Noise-assisted Traffic Distribution over Multi-path Ad Hoc Routing

Narun Asvarujanon, Kenji Leibnitz, Naoki Wakamiya, Masayuki Murata
Department of Information Networking, Graduate School of Information Science and Technology, Osaka University, Japan

Outline

• Motivation
• Research overview
 – Attractor Perturbation (AP)
• Proposal: noise-assisted traffic distribution
 – AP parameters mapping
 – Research objective: total packet delay minimization
 – Solution to minimization problem using AP
• Evaluation: verification of AP
 – Numerical
 – Single-path simulation
• Work in progress
 – Evaluation of traffic distribution over multi-path routing

Motivation

• In ad hoc network, there are unstable paths, due to
 – continuous topology change (caused by mobility, etc.)
 – network congestion, etc.
• Multi-path approach has been used to increase robustness and available bandwidth
• However, existing traffic distribution approaches require active resource estimation, e.g., available bandwidth, number of flows, etc. to perform load balancing
 – resulting in complication and high overhead

Research Overview

• Instead of tracking the complex resource information of each path to distribute traffic, we aim to
 – consider the network as a black box,
 – observe the only passive end-to-end delay and adjust the traffic rate based on delay statistics
• Ability to estimate the effect of traffic rate change is required
 – Attractor Perturbation concept is used

Attractor Perturbation (AP)

From an observation in cell biology [10]:

Given an observable variable \(x \), which could be influenced by parameter \(\alpha \), when applying \(\Delta \alpha \) (called force) to the system, the average of \(x \) is perturbed as follows:

\[
\bar{x} = \bar{x} + \text{constant coefficient} \times \Delta \alpha \times \text{observed variance}
\]

The above equation shows that the larger the variance is, the larger perturbation of average can be observed

Effect of force \(\Delta \alpha \) on the histogram of \(x \)

Traffic Distribution over Multi-path

• Mapping parameters to the traffic distribution problem
 – \(x \) is the observed per-packet end-to-end delay
 – \(\alpha \) is the traffic rate (amount of traffic on the path)
• Objective: minimize the total end-to-end delay of all packets by shifting the traffic from paths with higher variance to paths with lower one
 – from AP: lower variance paths can tolerate more traffic
 – common knowledge: lower variance is better
Minimization Problem

- Total delay $\sum_{\text{all path } i} (\text{amount of traffic} \times \text{average delay})$
- Average delay of path i after traffic rate change $x_i' = x_i + h_i \Delta a_i x_i^2$
- Total delay after traffic rate change $\sum_i (a_i + \Delta a_i)x_i^2$
- Objective: Minimize $\sum (a_i + \Delta a_i)x_i^2$, s.t. $\sum \Delta a_i = 0$

Δa_i are solvable using Lagrangian

Implementation

Every interval τ DO:
- CALCULATE average and variance of end-to-end delay
- SOLVE the minimization problem
- IF $\sum \Delta a_i > \varepsilon$ THEN (improvement threshold ε)
 - PERFORM traffic re-distribution
- ELSE
 - PERFORM traffic re-distribution with normalized Δa_i
 (gradually re-distributing traffic in small steps)
- ENDIF

Numerical Evaluation of AP

- Considering an attractor system with $\frac{dx}{dt} = -\rho(x - x_0) + \eta + \Delta x$
- Same amount of force yields different amount of effect according to ρ

- Results from multiple runs with random ρ show linear relationship between average difference and variance

Simulation of Single Path AP

- 25 nodes, uniformly distributed in $10^5 \times 10^5 \text{m}^2$
- Traffic: 1 CBR session + 4 Poisson background traffic sessions
- Underlying routing protocol: MARAS
- Simulation length is 1000 s
 - CBR starting with 10 packets/s rate
 - At 500 s, a force is applied by changing the rate to 20 packets/s
- It can be seen that
 - Average delay can be influenced by changing the traffic rate
 - Perturbation is larger in the case of higher variance

AP is valid in both numerical and simulation-based evaluation

Conclusion and Future Work

- Attractor perturbation (AP):
 - is a biologically-inspired concept
 - simplifies control mechanism
 - only uses average and variance of the observed variable
- Verification results
 - AP is visible in both numerical and simulation-based evaluation
- Work in progress
 - Simulation of AP-based traffic distribution over multi-path ad hoc routing

Thank you for your attention

Q&A