 6 31 4 1 1

5 3Gbps 930 2 30 31 - 11 1 -

11 1Gbps 420 2 20 21 - 3 1 -

11 3Gbps 420 3 4 5 21 3 1 1

7 5Gbps 420 2 20 21 - 5 1 -

5 5Gbps 420 2 20 21 - 11 1 -

5.3 Comparison with Existing Data Center Network Topologies

We compare the VNT constructed by our method with the existing data center network topologies.

In this comparison, all topologies include 420 ToR switches. We compare the number of virtual

inks per ToR switch required to achieve the requirements by changing the sum of traffic volume

from or to each ToR switches. In this comparison, we set the acceptable maximum number of

hops to a sufficiently large value. That is, only the bandwidth provided for each ToR switch is the

only requirement for the VNT.

Figure 9 shows the results. In this figure, the horizontal axis indicates the sum of traffic
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Table 2: Properties of the constructed GFB

Requirements Performance of the constructed GFB

Maximum Maximum volume Number Maximum Maximum Number of Number

number of traffic from of number link used ports per of used

of hops each ToR switch ToR switches of hops utilization ToR switch links

11 1Gbps 930 11 0.443 4 3720

11 3Gbps 930 7 0.915 6 5780

5 3Gbps 930 5 0.581 12 11160

11 1Gbps 420 11 0.390 4 1680

11 3Gbps 420 7 0.937 5 2100

7 5Gbps 420 7 0.952 6 2520

5 5Gbps 420 5 0.952 12 5040

volume from or to each ToR switches that is required to be accommodated, and the vertical axis

indicates the number of virtual links per ToR switch required to satisfy the requirement. As shown

in this figure, the switch-based DCell cannot accommodate traffic more than 1 Gbps, and the

FatTree and the torus cannot accommodate traffic more than 6 Gbps per ToR switch. In the switch-

based DCell, the link between level-0 DCells becomes bottleneck, which cannot be solved by the

parameter settings. In the FatTree topologies, we cannot construct the topology having more

links than the 3-layer FatTree. Thus, the FatTree cannot accommodate more traffic that cannot be

accommodated in the 3-layer FatTree. Similarly, the torus cannot accommodate more traffic that

cannot be accommodated in the torus whose dimension is the largest among the torus constructed

by 420 switches.

Though the flattened butterfly can accommodate a large amount of traffic, it requires a large

number of virtual links. This figure indicates that our method uses the smallest number of virtual

links to accommodate traffic regardless of the amount of traffic. This is because our method to

set parameters of the GFB adds only links that are necessary to accommodate the traffic. There-

fore, the topology constructed by our method satisfies the requirement of the bandwidth with the

smallest energy consumption.

We also compare the number of virtual links per ToR switch required to achieve the require-

ments by changing the acceptable maximum number of hops. In this comparison, we assume that
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the capacity of each virtual link is sufficient. That is, only the acceptable maximum number of

hops is the only requirement for the VNT.

Figure 10 shows the results. In this figure, the horizontal axis indicates the maximum number

of hops, and the vertical axis indicates the number of virtual links per ToR switch required to

satisfy the requirement. As shown in this figure, in most of cases of the acceptable maximum

number of hops, the topology constructed by our method uses the smallest number of virtual links

to satisfy the requirements.

However, in some cases, the numbers of links used by the FatTree or the flattened butterfly are

smaller than that of our method. In our method, if the acceptable maximum number of hops cannot

be achieved by the layer-k GFB, we construct the layer-k − 1 GFB whose Nk is set by Eq. (16).

In some cases, we cannot construct the layer-k − 1 GFB whose maximum number of hops equal

the required value. Thus, the constructed layer-k− 1 GFB achieves the maximum number of hops

much smaller than the required value, but may require more links. However, we may be able to

modify our method so as to minimize the number of required links even in such cases, which is

one of our future research topics, since the flattened butterfly can also be constructed by setting

the parameters of the GFB.
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Figure 9: Number of virtual links required to accommodate the traffic from ToR switches

5.4 Performance against Addition or Deletion of Switches

The demand may change, and the new additional ToR switches may become required to be con-

nected to the virtual network, or some of the ToR switches may be removed from the virtual
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Figure 10: Number of virutal links required to make the maximum number of hops less than the

target value

network. In this evaluation, we check whether our method can keep the requirements satisfied in

such cases.

In this evaluation, we set the number of ToR switches initially connected to the virtual network

to 930. The acceptable maximum number of hops is set to 11, and the sum of the traffic volume

from each ToR switch to 3 Gbps. At each step, we add or delete a randomly selected number of

ToR switches.
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Figure 11: Number of used virtual links per ToR switch to keep the maximum number of hops

less than the target value

Figures 11 and 12 show the maximum number of hops and the maximum link utilization at
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Figure 12: Number of used virtual links per ToR switch to keep sufficient bandwidth

each step respectively. In these figures, the horizontal axis is the number of steps, and the vertical

axis is the maximum number of hops or the maximum link utilization. As shown in these figures,

our method keeps the requirements satisfied even when some ToR switches are added to or deleted

from the virtual network.

As shown in these figures, the maximum number of hops becomes much smaller than the

acceptable number of hops as steps pass. The maximum link utilization is also much smaller

than 1. This is because we do not change the parameters of the GFB if the requirements of the

provided bandwidth and the maximum number of hops are satisfied. However, re-calculating the

parameters of the GFB may decrease the energy consumption. A method to determine whether

the re-calculation of the parameters of the GFB is required considering the energy consumption is

one of our future research topics.
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6 Conclusion

In this thesis, we introduced the virtual network configured over the data center network con-

structed of the OXCs and the electronic switches. In this network, the core of the data center

network is constructed by using the OXCs and optical fibers. Then, the electronic switches, de-

ployed in each server rack, are connected to the core network by connecting them to OXCs. We

construct the VNT by establishing lightpaths between the electronic switches. In our method, we

minimize the energy consumption of the data center network by minimizing the number of ports

of electronic switches used in the VNT and shutting down the unused ports.

In this thesis, we also proposed a method to reconfigure the VNT suitable for a data center

network. In this method, the traffic changes in a short period are handled by the load balancing

over the VNT. We design the VNT so as to achieve sufficiently large bandwidth and small delay

with small energy consumption, considering the load balancing. Then, if the current VNT is not

suitable for the current demands, the VNT is reconfigured. Our method reconfigures the VNT

by setting parameters of a topology so as to avoid large calculation time in a data center. As the

topology used in the VNT configuration, we proposed the topology called Generalized Flattened

Butterfly (GFB), and a method to set its parameters so as to suit the current condition.

We evaluated our method, and clarified that our method can construct the VNT satisfying the

requirements of the bandwidth and the maximum number of hops between the switches, by setting

parameters of the GFB. In addition, the evaluation results indicate that the topology constructed by

our method uses a smaller number of links to satisfy the requirements than the existing data center

network topologies; the number of links required by our method is about a half of the number of

links required by the flattened butterfly to provide sufficient bandwidth.

One of our future research topics is to modify the method to set the parameters of the GFB.

As discussed in Section 5, there are some cases that the topology constructed by our method uses

more links than the flattened butterfly to make the maximum number of hops less than a required

value. Because the flattened butterfly can also be constructed by setting the parameters of the

GFB, we may be able to modify our method so that the topology constructed by our method uses

a smaller number of links in all cases.

Another future research topic is a method to determine whether the re-calculation of the pa-

rameters of the GFB is required considering the energy consumption. In the method proposed
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in this thesis, we re-calculate the parameters only when the requirements of the bandwidths and

the maximum number of hops become unsatisfied. By determining whether the re-calculation of

the parameters of the GFB is required considering the energy consumption, we can reduce further

energy consumption.
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