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Abstract

The information network as a multiple access medium has unavoidable issues that end-to-end

delay and delay jitter always fluctuate. The main reason is that the internal condition of the infor-

mation network dynamically changes due to competitive sessions which share network resources

and change their throughput for their own convenience. Whereas the delay fluctuation is unavoid-

able in information networks, in these days, even delay sensitive applications, which traditionally

preferred a circuit-switched network, such as voice and video communication, come to rely on

packet-switching information networks. For smooth and interactive communication by using such

applications over the information networks, the QoS (Quality of Service) guarantee of delay is re-

quired. For such delay sensitive applications, buffering at a host and packet scheduling at routers

would solve the delay fluctuation problem to some extent. However, these mechanisms to remove

delay fluctuations requires all intermediate routers from a server to a receiver to be equipped with

the designated algorithm, which is impractical in a large-scaling information network. Therefore,

to realize the stable end-to-end delay, we need a novel mechanism for end nodes to leverage delay

fluctuations. In biology, it is well known that biological systems are exposed to internal and ex-

ternal fluctuations. It is expected that biological systems inherently have respectable mechanisms

against fluctuations, but we could not understand these mechanisms very well. In the recent inter-

disciplinary activities in biology, a relationship between fluctuation inherent in biological systems

and their response against an external force is modeled as the attractor perturbation model. The

information network is also a large complex system exposed to fluctuations, and it is difficult to

comprehend the whole system and its dynamics. As the information network has a lot of similar-

ities to the biological system, we focus on utilizing the attractor perturbation model for network

control. Our preliminary experiments show that the end-to-end delay over a TCP session similarly

fluctuates with the biological system in the attractor perturbation model. This implies that we can
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estimate the appropriate amount of increase or decrease of the sending rate to achieve the desired

end-to-end delay based on the attractor perturbation model. In this paper, we propose a novel rate

control mechanism that can achieve and maintain the desired end-to-end delay in the changing

environment. Our proposal does not filter or conceal fluctuation, but it exploits inherent traffic

fluctuation to accomplish the goal according to the attractor perturbation model. Based on the

attractor perturbation model, even if the traffic characteristics of a network dynamically changes,

our proposal can estimate the appropriate amount of increase or decrease of the sending rate to

achieve the desired end-to-end delay only by using instantaneous observation of the end-to-end

delays and its variance. Through simulation experiments, we confirmed that our proposal could

achieve and maintain the target delay even when background traffic changed. Furthermore, it was

found that our proposal could achieve the target delay at higher sending rate than the delay-based

AIMD rate control mechanism by nearly 20 % under the same conditions.

Keywords

Attractor perturbation model

Rate control mechanism

End-to-end delay

Delay fluctuation
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1 Introduction

Information network is one of indispensable social infrastructures and it enriches and ensures our

daily life. In these days, a wide variety and number of applications, including even voice and video

communication which prefer a circuit-switched network, rely on packet-switching information

networks. However, as an information network is a shared medium, there occur non-negligible

issues. Especially when there are multiple sessions sharing the same physical network resources,

delay, delay jitter, and packet loss observed by a session always fluctuate, regardless of adopted

protocol or characteristics of generated traffic. Since the origin of fluctuation includes changes in

the number of sessions and the amount of traffic, the shadowing and fading of a wireless channel,

rerouting of paths and others, that cannot be predicted or controlled by an individual session,

researchers has made efforts to suppress the delay fluctuations for delay sensitive applications,

researchers had made an effort to suppress fluctuations especially for delay-sensitive applications

such as IPTV (Internet Protocol TeleVision) and video conference.

Delay fluctuation is generally managed by a playout buffer at a receiver [1, 2]. A playout

buffer defers video playout to deposit the sufficient number of packets at the beginning and then

provides a video player with buffered packets. As such, as far as packets arrive at a receiver before

a buffer becomes empty, a video can be presented to a user without interruptions. However, delay

and delay jitter are not predictable. Therefore, it is very likely that a buffer runs out of packets

and a user experiences freezes. Increasing the number of packets to buffer merely degrades the

interactivity and timeliness of an application.

For delay-sensitive applications, researchers proposed methods to control and reduce delay

jitter by developing an intelligent packet scheduling algorithm at routers [3–7] and by multipath

routing [8]. In [3], comparative analysis shows that packet scheduling at routers can reduce delay

jitter even when buffering at a receiver cannot prevent freezes. However, it requires all interme-

diate routers from a server to a receiver to be equipped with the designated algorithm. On the

contrary, a multipath routing method relies on prior knowledge of the average delays in the steady

state, but its precise prediction is difficult due to the fluctuation in networks. As a mechanism

adopted at end systems, many rate control algorithms have been studied [9, 10]. They infer the

network state by observing, for example, delay, delay jitter, and packet loss and regulate the send-

ing rate to avoid network congestion. Although they can reduce the packet loss probability, they
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do not take into account the delay sensitivity of interactive applications.

As long as the network condition, such as the degree of congestion, can easily be predicted or

estimated, it is trivial to control delay, delay jitter, and packet loss. However, the ever-increasing

size, complexity, and dynamics of an information network prevent a control mechanism reveal-

ing the network condition even with active and aggressive probing. Going back to the simplest

paradigm, given a complex system, what an end system can do is only to apply a force and see how

it reacts. Only if there exists the clear relationship between them, one can obtain the desired result

by putting the appropriate force to a system. An answer can be found in biology, which has the

long history of investigating and understanding complex systems, i.e. living organisms. The rela-

tionship is modeled by a mathematical expression, called an attractor perturbation model [11,12].

It is derived from the relationship between fluctuations inherent in a biological system and its re-

sponse against an external force. Biological systems are always exposed to internal and external

fluctuation or noise caused by, for example, thermal fluctuation and phenotypic fluctuation. As

a result, size, metabolic concentrations, and gene expression differ among cells cultured in the

same medium and individuals are all different. Furthermore, gene expression of a cell dynami-

cally changes to adapt to the surrounding conditions such as temperature, pH, and concentrations

of chemical substances. Therefore, a cell is not always the same. It is considered that such fluctu-

ation or diversity is a source of flexibility and adaptability of biological systems to environmental

changes.

In the work [11], the authors call the distribution observed quite often in biological experiments

“Gaussian-like” distribution. Under the assumption that a variable in biological systems follows

the Gaussian-like distribution, the authors derive a mathematical expression which is the base of

the attractor perturbation model. The attractor perturbation model explains how biological systems

respond to environmental changes, which put force or pressure on them and trigger their responses.

Based on the model, given a change in the external force, the average of a measurable variable,

such as the concentration of metabolic substances and the number of cells, shifts by the amount in

proportional to the degree that a biological system fluctuates, i.e. the variance of the measurable

variable. That is, more a biological system fluctuates, more it responds to the environmental

change and alters its behavior.

Fluctuation is intrinsic to an information network as well. However the distribution would

differ depending on the condition of measurement, including network topology and loading status.
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For example in an early research [13], they authors found that the distribution of one-way delay

changed from gamma, Pareto, to log-normal distribution as the sending rate increased. We also

conducted experimental measurement in real information networks as will be reported in this

paper. Analyzing obtained results, we found that round trip time (RTT) experienced by a TCP

session followed the Gaussian distribution. It means that the attractor perturbation model could

hold in an information network and there is high probability that we can successfully develop a

novel control mechanism based on the model.

When we regard a network as a biological system and injected traffic as an external force im-

posed on a system, we can estimate how a network responds to a change in the injected traffic.

More specifically, by adopting the end-to-end delay as a measurable variable of the attractor per-

turbation model, we can derive the appropriate amount of increase or decrease of the sending rate

to achieve the desired end-to-end delay from the observed variance of delay. For example, assume

that the measured end-to-end delay is larger than the desired delay. When the variance is large,

it is enough to slightly decrease the sending rate to push down the delay to the desired level. On

the contrary, aggressive rate control is required in a network with small fluctuation, which implies

that a network is stable. With such a control mechanism based on the attractor perturbation model,

efficient and effective rate adaptation can be accomplished without detailed information about a

network system or tailored facilities.

The remainder of this paper is organized as follows. In Section 2, we measure the delays in the

real information network and confirm the delay distributions. In Section 3, we briefly introduce the

attractor perturbation model and its applications. In Section 4, we verify the attractor perturbation

model in an information network. In Section 5, we propose a novel rate control mechanism to

achieve the stable end-to-end delay based on the attractor perturbation model. Then we describe

the scenarios of simulation experiments to evaluate the proposal in Section 6 and show the results

of the simulation experiments in Section 7. Finally, Section 8 concludes the paper.
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2 Fluctuations in information networks

In order to understand how the end-to-end delay fluctuates in real information networks, we con-

duct experiments to measure the end-to-end delays and investigate its distribution. In Sec. 2.1, we

describe the settings of the and show obtained results in Sec. 2.2.

2.1 Experimental settings of delay measurements

As the end-to-end delay we measure the round trip time (RTT) experienced by TCP (Transmission

Control Protocol) session. We consider the server and client model, which is common in the

Internet. Figure 1 shows the experimental environment. We use an Android tablet as a client

host which is equipped with a network interface capable of accessing three wireless networks,

i.e., LTE (Long Term Evolution), W-CDMA (Wideband Code Division Multiple Access), and Wi-

Fi (IEEE 802.11g). Each access network uses different network technologies and has different

characteristics in terms of bandwidth, communication range, delay, and their fluctuation.

We use iperf [14] to establish a TCP session between a server and a client. An iperf server runs

on a server and communicates with an iperf client running on a client over a TCP session. Both of

the server and the client assign 256 Kbytes to both of a TCP send buffer and a TCP receive buffer.

A file of 100 Mbytes is transmitted from the server to the client by a series of segments, whose

maximum size is set to 1460 bytes. On the TCP session, all of timestamp option, selective ac-

knowledgement (SACK), and Nagle algorithm are disabled, while the delayed acknowledgement

(delayed ACK) is enabled as summarized in Table 1. TCP segments exchanged on a TCP session

are captured by tcpdump on the server. The distance between the server and the client during

experiments is measured by traceroute and it is 13 hops when using LTE and W-CDMA and 17

hops over a Wi-Fi access network, respectively.

Now we explain how to derive RTT of the communication between a client and a server. Here

we represent the segment whose sequence number is j by the j-th segment, and the corresponding

ACK whose acknowledgement number is j by the j-th ACK, respectively. Basically, RTT can

be derived by subtracting the time of emission of the j-th segment from the time of reception of

the j-th ACK. However we should note that the delayed ACK mechanism disturbs accurate delay

measurement using such algorithm. With the delayed ACK enabled, a client stops sending an

ACK per received segment. Instead, when a client receives the (j − 1)-th segment, it defers ACK
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Figure 1: Experimental environment

Table 1: Experimental settings
Entry value
Size of transmitted file 100 [Mbyte]
Maximum segment size 1460 [byte]
Send buffer size 256 [Kbyte]
Receive buffer size 256 [Kbyte]
Time stamp option disabled
Selective acknowledgement disabled
Nagle algorithm disabled
Delayed acknowledgement enabled
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emission until reception of the next segment, the j-th segment. That is, only the j-th ACK is sent

in order to report reception of two successive segments, the (j − 1)-th and the j-th segments. The

problems is that, if the j-th segments does not arrive in the heavily loaded condition, a deadlock

could happen due to waiting for arrival of the j-th segment. To avoid this, a client adopts a soft

state mechanism, that is, a client sends the (j−1)-th ACK when the timer expires without receiving

the j-th segment. In that case, the duration from emission of the (j−1)-th segment to reception of

the (j− 1)-th ACK includes a timeout period. Therefore, we need to distinguish a normal delayed

ACK from an ACK experiencing timeout. Now we consider that a server receives the j-th ACK.

If a server received the (j− 1)-th ACK as well, we assume that the j-th ACK is emitted due to the

timer expiration. Otherwise, we assume the j-th ACK is emitted on receiving the two successive

segments, i.e. the (j − 1)-th and the j-th segments. In our experiment, we take the RTTs only in

the latter case into account for accurate measurement.
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2.2 Delay distributions

We show histograms of measured RTT for each of access networks in Figs. 2, 3 and 4, respectively.

The class interval are set at 20 ms in Figs. 2 and 3 and 2 ms in Fig. 4, respectively. Experiments

were conducted at different time as shown in captions. We approximate distributions by a Gaussian

function f(x) by the least square approximation, where f(x) is given as follows.

f(x) = a exp(−(x− b)2

2c2
), (1)

where a, b, and c are fitting parameters. The approximated f(x) are shown in a red curve in each

figure. Table 2 summarizes parameters.

As shown in Fig. 2, RTT distribution of an LTE network has a peak near 220 ms. While it

slightly is leaning to the left, the distribution has a bell shape. Regarding a W-CDMA network,

we see hundreds of packets has small RTT forming the left tail of the distribution in Fig. 3. On the

contrary, there is no packets experiencing small delay in the case of a Wi-Fi network. A reason

that the left tail is truncated to 25 ms is that the round-trip propagation delay is about 25 ms

in the experiments. Although there are some skewness and truncation, red curves superimposed

on the histograms show a good match between the approximation and the actual measurement.

In conclusion, we consider that fluctuation of RTT of communication over a wireless network

has the Gaussian distribution and there is the possibility of successful application of the attractor

perturbation model.

a b c

LTE
Fig. 2(a) 3103.91 243.343 84.9791
Fig. 2(b) 3539.11 229.747 74.1703

W-CDMA
Fig. 3(a) 4152.94 399.22 65.1429
Fig. 3(b) 3596.07 398.618 75.3365

Wi-Fi
Fig. 4(a) 5200.37 37.0336 8.47742
Fig. 4(b) 5153.41 37.7743 8.47124

Table 2: Parameters of fitted Gaussian function
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Figure 2: Delay distribution of LTE access network
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Figure 3: Delay distribution of W-CDMA access network
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Figure 4: Delay distribution of Wi-Fi access network
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3 Fluctuations in biological systems

Since biological systems are always exposed to internal and external fluctuation or noise, most

cellular variables, such as the quantities of molecules, will vary not only from strain to strain, but

from cell to cell. In the work [11], they named the distribution of observed variables in biological

experiments as the Gaussian-like distribution. Under the assumption that biological variables

follow the Gaussian-like distribution, a mathematical expression, which is the base of the attractor

perturbation model, is derived. The attractor perturbation model represents a relationship between

fluctuation inherent in biological systems and their response against an external force or stress put

on them. Similarly to biological systems, fluctuation is quite common in information networks.

There is no static or stable network. Furthermore, the end-to-end delay of a session fluctuates

following a Gaussian distribution as verified in Sec. 2. Therefore, we expect that the attractor

perturbation model enables an efficient and effective network control mechanism, which does not

rely on any additional assumption or knowledge about an information network. In this section, we

first gives details of the attractor perturbation model in Sec. 3.1 and describe some examples of

existing application of the attractor perturbation model in Sec. 3.2.

3.1 Attractor perturbation model

The attractor perturbation model represents a relationship between fluctuation inherent in biolog-

ical systems and their response [11]. The following is a mathematical expression of the attractor

perturbation model.

〈w〉a+∆a − 〈w〉a = b∆aσ2
a (2)

where 〈w〉a and σ2
a are the average and variance of measurable quantity w, e.g. protein concentra-

tion, under the influence of the force a, e.g. genetic mutation, respectively. ∆a is a small change

in the force and b is a constant coefficient. The equation indicates that a shift in the average of a

measurable variable against a change in the force is proportional to the variance of the measurable

variable.

From Eq. (2), one can derive the following equation.

〈w〉a+∆a = 〈w〉a + b∆aσ2
a (3)
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Equation (3) gives an estimate of an influence of an increase in the force a to a + ∆a when the

current average is 〈w〉a and the variance is σ2
a. From a viewpoint of control of the force, we can

further extract the following equation.

∆a =
〈w〉a+∆a − 〈w〉a

bσ2
a

(4)

The equation gives the amount of change in the force, i.e. ∆a, or the amount of force, i.e. a+∆a,

to obtain the shifted average 〈w〉a+∆a from the current conditions 〈w〉a, a, and σ2
a. This brings a

basic idea of our proposal.

3.2 Applications of attractor perturbation model

The attractor perturbation model enables a control mechanism to achieve the desired outcome

while leaving an information network as a black box. Our research group has adopted the attractor

perturbation model to network control. For example in [15], the authors utilize inherent traffic

fluctuations to smoothly control the access rate at a gateway node injecting traffic into the core

network. For the benefits of the whole system, controlling the rate of the local traffic at a gateway

node should be performed not in a strict way, which would lead to timeouts and packet drops, but

rather in a smooth way. Based on the attractor perturbation model and only by using instantaneous

observation of local buffer occupancy and its variance, the local traffic arrival rate can be controlled

moderately, and as a result, the total flow of both local traffic and global traffic at a gateway can

be balanced.

In [16], they consider distribution of traffic over multiple paths established on a mobile ad

hoc network. Each path i has the injected traffic ai and the end-to-end delay wi. The attractor

perturbation model is used for a source node to derive the optimal distribution strategy to achieve

the minimum average end-to-end delay of all packets traversing different paths to a destination

node. From the simulation results, the authors confirm that there is a relationship between the

amount of average delay difference and the variance when changing the traffic rate of a session in

a mobile ad hoc network.
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4 Attractor perturbation in information networks

In this section, in addition to experimental investigation of fluctuation of information networks in

Sec. 2, we verify that the attractor perturbation model holds for a network system by mathematical

analysis and simulation experiments, where we can manage the experimental condition. We regard

the end-to-end delay as the variable w and the rate of injected traffic as the external force a, and

try to confirm the linear relationship between fluctuation and response, i.e. the variance of delay

and the shift in the average delay.

4.1 Analytical verification of attractor perturbation by M/D/1 queueing model

First in this section, we prove the attractor perturbation model in an M/D/1 queuing system assum-

ing Poisson arrival of fixed-length packets. In the following, λ is the arrival rate, µ is the service

rate, and ρ = λ/µ < 1 is the traffic intensity or the load.

In [17], the author analyzes the mean time spent in an M/G/1 system, where the service time

has a general distribution with mean E(X). The first and second moment of time spent in an

M/G/1 system are denoted by E(T ) and E(T 2).

E(T ) =
λ

2(1− ρ)
E(X2) + E(X) (5)

E(T 2) =
λ

3(1− ρ)
+

λ2

2(1− ρ)2
{E(X2)}2 + E(X2)

1− ρ
(6)

Since the service time in an M/D/1 is constant, by substituting E(X) = 1/µ and E(X2) =

1/µ2 into the above equations, we can obtain the mean d(λ) and variance σ2(λ) of time spent in

an M/D/1 system as functions of the arrival rate λ.

d(λ) =
2µ− λ

2µ(µ− λ)
(7)

σ2(λ) = E(T 2)− {E(T )}2

=
λ(4µ− λ)

12µ2(µ− λ)2
(8)
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By differentiating d(λ) with respect to λ we obtain

d′(λ) =
1

2(µ− λ)2
(9)

Assuming that ∆λ is small, we further obtain the following relationship.

d(λ+∆λ)− d(λ)

∆λ
= d′(λ) (10)

d(λ+∆λ)− d(λ) = d′(λ)∆λ

=
1

2(µ− λ)2
∆λ

=
6

ρ(4− ρ)
σ2(λ)∆λ (11)

= b(ρ)σ2(λ)∆λ (12)

Therefore, the shift in the mean time spent in an M/D/1 queueing system is given as a product

of the variance σ2(λ), the change ∆λ of arrival rate, and the coefficient b(ρ). The coefficient b(ρ)

is depicted in Fig. 5. Whereas b(ρ) exponentially decreases in the region of ρ < 0.5, it can be

represented by a constant in the region of ρ ≥ 0.5. We consider that rate adaptation is necessary

especially in a moderately or highly loaded network. Therefore, we can conclude that the attractor

perturbation model is applicable to rate control in such an information network.
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4.2 Simulation-based verification of linearity between fluctuation and response

In this section, we verify the attractor perturbation model in a packet-based network by simula-

tion experiments using ns-2 [18]. Figure 6 illustrates topology that we used for simulation. The

dumbbell network models a bottleneck link of a network of arbitrary topology, which affects the

end-to-end delay the most on a path. Two senders S1 and S2 are connected with two receivers D1

and D2, respectively, through routers E0 and E1. All links are full-duplex. The bandwidth and the

propagation delay of a link between routers E0 and E1 are 15 Mbps and 5ms, respectively. Those

of the other links are 1 Gbps and 1ms.

A drop-tail FIFO buffer with the capacity of 1000 packets is deployed on each router. A CBR

session called “session 1” is established between nodes S1 and D1. We observe the one-way

end-to-end delay on session 1 while changing the sending rate of UDP datagrams of a 1000-bytes

payload. As background traffic, another UDP session, where the inter-arrival time of datagrams

follows the exponential distribution and the payload size of a datagram is 1000 bytes, is set be-

tween nodes S2 and D2. It is called “session 2”.

We observe the average 〈w〉a and variance σ2
a of one-way end-to-end delay of session 1 at the

sending rate a Mbps. We prepared 10 traffic patterns of session 2 whose sending rate is 9 Mbps.

For each of the pattern, we conducted 44 simulation experiments by increasing the sending rate

a from 0.1 Mbps to 4.5 Mbps by 0.1 Mbps, i.e. ∆a = 0.1. Then, from averages and variance

obtained from 440 simulation experiments, we derive 430 pairs of σ2
a and 〈w〉a+0.1 − 〈w〉a, i.e.

σ2
1.0 and 〈w〉1.1 − 〈w〉1.0.

If the attractor perturbation model holds, there exists the linear relationship between ∆a · σ2
a

and 〈w〉a+∆a − 〈w〉a as Eq. (2) indicates. 430 pairs of 0.1σ2
a and 〈w〉a+0.1 − 〈w〉a are plotted on
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Figure 7: Attractor perturbation relationship of CBR traffic

Fig. 7 as crosses. The figure shows the positive correlation between 0.1σ2
a and 〈w〉a+0.1 − 〈w〉a

and we can confirm the attractor perturbation model in a packet-based network. When the sending

rate of CBR session is low, there is little chance for packets to experience buffering at routers.

As a result, the variance becomes small and the small increase of sending rate does not affect the

delay much. Therefore, when the variance is small, the shift in the average delay becomes small

as well. On the contrary, as the sending rate increases, the number of packets buffered at routers

begins to fluctuate. It leads to both of the larger delay and the variance. Consequently, we observe

the linear relationship between the variance and the shift in delay.

The proportional constant of the relationship between 0.1σ2
a and 〈w〉a+0.1−〈w〉a corresponds

to the coefficient b of Eq. (2). In Fig. 7, we show an approximate line y = β1x + β2 obtained by

the least squares approximation where x is 0.1σ2
a and y is 〈w〉a+0.1 − 〈w〉a. The slope, i.e. β1,

of the line can be regarded as the coefficient b, and its value is 407.63. The load ρ at the variance

σ2
a is calculated by λ/µ, where µ is the service rate of the bottleneck link and λ is the arrival

rate when the variance is σ2
a. Therefore, ρ depends on σ2

a and the x-axis can be mapped to ρ. In

Fig. 7, y = b(ρ)x in the range of 0.6 < ρ < 0.9 is depicted. To compare the analytical result of

an M/D/1 system discussed in the previous section, we convert b(ρ) to 750
ρ(4−ρ) by ∆λ = ∆a×106

8000
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in Eq. (11). Although it is not a linear function due to the variation of ρ, the slope b(ρ) is about

300 on average in the range of 0.6 < ρ < 0.9. As shown in Fig. 7, there is a difference in

slope between the analytical result and the simulation result. For the same variance, the shift

〈w〉a+0.1 − 〈w〉a is larger in the simulation than in the analysis. Given the variance σ2
a, the load

on a network in the case of the analysis, which can be derived from Eq. (8), is smaller than that

of the simulation, which can be derived as (a+ 9)/15 considering that the amount of background

traffic is 9 Mbps and the capacity of the bottleneck link is 15 Mbps. In general, when the sending

rate increases, the end-to-end delay becomes larger in a congested network than in an unloaded

network. Consequently, the growth rate or the slope is larger in the simulation than in the analysis.

In Sec. 6, we used three alternatives of coefficient b, that is, 407.63, 300, and b(ρ), to evaluate its

influence.
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5 Rate control mechanism with attractor perturbation model

In this section, we propose a novel rate control mechanism based on the attractor perturbation

model. We regard the end-to-end delay as the measurable variable w and the sending rate as the

force a. Then a sender derives the appropriate sending rate to accomplish the target delay under

the fluctuating environment.

5.1 Details of rate control mechanism with attractor perturbation model

We consider an application which lasts at least for several minutes to have room for measurement

and rate control. An application specifies the target one-way delay T s, the maximum sending rate

amax Mbps, and the minimum sending rate amin Mbps. RTP/UDP and RTCP/UDP are employed

and the sending rate is adjusted by adapting a transmission interval of RTP packets. Figure 8

illustrates how packets are exchanged between a sender and a receiver and the sending rate is

adjusted at a sender.

SR Interval I

ti-1 ti

ri-1 ri

Calculate the average and variance

of one-way delay of RTP packets

Sender

RTP packet

SR packet

RR packet

Receiver

Rate

adaptation

time

time

uiui-1

Rate

adaptation

RRi-1 SRi RRiSRi-1

Figure 8: Outline of proposal

At the beginning of a session, a sender sends RTP packets at the minimum rate amin Mbps.

In our proposal, a sender periodically tries to adjust the sending rate according to the average

and variance of end-to-end one-way delays of RTP packets. In order to calculate average and

variance, a receiver memorizes the one-way delay and timestamp of each received RTP packet.
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The average and variance of measured one-way delay of RTP packets is calculated by a receiver

based on the recorded timestamp of RTP packets which are sent after the last rate adaptation, as

will be explained below. At regular intervals of the SR interval I , a sender sends a sender report

(SR) packet to request a receiver to report the average and variance. When a receiver receives an

SR packet, it sends back a Receiver Report(RR) packet which contains the average and variance

of one-way delay in its extended header. Then, on receiving a RR packet, a sender calculates the

next sending rate based on the informed average and variance.

Now assume that a sender sends the i-th SR packet at ti s and it is received by a receiver at ri

s. We further assume that the sender received the RR packet corresponding to the i-th SR packet

from the receiver at ui s. At that time, the sender derives and adopts the new sending rate, which is

denoted as a(i) Mbps. For the sender to derive the appropriate sending rate a(i), on receiving the

i-th SR packet, the receiver first calculates the average di−1 and variance v2i−1 from the memorized

one-way delay of RTP packets which is sent at a(i − 1) Mbps. So that a receiver can distinguish

RTP packets sent at a(i − 1) Mbps, the i-th SR packet carries the information about the time of

the last rate adaptation, e.g., ui−1 s. Then, a receiver consider that RTP packets having timestamp

after ui−1 were sent at the rate a(i − 1) Mbps. However, there is possibility that an SR or a RR

packet is lost in a network as shown in Fig. 9. In this case, time of the last rate adaptation is ui−2.

Although it is possible to derive the average and variance of delays from RTP packets having

timestamp from ui−2 to ti, it means that the observation interval would change from time to time.

To have consistent statistics among control intervals, we consider another mechanism. A sender

places not ui−1 s but ti−1 s in a header of the i-th SR packet. From ti−1, a receiver estimates

a hypothetical ui−1, an instant when a sender successfully receiving a RR packet changes the

sending rate. Since it is not possible for a receiver to know the one-way delay from itself to a

sender, we assume that one-way delay is identical independently of the direction.

ri − ti ≈ ui − ri

The instant ui−1 s of the last rate adaptation can be approximated as follows.

ui−1 = ti−1 + (ri−1 − ti−1) + (ui−1 − ri−1)

≈ ti−1 + 2(ri−1 − ti−1) (13)

25



In the case of loss of the (i− 1)-th RR packet, Eq. (13) is eligible. However, when the (i− 1)-th

SR packet is lost, a receiver does not know ri−1. Therefore, we make another assumption that the

one-way delay of the (i− 1)-th SR packet is identical to that of the i-th SR packet.

ri−1 − ti−1 ≈ ri − ti

Based on the assumption a receiver can estimate the instant ui−1 s of the last rate adaptation as

follows.

ui−1 = ti−1 + (ri−1 − ti−1) + (ui−1 − ri−1)

≈ ti−1 + 2(ri−1 − ti−1)

≈ ti−1 + 2(ri − ti) (14)

Finally, a receiver calculates the average di−1 and variance v2i−1 of the one-way delays of RTP

packets which are received before ri s and have timestamp after ti−1 + 2(ri − ti) s. Since pack-

ets whose timestamp is before ti−1 + 2(ri − ti) s are considered to be sent before the last rate

adaptation, they are excluded from calculation. Then, the receiver sends a RR packet carrying the

calculated average and variance in an extended header.

RRiSRi

SRi-1

ti-1 ti

ri-2 ri

Calculate the average and variance of

one-way delay of RTP packets in this interval

Sender

RTP packet

SR packet

RR packet

Receiver

The last rate

adaptation

Update

sending rate

time

time

ui

RRi-2SRi-2

ui-2ti-2

No rate

adaptation

Figure 9: Loss of SR packet

On receiving a RR packet, a sender first calculates the amount ∆a Mbps of rate change by

substituting the received statistics, the target delay T , and the coefficient b to the following equa-
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tion.

∆a =
T − di−1

bv2i−1

(15)

Next, the sender updates the sending rate to a(i) Mbps, which is derived from the following

equation.

a(i) = min{amax,max(amin, acur +∆a)}, (16)

where acur is the current sending rate.

If a sender does not receive any of the (i−n)−th RR packets (n ∈ 1, 2, 3) by ti+1+I s, i.e. an

instant to send the i-th SR packet, it considers that a network is considerably congested. Then, the

sender reduces the sending rate by half and quits sending the i-th SR packet at ti + 1 + I s. After

additional I s, the sender sends the i-th SR packet carrying ti − 1 + I s in an extended header to

a receiver. On receiving the SR packet, the receiver calculates the average and variance from one-

way delay of RTP packets were received before ri s and have timestamp after ti−1+ I+2(ri− ti)

s. After that the receiver sends a RR packet to the sender.
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5.2 Discussion of our proposal

For the rate control with the attractor perturbation model, it is also possible to use a round-trip end-

to-end delay instead of a one-way delay as the measured variable. However, the rate adaptation

based on the round trip time could lead to a problem as discussed in the following.

So that a sender can obtain the information about RTT, there must be two-way communication.

Since in our proposal, a sender and a receiver exchange SR and RR packets, it is possible for a

sender to estimate RTT by observing time from emission of an SR packet and to reception of a

corresponding RR packet. However, the frequency is not high enough to get the sufficient number

of samples for reasonable estimation. For example, in RFC 1889 which specifies RTP and RTCP,

it is suggested that RTCP should occupy 5% of the session bandwidth and an interval between

RTCP packets must be larger than 5 s. It is too long to catch up with delay variation caused by

dynamic traffic changes. Specifically, coarse granularity of sampling spoils the accuracy of vari-

ance. It might be possible to shorten the interval to a much smaller value to increase the sampling

frequency, but it puts a strain on a network and even disturbs primary data communication. On

the contrary, our proposal adopts the one-way delay which can be obtained from RTP packets at a

receiver. The sampling frequency is 13 packets/s at the sending rate of 0.1 Mbps and 2048 pack-

ets/s at 15 Mbps, respectively. Furthermore, such frequent sampling does not involve additional

overhead except for exchanges of RTCP packets to retrieve statistics every several seconds.
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6 Evaluation scenarios

We verify that our proposal can achieve and maintain the target delay even when background

traffic changes through simulation experiments. In Sec. 6.1, we describe the simulation settings

including a method used for comparison. Then, we explain evaluation criteria used in evaluation

in Sec. 6.2.

6.1 Simulation settings

We first explain a pseudo rate control mechanism with a delay-based AIMD algorithm used as a

benchmark. Next we describe a simulation model and measures.

6.1.1 Delay-based AIMD rate control mechanism

The AIMD (Additive Increase Multiplicative Decrease) is a well-known and common algorithm

employed by many rate control protocols [19, 20]. For example, the most conventional transmis-

sion protocol, TCP Reno, decreases the sending rate by having the congestion window size when

congestion is detected, while linearly increases the sending rate in the congestion avoidance phase.

Whereas there are many variants of rate adaptation algorithms and it is pointed out that a simple

AIMD suffers from several issues, it is yet simple and effective. Therefore, as a benchmark used

for comparison purposes, we consider a pseudo rate control mechanism with a delay-based AIMD

algorithm.

In the delay-based AIMD rate control, a sender obtains the average di−1 of one-way-delay of

RTP packets by exchanging RTCP packets at regular control intervals. Then, it derives the new

sending rate anew Mbps by using the following equation.

anew =

 a+A (di−1 < T )

B × a (di−1 ≥ T ),
(17)

where T is the target delay, A (A > 0) is the additive increase factor, and B (0 < B < 1) is the

multiplicative decrease factor. Here, both A and B are constant values.
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6.1.2 Network topology and traffic

We used the dumbbell topology depicted in Fig. 6 and set a UDP session same as Sec. 4.2. At the

beginning of a simulation run, session 2 emits UDP packets at the sending rate of 9 Mbps. Then,

it increases the sendig rate to 10.5 Mbps at 200 s and keeps the rate until the end of the simulation

run, i.e. 400 s. The increase in the load is from 0.6 to 0.7. We employ our proposal on session

1 established between nodes S1 and D1. The size of a RTP packet including RTP, UDP, and IP

headers is set at 1000 bytes. The sizes of an SR packet and a RR packet including an IP header

are 64 and 72 bytes, respectively. The maximum sending rate amax and the minimum sending

rate amin of our proposal are 15.0 Mbps and 0.1 Mbps, respectively. The interval I of SR packet

transmission is 10 s. The target delay is set at 8.2 ms, which is the one-way delay observed in

the simulation experiments of the case of ρ = 0.8 in Sec. 4.2. Parameters used in evaluations are

summarized in Table 3.

In order to evaluate the influence of the coefficient b, we conduct simulation experiments with

b=300, 407.63, and function b(ρ). b(ρ) enables dynamic adaptation of b with respect to the load

condition. In the case of b(ρ), we assume that a sender always knows the current load ρ of a

network to derive the appropriate rate change ∆a, whereas it is not possible to have the accurate

and up-to-date information about the load condition of a network in an actual situation. More

specifically, at ti s, when a sender sends the i-th SR packet, the average load ρi on the bottleneck

link from ti−1 s to ti s is given and substituted into b(ρi).

For comparison purposes, we additionally conduct simulation experiments for the cases of

CBR traffic in Sec. 7.1. In those cases, session 1 generates CBR traffic at 3 Mbps or 0.8 Mbps

using RTP and RTCP. Note that a pair of SR and RR packets is sent every 10 s for fair comparisons,

but they are not used for rate control. We denote a case of CBR traffic with sending rate of 3 Mbps

as “CBR 3 Mbps” and that of 0.8 Mbps as “CBR 0.8 Mbps”.

Furthermore, we compare our proposal with a delay-based AIMD rate control mechanism

explained in Sec. 7.2. The value of B is fixed at 1/2, but the value of A is set at 1 Mbps, 0.8

Mbps, 0.4 Mbps, 0.2 Mbps, or 0.1 Mbps. We denote a case of delay-based AMD rate control with

the value of A as “AIMD A” like “AIMD 0.1 Mbps”. Since the delay-based AIMD rate control

mechanism has a long transient state, we consider the behavior of the delay-based AIMD rate

control at a steady state.
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Table 3: Parameter settings
parameter value
amin 0.1 [Mbps]
amax 15 [Mbps]
Interval I of SR packets 10 [s]
T 8.2 [ms]
b 300, 407.63

6.2 Evaluation criteria

To evaluate how our proposal achieves and maintains the target delay, we introduce the mean

square error, the coefficient of variation, and the delay jitter defined in the following. We consider

the first control interval after the initial transient state as the 0-th interval.

6.2.1 Mean square error

We evaluate the closeness to the target delay by the mean square error. First, we calculate the

average delay Ti of successfully received RTP packets that are sent in the i-th control interval

from ti s to ti+1 s. Note that Ti is not equal to di, which is the average delay defined in Sec. 5.

Then, we obtain the mean square error M as follows.

M =
1

n+ 1

n∑
i=0

(Ti − T )2 (18)

Here T is the target delay, n is the number of SR packets sent in the whole simulation time. There-

fore, Tn is the average delay of RTP packets that are sent from tn s to the end of the simulation. A

small M means that the average delay is close to the target delay in most of cases.

6.2.2 Coefficient of variation

We evaluate the stability of the average delay by the coefficient of variation. We calculate the

mean T̄ and the standard deviation σ2 of the average delay in the simulation as below.

T̄ =
1

j + 1

n∑
i=0

Ti (19)
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σ2 =

√√√√ 1

n+ 1

n∑
i=0

(Ti − T̄ )2 (20)

Then we obtain the coefficient C of variation as follows.

C =
σ2

T̄
(21)

A small C means that the average delay is kept constant and stable.

6.2.3 Delay jitter

We define the delay jitter J as follows.

J = max
0≤i≤n

{|Ti − T |} (22)

The delay jitter is the maximum difference between the target delay T and the average delay Ti.
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7 Evaluation results

7.1 Basic evaluation

First we show an example of temporal variations in Fig. 10 and 11. In Fig. 10, variations of

average delay Ti against the simulation time are depicted. In Fig. 11, variations of averaged send-

ing rate per control interval are depicted. All results in the figures are obtained from simulation

experiments with the identical background traffic pattern.

As shown in Fig. 10, CBR 3.0 Mbps results in the average delay close to the target delay at the

beginning, but the delay becomes larger after the increase of background traffic. On the contrary,

the average delay of CBR 0.8 Mbps is as low as the target delay from 200 s, whereas it is smaller

than the target delay in the first half on the simulation run. Regarding our proposal, independently

of the setting of coefficient b, the average end-to-end delay stays close to the target delay except

for the period right after the sudden load increase. In the case of b = 300 for example, a sender

node tries to decrease the sending rate on reception of a RR packet from a receiver node at 201

s. However, the decrease is only 0.33 Mbps at that time as shown in Fig. 11. It is because the

delay and variance informed by the RR packet are derived from RTP packets sent before the load

increase. At the next timing of rate control at 211 s, delay and variance have grown much to 9.07

ms and 3.23 ms2 respectively . Then, the amount of decrease derived at the sender node becomes

0.90 Mbps. As a result of drastic rate reduction, the obtained end-to-end delay approaches the

target delay again. The instantaneous increase of delay is basically unavoidable, but the duration

can be shorten by a shorter control interval, that is, frequent rate control. However, too short

control interval decreases the accuracy of variance derivation as a statistic and a sender node

cannot precisely capture the fluctuation of a network. We should emphasize here that setting of

constant value b does not affect the performance of our proposal very much. It suggests that even

when a network condition changes, the sender can keep using the same b without unacceptable

performance deterioration.

Figure 12 summarizes results of all simulation experiments conducted 30 times for each set-

tings. Fig. 12(a) and Fig. 12(b) show the relationship between the coefficient of variation and the

mean square error, and that between the coefficient of variation and the delay jitter, respectively. In

both figures, the closer the point is to the origin, the more stable the end-to-end delay is around the

target delay. Figure 12 shows that points of our proposal overlap with each other independently
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setting of the coefficient b and they are in the lower left region. MSE of our proposal is smaller

than that of CBR 0.8 Mbps and much smaller than that of CBR 3.0 Mbps. On the other hand, our

proposal results in larger coefficient of variation in some cases and larger delay jitter in all cases

than CBR 0.8 Mbps. A reason is that the average delay does not change much before and after the

load increase due to the low sending rate with CBR 0.8 Mbps. In contrast, our proposal suffers

from the instantaneous increase of delay after the load increase. It makes the delay jitter larger

than that of CBR 0.8 Mbps and affects the coefficient of variation as well. From a practical view

point, the delay jitter of as much as 1.2 ms on a session of the propagation delay of 15 ms is small

enough.

In summary, we can conclude that our proposal can accomplish the stable end-to-end delay

facing to the sudden load increase except for the instantaneous growth of delay right after the

increase. We further showed that the setting of coefficient b did not influence rate control very

much, which supports our motivation not to rely on the detailed knowledge about a network and its

dynamics. That is, our proposal is insensitive to parameter setting as can be seen in the flexibility

and robustness of biological systems.

7.2 Comparison with delay-based AIMD rate control

In this section, we show summarized results of 100 simulation experiments to compare our pro-

posal with b = 300 and the delay-based AIMD control mechanisms. The simulation settings are

the same as in Sec. 7.1.

Figure 13 illustrates box-and-whisker plots showing statistical properties of evaluation criteria.

Cross marks represent the average of evaluation criteria. The bottom and top of a box are the 25th

and 75th percentile, respectively. The band near the middle of a box is the 50th percentile (the

median). The ends of the whiskers represent the minimum and maximum values, respectively.

Regarding the delay-based AIMD rate control, as the additive increase factor A becomes large,

evaluation criteria have wider distribution and the average becomes larger. That is, the perfor-

mance deteriorates. When A is large, a sender increases the sending rate by the large amount. It is

likely that the increase is too much for the load condition and the delay exceeds the target. Then

the sender drastically decreases the sending rate by half at the next control timing. Consequently,

the sending rate considerably fluctuates and it results in the unstable delay. On the contrary, the

delay-based AIMD rate control with small A regulates the sending rate more moderately. Al-
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Figure 14: Comparison of average sending rate of evaluation criteria

though it takes time to accomplish the stable sending rate even under the static load condition,

the observed delay has small variation. From Fig. 13, AIMD 0.4 Mbps, 0.2 Mpbs, and 0.1 Mbps

outperforms our proposal. However, the small variation is achieved at the sacrifice of the sending

rate, i.e. throughput, as will be shown next.

In addition to criteria defined in Sec. 6.2, we evaluate the average sending rate before and

after the background traffic increase and results are summarized in Fig. 14. Based on the result in

Sec. 7.1, we learned that the delay of CBR 3 Mbps is close to the target delay before background

traffic increases. It means that a sender can transmit RTP packets at approximately 3 Mbps during

that period while fulfilling the delay constraint. From Fig. 14, it is apparent that the average

sending rate of our proposal is mostly 3 Mbps before the background traffic increase. On the

contrary, independently of a value of A the delay-based AIMD has the smaller sending rate and

smaller A results in smaller sending rate. The sending rate of our proposal is higher than that of

the delay-based AIMD control by 10.29 % to 25.00 %. The sending rate of our proposal after

the increase of background traffic is as high as that of AIMD 1 Mbps and 0.8 Mbps, but those

AIMD control have larger fluctuations in all evaluation criteria as shown in Fig. 13. In conclusion,

despite for variations caused by instantaneous delay increase right after the increase of background

traffic, our proposal has better performance than the delay-based AIMD control. Our proposal
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can achieve and maintain the target delay, keeping the sufficiently high sending rate, under the

influence of traffic changes.
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8 Conclusion and future work

In this paper, as an example of application of the attractor perturbation model, we propose a novel

rate control mechanism to achieve and maintain the target delay in the dynamically changing en-

vironment. First we confirmed that the delay distribution of communication over wireless access

networks was similar to the Gaussian from the experimental measurement. Next we proved that

the attractor perturbation model held in a packet-based network as well as a general M/D/1 queu-

ing system. Then, based on the confirmation of the attractor perturbation model in information

networks, we proposed a rate control mechanism. Through simulation experiments, we confirmed

that our proposal could achieve and maintain the target delay and outperformed to the delay-based

AIMD rate control and CBR. More interestingly, we found the setting of coefficient b did not

influence the performance of proposal very much.

However, it is an overstatement to say that our proposal does not need any parameter tuning. In

this paper, our proposal used the coefficient b which had been derived by analysis and simulation

in Sec. 4. The coefficient b would be influenced by characteristics of a network including the

size, topology, and competing sessions. There are several strategies to refine b to fit to the actual

network condition. One is to conduct preliminary experiments as we did in this thesis. Before or

at the beginning of data transfer, a sender observes the end-to-end delay by sending probe packets

or using the first bunch of data packets while changing the sending rate for a certain period. Next

based on collected samples, the sender derives the coefficient b, which is a proportional constant of

the relationship between the shift in average delay and the product of the variance and the amount

of rate change. Furthermore, it also is possible to adapt b during a session, by keeping evaluating

the relationship and updating the proportional constant. Such dynamic derivation and adaptation

of the coefficient b remain as future work. We also plan to conduct practical experiments on a

real network. Considering that a considerable number of sessions and they are multiplexed, their

aggregated behavior observed by a session would be averaged and show the Gaussian fluctuation.

It favors the attractor perturbation model and our proposal is expected to be effective.
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