Realization of Name Lookup Table in Routers Towards Content-centric Networks

Research Background
- Communication model of Internet
 Emphasis on who (identifier) and where (physical attachment point)
 Route on IP address
- Route on what (content-centric networking)
 Does not know nor care on which node the desired data or service resides.
 Network with high intelligence would look at the content of the message from the source and route it to the appropriate destination.

Motivation
- Hardware in Network Layer should support this paradigm shift from ‘who and where’ to ‘what’
 → Name lookup table in routers should have a structure to manage and search a large-scaled information of named content and subscribers

Research at a Glance
Propose a hardware architecture where the network layer routers behave as the brokers in publish/subscribe that can perform well even when the number of the subscribers increases drastically

Proposal of Name Lookup Table
- Topic Output interface
 (a) Active TCAM, passive SRAM
 (b) Passive TCAM, active SRAM
 (c) Passive SRAM, active DRAM
 - Pro: High search speed using TCAM and parallel process of searching the next key using the latency
 - Con: Number of keys that can be searched simultaneously depends on the number of FNH bits

Evaluation
- Actual cost and latency using real-life database
 - When only the cost is considered, it seems that the Scenario C is the best solution since the information of subscribers is stored in the most inexpensive DRAM. However, the overall processing speed is affected by the slow SRAM and DRAM
 - With cost limitation: Latency for Scenario A and B ranges from 75 to 510 µs whereas for Scenario C the range is from 8.5 to 45 ms.

Conclusion
- Router’s Name lookup structure should be designed according to the database of topic names and users having Zipf distribution as well as the latency of each memory

Latency and utilization using real-life database with cost limitation

Future Work
- Evaluate the effect of placing multiple rendezvous points for a topic name (+Network)
- Propose a full implementation of content-centric network in the network layer

Hardware in Network Layer should support this paradigm shift from ‘who and where’ to ‘what’
- Does not know nor care on which node the desired data or service resides.
 - Network with high intelligence would look at the content of the message from the source and route it to the appropriate destination.

Implementation of pub/sub model in Network Layer
- Pro: (i) Effective usage of physical topology
 (ii) “Network Layer service”, not a service of a specific application
- Con: Requires a new mechanism to store and manage published event and subscriptions in hardware in Network Layer, i.e., routers

<table>
<thead>
<tr>
<th>Topic</th>
<th>Output interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>fa0 fa1</td>
</tr>
<tr>
<td>Apple</td>
<td>fa2 fa3</td>
</tr>
<tr>
<td>Apple</td>
<td>fa4 fa5</td>
</tr>
<tr>
<td>Apple</td>
<td>fa6 fa7</td>
</tr>
<tr>
<td>Apple</td>
<td>fa8 fa9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Output interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>fa0 fa1 fa2 fa3 fa4</td>
</tr>
<tr>
<td>Apple</td>
<td>fa5 fa6 fa7 fa8 fa9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Output interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>0 eth1 0</td>
</tr>
<tr>
<td>Apple</td>
<td>1 100 10</td>
</tr>
<tr>
<td>Apple</td>
<td>0 eth2 0</td>
</tr>
</tbody>
</table>

<TCAM> <SRAM> <DRAM>