Website Protection Schemes Based on

Behavior Analysis of Malware Attackers

Takeshi Yagi

February 2013

List of publication

Journal papers

[1] T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Design of Provider-Provisioned 0 Website
Protection Scheme against Malware Distribution,” IEICE Transactions on Communi-
cations, vol. E93-B, no. 5, pp. 1122-1130, May 2010.

[2] T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Intelligent High-Interaction Web Hon-
eypots Based on URL Counversion Scheme,” IEICE Transactions on Communications,
vol. E94-B, no. 5, pp. 1339-1347, May 2011.

Refereed Conference papers

[1] T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Enhanced Attack Collection Scheme on
High-Interaction Web Honeypots,” in Proceedings of IEEE Symposium on Computers
and Communications (ISCC) 2010, June 2010.

[2] T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Investigation and Analysis of Malware
on Websites,” in Proceedings of IEEE Symposium on Web Systems Evolution (WSE)
2010, September 2010.

[3] T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Life-cycle Monitoring Scheme of Malware
Download Sites for Websites,” in Proceedings of IEEE International Conference on
Service-Oriented Computing and Applications (SOCA) 2010, December 2010.

Non-Refereed Conference papers

[1]

[4]

[5]

T. Yagi, T. Kondoh, T. Kuwahara, J. Murayama, H. Ohsaki and M. Imase, “Archi-
tecture Design for SPX: Secure networking Platform for group-oriented eXchange,” in

Proceedings of Asia-Pacific Symposium on Information and Telecommunication Tech-

nologies (APSITT) 2008, April 2008.

T. Yagi, “Terabit-OBS Super-Net Experiments (invited),” in Proceedings of OBS Work-
shop in COIN/NGNCON 2006, July 2006.

T. Yagi, Y. Naruse, J. Murayama and K. Matsuda, “A Distributed Traffic Monitoring
Scheme for Large-Scale IP over Optical Network,” in Proceedings of World Telecommu-
nications Congress (WTC) 2006, May 2006.

T. Yagi, Y. Naruse, J. Murayama and K. Matsuda, “Terabit-OBS Super-Net Experi-
ments,” in Proceedings of International Workshop on the Future of Optical Networking
(FON) in OFC/NFOEC 2006, March 2006.

T. Yagi, K. Matsui, Y. Naruse, J. Murayama and K. Matsuda, “A Cooperative Op-
eration Technology for Cut-through IP and Optical Paths for the Electrical/Optical
Hybrid Network,” in Proceedings of World Telecommunications Congress (WTC) 2004,
September 2004.

L.

Preface

This thesis proposes high-accuracy attack detection schemes against diverse malware at-
tacks on websites. To prevent websites from being attached by malware, schemes to extract
characteristics from known attacks were researched. This paper discusses schemes that not
only detect malware files on servers based on the characteristics of anti-virus software, but
also detect malware attacks on networks based on the characteristics of intrusion detection
systems, intrusion prevention systems, and web application firewalls. However, the con-
ventional schemes cannot detect malware attacks with high probability because malware
attacks have been diversifying rapidly.

Generally, attackers force victims to download malware by using vulnerabilities in web
applications. Recently, detection of diverse attacks is necessary because the number of
web application vulnerabilities has been increasing. Additionally, to detect many kinds
of attacks, it is necessary to collect as many characteristics of known attacks as possible
because the information is used to determine whether each access to and from a website is
an attack. Furthermore, to achieve high-accuracy attack detection, cases in which a normal
access is detected as an attack, called a “false positive,” and in which an actual attack is
not detected, called a “false negative,” should be restricted.

Conventional schemes, deploy the characteristics of malware files and the characteristics
of HTTP request messages from attackers as characteristics of known attacks. However, the
variations of malware and variations of HTTP request messages for attacks are increasing

rapidly, making attack detection schemes all the more difficult.

Additionally, when conventional schemes extract characteristics from known attacks,

.1l

they can only extract the characteristics from attacks that clearly led to illegal control of
the website. The conventional schemes cannot extract effective information from attacks
that did not cause illegal control but only attempted illegal control. As a result, conventional
schemes cannot extract a lot of information from attacks.

Finally, conventional schemes monitor and filter attacks without considering the at-
tacker’s behavior. To avoid being detected, attackers try to sense the monitoring and
filtering and change the characteristics of their attacks as they deem necessary. As a result,
attack detection ratios by the conventional schemes are decreasing.

To achieve detection of diverse attacks, the proposed schemes collect destination URLs
that attacked websites are forced to access, and they filter accesses from websites to the
URLs as blacklisted URLs. To extract a lot of information from attacks that do not lead to
illegal control, the proposed schemes convert the destination URLs of the attacks so as to
allow the attacks to succeed under our management. To achieve high accuracy, the proposed

schemes monitor and manage blacklisted URLs according to the attackers’ behaviors.

Llv .

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor, Professor
Masayuki Murata of the Graduate School of Information Science and Technology, Osaka
University, for his patient encouragement, meaningful and comprehensive advice, and valu-
able discussion. He directed me to the appropriate perspective in this domain and inspired
me to aim at higher goals. 1 was able to complete my thesis owing to his kind guidance,
timely encouragement and valuable advices.

I am grateful to the member of my thesis committee, Professor Koso Murakami, Profes-
sor Teruo Higashino of the Graduate School of Information Science and Technology, Osaka,
University, and to Professor Hirotaka Nakano of the Cyber Media Center, Osaka University,
for reviewing my dissertation and providing many valuable comments.

I would especially like to express my appreciation to Vice Presidents Makoto Imase of
the National Institute of Information and Communications Technology in Japan (NICT),
and to Associate Professor Hiroyuki Ohsaki of the Graduate School of Information Science
and Technology, Osaka University, for their critical and beneficial comments and unerring
guidance that greatly inspired me. They gave me an opportunity to study for a doctorate
at Osaka University. My study would not have been possible without their continuous care
and support. I am deep grateful to them.

I am grateful to Assistant Professor Sho Tsugawa of Graduate School of Economics,
Osaka University, and to Dr. Junichi Murayama, NTT Corporation, for their valuable
discussion, advice, support and encouragement during the course of this study.

The website protection scheme was studied at NTT Corporation. Mr. Takeo Hariu,

Mr. Naoto Tanimoto, Dr. Makoto Iwamura, Mr. Yuhei Kawakoya, Mr. Kazufumi Aoki,
Mr. Mitsuaki Akiyama and Mr. Eitaro Shioji supported my studies. I am grateful to them
and my colleagues at NT'T Corporation.

I am thankful to all the members of the NTT Secure Platform Laboratories, NTT
Corporation, for their continuous support and friendship.

Finally, I deeply thank my parents, my wife, Yuka, and my son, Haruki, for their
understanding and hearty support and encouragement in my daily life. This work would

not have been achieved without them.

.Vl

Contents

List of publication i
Preface iii
Acknowledgments v
1 Introduction 1
2 Related Works 7
2.1 Attack Prevention 8
2.2 Homeypot e e e e e e e 12

3 Requirements and Design Issues for Website Protection Schemes 17
3.1 Requirements 17
3.1.1 Detection of Diverse Attack 17

3.1.2 Ability of Information Extraction 18

3.1.3 Accuracy of Attack Detection 18

3.2 Design Issue for Diversity and Accuracy 19
3.3 Design Issue for Information Extraction 21
3.4 Approach toward These Issues 22

4 Detection of Diverse Attacks by Provider-Provisioned Website Protection

Based on Network-Based Blacklisting Scheme 23

L vil .

. viil .

4.1 Network-Based Blacklisting Scheme 23
4.1.1 Protection using URLs of Malware Download Sites 24
4.1.2 Automated Analysis of Web Honeypots 24

4.2 Evaluation of Proposed and Conventional Website Protection Scheme . .. 28
4.2.1 Prototype Systems and Experiment Environments 28
4.2.2 Evaluation of Protection Scheme 30
4.2.3 Evaluation of Automatic Analysis System 32
4.24 Discussion u e e 34

4.3 Evaluation of Proposed Scheme and Anti-Virus Software 35
4.3.1 Evaluation of Detection by Anti-Virus Software 37
4.3.2 Results of Evaluation of Anti-Virus Software 39
4.3.3 Evaluation of Detection using Blacklist 41
4.3.4 Results of the Evaluation of Blacklist 42

4.4 DISCussion i o e e e e e e e 43
4.4.1 Malware Characteristics and Detection Ratios 43
4.4.2 Logs of Web Honeypots and Detection Ratios 46

4.5 Counclusions L 49

5 Enhanced Information Extraction by Intelligent Web Honeypot Based on

URL Conversion Scheme 51

5.1 Intelligent Web Honeypot o1
5.1.1 Path Analyzer 52
51.2 Cache Table. 53
5.1.3 Conversion Algorithm, . 54

5.2 Evaluation of Proposed Honeypot and Conventional Web Honeypot 55
5.2.1 Experimental Environment 56
5.2.2 Results of Experimento o7
9.23 Discussiono 60
524 Conclusion e 63

6 High-Accuracy Attack Detection by Blacklist Update Scheme Based on

Behavior Analysis of Attackers 65
6.1 Issues with Network-Based Blacklisting Scheme 65
6.2 Blacklist Monitoring Scheme 0 . 67
6.2.1 Design Issue of Conventional Monitoring Scheme 67
6.2.2 Proposed Monitoring Scheme 69
6.2.3 Investigation and Analysis 72
6.2.4 First Investigation 0oL 72
6.2.5 Second Investigation o oL 73

6.2.6 Discussion 75
6.2.7 Conclusion 75

6.3 Blacklist Update Scheme Based on Behavior Analysis of Attackers 76
6.3.1 Analysis Model 7
6.3.2 Derivation of State Transition Rate 79
6.3.3 Numerical Examples and Derivation of Evaluation Index 82
6.3.4 Parameter Estimation Based on Surveys of Actual Malware Attacks 83

6.4 Results and Discussiono o 85
6.4.1 Results 85
6.4.2 Discussion e e e e 90

6.5 Conclusion e 90
7 Conclusions 93
Bibliography 99

Lix .

List of Figures

1.1 Attack procedure

2.1 Attack prevention and collectiono oL
2.2 Server-based and network-based defenseso
2.3 Design issue of anti-virus software L.

2.4 Honeypot map o e

3.1 Patternsof exploitcodes oL

3.2 Design issue of web honeypots. oo

4.1 Proposed scheme
4.2 Architecture designo L
4.3 First experiment environment
4.4 Second experiment environment oL
4.5 Accumulated numbers of exploit codes and MDSs
4.6 Number of sites from which malware can be downloaded
4.7 Investigation environments Lo o L
4.8 Evaluations of anti-virus software oL oL
4.9 Test of anti-virus software Lo L Lo
4.10 Number of anti-virus software programs that can detect each malware file .
4.11 Detection method by using traffic patterns

4.12 First type of malware L L

11
13

19
21

25
26
29
29
32
33
36
38
39
40
42
44

Lx1 .

4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
9.3
0.4
5.5
5.6

9.7
9.8
9.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Lxil .

Second type of malware L L Lo 44

Third type of malware 45
Fourth type of malware 45
Sequential attack Lo 46
Detection method in service provider environment 47
Detection method by using logdata 48
Path analyzer 52
Cache table 93
Conversion algorithm 0 oo o4
Experimental environment L0000 56
Detections of each incorrect path that was converted 58

Detections of each incorrect path that was not converted but set for using

applications on web honeypots L. 58
Detections of each incorrect path that did not have to be converted 99
Relationship between attackers and use time of same path 99
Detection interval of same path0 60
Sequential attacks L Lo 61
Actual sequential attackso oL 62
Active period of malware download site 66

Monitoring malware download site using conventional file monitoring schemes 68

Proposed scheme 71
Life cycles of malware download sites 73
Analysismodel 7
Example of state transitionso 0oL 81
Placement of periodic attacks 84
PPV versus v for various a (for N =3) 86
NPV versus v for various a (for N=3) 86
TPR, TNR, FPR and FNR versus y fora=1 (for N=3) 87

6.12 O versus vy for various o (for N=3), 88
6.13 PPV versus v for various a (for N=7), 89
6.14 O, versus y for various a (for N=7) L. 89

. xiii .

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1

6.1
6.2
6.3

6.4
6.5

Specifications of physical servers. oo 30
Results of WAF. 30
Number of exploit codes and MDSs. L. 31
Probability of sharing MDS. oL 31
Attacks data. oL 32
Results of second experiment. L oL 34
Specifications of physical servers.o o000 36
Attack information collected by web honeypots 37
Detection ratios of anti-virus software 39
Reappearance ratios 42
Kinds of malware files o 43
Experimental results oo o7
Generated condition 66
Results of first investigation oL 0oL 72
Relationships between life cycles of malware download sites and characteris-

tics of malware programs L 74
States of bots in Fig. 6.6 oo 81
Results of surveying actual active period 84

. XV .

Chapter 1

Introduction

The expansion of network technologies means that many kinds of important information
such as personal information and foundational information are now being transmitted over
the Internet. Consequently, the number of cyber-attacks, in which hackers try to obtain
information illegally or interfere with the provision of normal services, has been increas-
ing rapidly. Various approaches have been investigated as countermeasures against cyber-
attacks. These approaches include constructing virtual private networks and community
networks [1, 2, 3, 4, 5, 6, 7], and introducing measures to prevent attacks on the Internet.
This thesis examines the latter techniques since the majority of network users connect to

the Internet.

There are two types of attacks on the Internet. One type targets leakages of data by
humans or organizations, and the other targets vulnerabilities of networks and software.
Attacks in the former category include phishing [8, 9], which is an attack that attempts
to acquire personal information of Internet users by using fake websites constructed by
attackers, and spam mail [10, 11, 12], which is involves sending malicious e-mails to induce
the users receiving it to connect to illegal websites and advertising e-mails. Many methods
to solve these problems have been proposed, but these problems can best be solved by
improving the computer literacy of users. In contrast, the attacks in the latter group

cannot be solved only by improving user literacy because these attacks target vulnerabilities

_1-

Chapter 1. Introduction

of networks and software that are not generated by users. This thesis examines the latter
attacks because technology is necessary to prevent such attacks.

There are two kinds of attacks that target vulnerabilities of networks and software. One
tries to gain illegal control and illegal usage of network routing, bandwidth, and sessions.
The other tries to gain illegal control and illegal usage of computer resources. In the former
attacks, for example, on layer 2 of the open systems interconnection (OSI) reference model,
ARP spoofing [13, 14, 15], which is an attempt to intercept user communication by register-
ing an attacker’s MAC address to an ARP cache table instead of the user’'s MAC address,
is known to occur. On layer 3, BGP man-in-the-middle attacks [16, 17, 18], which try to
control routing information by prepending a specific autonomous system (AS) number to
an IP address prefix that is more limited than a legal IP address prefix, are known to occur.
On layer 4, DSN cache poisoning [19, 20, 21], which tries to register an illegal IP address to
a domain name on a DNS cache server by generating and sending fake packets, which are
normally sent by a DNS root server, has been confirmed. In addition, on each layer, denial
of service (DOS) attacks [22, 23, 24], which are attempts to shout down services by forcing
victims to receive a lot of traffic or to process a lot of data, are a serious threat. Because
these attacks target network infrastructures, network carriers and Internet service providers
implement countermeasures that require them to spend financial and human resources on
operating and continually monitoring them, and also on developing support systems for
the countermeasures. Moreover, recently, the amount of software and its vulnerabilities has
been increasing rapidly, so managing these vulnerabilities is becoming more difficult. This
thesis discusses countermeasures for attacks due to software vulnerabilities.

Attacks that occur due to software vulnerabilities mainly targeted operating systems
(OSs) and middleware. However, recently, applications have become a primary target
because the number of applications and their vulnerabilities is increasing [25]. Therefore,
this thesis also focuses on attacks that occur due to application vulnerabilities. In addition,
the targets of attacks due to application vulnerabilities can be classified into user terminals
and servers. In many cases, servers accumulate much more important information than

each user terminal. Thus, this thesis considers server protection schemes against attacks

9

Chapter 1. Introduction

that are caused by application vulnerabilities.

Many Internet users now regularly send and receive information via web services such
as homepages, blogs, news sites, and social networks that are provided by websites. In
addition, many users construct their own websites and operate them by using the envi-
ronment prepared by service providers such as hosting service providers and cloud service
providers [26]. Website operators can construct websites easily without needing a high level
of software skill because various web applications that are necessary to construct websites
are now provided not only as paid software but also open source software (OSS). However,
many web applications contain vulnerabilities that are being exploited for mounting attacks
on websites [27]. These attacks come in various forms, such as structured query language
(SQL) injection [28] that aims to tamper with content and cross-site scripting (XSS) [29]
that mixes malicious script with valid script. Especially, a malicious software (malware)
attack can be called the root of attacks [30] because a website that has been attacked would
be freely manipulated by the attacker and used as a source terminal of new attacks [31]. In
this type of attack, a web application programmed to obtain and execute a designated file
is maliciously used to have that website download and execute malware. Security for an
individual website has been traditionally managed by the website’s operator, but in an en-
vironment in which websites take on the role of a service platform, as in a cloud computing
environment, a service provider must manage the security of a great number of websites.

Attacks on websites can be divided into two main types: targeted attacks and indis-
criminate attacks. The former attack a specific website after the attacker has investigated
the most suitable type of attack for that site, and the latter attack many websites using
a technique having a high probability of success against multiple websites. Targeted at-
tacks are likely to be mounted against websites of large enterprises where highly valuable
information is stored. Techniques for defending against them tend to require a financial in-
vestment, such as developing secure web applications [32] and deploying website managers.
Indiscriminate attacks are usually mounted to store a resource (steppingstone) that can
be used as a source terminal of attacks on other websites or general users. As such, they

target small and medium-sized business websites in the cloud. In this thesis, we focus on

-3 -

Chapter 1. Introduction

http://anomaly.net
S——

http://mww.ex.com

Attacker Search Target
ﬂg engine website

Malware
download

1) Prepare malware
download site.

2) Search for targets.

3) Send HTTP request
message.

4) Target website
downloads malware.

m.txt
5) Receive HTTP response
message.

3) Example
http://ex.com/}/ulne/Iogin.php?di[|=Lhttp://anomaIy. net/m.txt

l Attack code 17 URL of malware L
download site

Figure 1.1: Attack procedure

indiscriminate attacks, which service providers are required to defend against.

Command injection [33] and remote file inclusion (RFI) [34] are effective techniques for

infecting websites with malware. An RFT attack consists of the following steps, as shown

in Fig. 1.1.

1.

The attacker prepares a malware download site for holding malware. A malware down-
load site is frequently an ordinary website being maliciously used by an attacker.In
Fig. 1.1, a host name of the malware download site is anomaly.net and the filename

of the malware is m.txt.

Using a search engine, the attacker finds a website with a vulnerable web application
and treats it as the target website. In Fig. 1.1, the host name of the target website is

WWW.eX.Com.

The attacker sends the target website an hypertext transfer protocol (HTTP) request

message that includes exploit code that can exploit the web application’s vulnerability

Chapter 1. Introduction

so that the website will download malware from the malware download site. In
Fig. 1.1, the exploit code is vulne/login.php?dir, which shows the vulnerable program,

and http://anomaly.net/m.txt is the location of the malware.

4. The target website downloads and executes the malware from the malware download

site.

5. The target website sends an HTTP response message to the attacker.

The attacker can determine whether the attack was successful from the contents of the
HTTP response message and responses sent from the malware.

Attackers use botnets as attack sources. Recently, results of studies about anonymity [67,
68] are used by attackers. So it is difficult to detect not attack sources but attackers.

On the other hands, many ordinary websites are maliciously used by attackers as mal-
ware download sites. Because these sites may be listed in blacklists of security vendors for

filtering accesses to and from the sites, these sites are victim, too.

Chapter 2

Related Works

There are two solutions for protecting websites from these attacks. One is the design and
development of a website including web applications carried on the website. The other is the
correspondence of vulnerabilities discovered after development of the website. To achieve
the former solution, authentication design [35] and secure programming for websites [32]
have been proposed. However, service providers should protect user websites without using
these techniques because these techniques make it difficult to manage web applications for
which there are many users. Therefore, we surveyed the correspondence of vulnerabilities

discovered after development of a website.

To defend against attacks that infect websites with malware is to monitor access to web-
sites and to filter out any access whose feature information matches that of an attack. The
intrusion detection system (IDS), intrusion prevention system (IPS) and web application
firewall (WAF) use this method. This approach requires collecting as much information
about attack features as possible so that attacks can be detected with high accuracy. A
method that collects attack feature information by placing decoy systems called honeypots
on the Internet has been studied. As shown in Fig. 2.1, security vendors collect attacks on
the Internet by honeypots and analyze the attack features to generate signature information,
which is distributed to security appliances such as IPS, IDS and WAF. The security appli-

ances detect an access from an attacker whether the access feature matches the signature

7

2.1 Attack Prevention

4] N\
Security vendor

2) Analyze attacks and malware
files collected by honeypots

; 3) Generate a

3) Generate signature .

. . pattern file

information

I | J
(" 1) Collect attacks b | (‘—’ 7 o)\
honeypots Honeypot 4) Distribute the 4) D'St”b.Ute the
signature information pattern file

O | oemeeee e A Website
ﬂg; _________________________ 5) Detect attécks by 5) Detect malware files

A o
Attacker security appliances by anti-virus software

User environment
g _/

9 Internet)

|:| :Security appliance A: Anti-virus software

Figure 2.1: Attack prevention and collection

information. On the other hand, security vendors of anti-virus software generate pattern
file, which have information of the characteristics of malware files they have collected and
analyzed. In addition, anti-virus software, which is installed on websites, receives pattern
files from security vendors and detects malware by comparing the characteristics of received
files with the information written in the pattern files. Thus, to detect and filter attacks,

not only attack prevention schemes but also attack collection schemes are necessary.

2.1 Attack Prevention

To protect websites from malware infection, which is caused by abuse of web application
vulnerabilities, anti-virus software or security appliances can be used, as shown in Fig. 2.2.

Many security vendors have investigated a method for installing anti-virus software, and
several types of anti-virus software have been developed to protect servers from malware
infections [37]. In this solution, anti-virus software is installed on a server on which a

website is hosted. The anti-virus software detects malware files from received files by

-8 -

Chapter 2. Related Works

4 Internet Y cCloud environment) Defense on servers

Attacker P

- - Install anti-virus software.
ﬂg " | Website - Anti-virus software for
Anti-virus software | servers has low detection
Malware accuracy.
download site §
Website
m Anti-virus software |

\§ AN -/

4 Internet Y Cloud environment "\ Defense on the network

Network security - Place security appliances
Attacker appliances 3 between the Internet and

ﬂg m Website websites.

- High possibility that access

Malware Ov from attacker and access to
download site malyvare download site can
<> be filtered.

Website

[}
DN (J

\ J

Figure 2.2: Server-based and network-based defenses

using two typical methods, a detection method using pattern files and a behavior blocking
method. If the anti-virus software detects malware by using pattern files, it monitors
received files and checks whether their characteristics are the same as known malware.
Thus, the anti-virus software can detect malware based on the similarity between received
files and known malware. Security vendors who provide anti-virus software collect malware
from the Internet by using honeypots. Additionally, they analyze the malware and generate
pattern files, which contain information about the characteristics of analyzed malware.
Furthermore, they distribute the pattern files to anti-virus software installed on servers.
When websites receive a file, the anti-virus software checks the characteristics of the file
and compares them with information written in the pattern files. If the characteristics are
the same with the information, the anti-virus software determines that the file is malware.
To detect as much malware as possible, security vendors should collect many malware files

by using many honeypots and analyze the malware files for pattern file generation. If

-9

2.1 Attack Prevention

the anti-virus software can use behavior blocking method, the anti-virus software monitors
file activities and prevents certain modifications to the operating system or related files.
The anti-virus software defines malicious activities not caused by legitimate software but
malware files by analyzing file activities of known malware files. For example, the anti-
virus software monitors accesses to important files, execution of suspicious processes and
commands, suspicious communication between external network, and huge usage of system
resources such as memory. With this method, anti-virus software can detect malware files
with characteristics not described in pattern files.

When anti-virus software using pattern files detects malware based on characteristics of
known malware already collected and analyzed by security vendors, the anti-virus software
should always update pattern files to avoid false negatives since new types of malware appear
constantly. However, recently, a huge amount of malware files are generated in a very short
time so it is difficult for security vendors to generate enough pattern files to prevent malware
infections with high probability. Furthermore, to avoid false positives, pattern files should
be generated from software used only for attacks. However, the characteristics of malware,
which may be determined as legitimate software according to users and usage aims, cannot
be described in the pattern files. For example, malware that sends server information to
other terminals become legitimate tools when website managers use them on their websites,
as shown in Fig. 2.3. In this case, it is difficult for security vendors to judge if these files
are malware. Therefore, they cannot describe the characteristics of a pattern file to prevent
false positives. As a result, anti-virus software may fail to detect certain types of malware.
Although security vendors can use a behavior blocking method to improve the detection
ratio of anti-virus software using pattern files, it is difficult to define malicious actions
because of the same reason. This situation may deteriorate the detection ratio. There is
therefore a need to monitor the network for attacks by using a network security appliance
such as an IDS, IPS or WAF.

To protect websites in service provider environments, service providers generally place
an WAF between the website and the external network. WAFs monitor HTTP accesses

to a user website and detect attacks according to the access patterns. In this case, there

~10 -

Chapter 2. Related Works

Attacker

=

Website

N

Install same
Attacker can illegally control software
website N —
[/
Software
-Control websites
Website manager can control according to orders
and maintain website from remote
terminals
Website
manager

ﬂg Website|

Figure 2.3: Design issue of anti-virus software

are two types of methods. One requires additional functions to be added to websites and
the other does not. In the former, for example, the WAF and the website attach an
identifier to forward packets between them [38]. These methods are used to detect attacks
by checking the validity of the transition of the identifier. These methods are effective if
each site manager protects his or her website individually. However, if service providers
protect a large number of their user websites using these methods, the operation cost
(time, labor, and money) is high as additional functions must be implemented for each
website. Therefore, we used methods that do not require additional functions to be added
to websites. These methods are classified by whether signatures are used or not. If operators
want to detect unknown attacks, a WAF may not detect by signatures but instead detect
the difference between a user access and regulated access patterns. In this case, an operator
who manages a WAF tries to configure regulated accesses, which are likely generated by
normal, or non-malicious, users, by each web application in advance as teaching data. If the
WAF detects accesses that are not similar to the teaching data, it determines the accesses

as those of an attacker [39, 40, 41]. These methods are effective for individually protecting

- 11 -

2.2 Honeypot

specific websites from targeted attacks. However, they must collect teaching data, which
consist of information about regulated access patterns. In a service provider environment,
dynamically collecting and updating teaching data is difficult because there are various web
applications independently uploaded by each user in the environment. Therefore, we used
methods that use signatures.

In these methods, when a WAF monitor accesses user websites, it detects an attacker’s
accesses by detecting the similarity between the patterns of the accesses and signatures.
These signatures are generated by security vendors who collect and analyze known attack
information to reveal the exploit code [42]. To generate signatures, security vendors use
a technology that can discover new vulnerabilities by analyzing web applications [43] and
a technology that can collect and analyze attack information by using web honeypots.
The former is effective for environments that individually protect a specific website whose
web applications will be provided for analysis. However, a large variety of unknown web
applications will be deployed on many websites in service provider environments, so the
latter technology is suitable for service providers. When web honeypots are used, normal
HTTP accesses may be made to them. In addition, communication may be generated among
the malware, some of which may have already infected the web honeypots. Therefore,
security vendors should generate signatures by extracting exploit codes manually from

communication records that consist of many kinds of information.

2.2 Honeypot

Honeypots are computing resources where their value lies in the information they capture
while being probed, attacked or compromised. Many organizations research and develop
honeypots and collect attacks from the Internet [66].

There are two major types of honeypots [44], as shown in Fig. 2.4. One is a client
honeypot, which mimics vulnerable clients such as user terminals. This type of honeypot
collects attacks on clients. For example, it is used to find malicious websites that send

exploit codes to hack user terminals by abusing vulnerabilities of web browsers. On the

~12 -

Chapter 2. Related Works

1. High interaction

-Google Hack Honeypot (GHH) -Honeyclient
-High Interaction Honeypot Analysis Tool (HIHAT) -SHELIA
-HoneyStick -Capture-HPC
3. Server 4. Client
-Honeyd -Omnivora
-Honeytrap -Nepenthes -Monkey-Spider
-DShield Web Honeypot -Mweollectd
-Glastopf -SWiSH
-Epic Web Honeypot -HoneyBOT
-Amuna

2. Low interaction

Figure 2.4: Honeypot map

other hand, a server honeypot, which mimics a vulnerable server, is used if it is necessary
to collect attacks on websites.

Web honeypots [45, 46, 47, 48, 49, 50], which collect attacks on websites by exploiting
the vulnerability of web applications, are classified as low interaction and high interaction.
Low-interaction web honeypots are designed to emulate websites hosting vulnerable web
applications. High-interaction web honeypots are composed of vulnerable systems, such
as decoy websites, which accommodate such actual applications and are actually attacked
through these applications, and surveillance functions. Low-interaction honeypots safely
collect attack information because the systems do not execute malware. However, the
attack information is limited because attackers cannot compromise these systems since the
attackers interact with just a simulation. On the other hand, it is difficult to manage high-
interaction honeypots because their systems temporally execute the malware, but these
honeypots can collect much more attack information than what low-interaction honeypots
can.

The Google hack honeypot [45], which can efficiently collect attacks only, and Glastopf [46]
and the Dshield web honeypot [47], which enhance fidelity for adapting to attackers, have

been studied as low-interaction web honeypots. The Google hack honeypot links from

~13 -

2.2 Honeypot

known websites, which have already appeared in Google search results, to a website emula-
tor, which records received traffic, so as not to be seen by humans. With this mechanism,
the Google hack honeypot can collect traffic automatically sent by tools based on the re-
sults of Google searches, not traffic from normal users. There is a high probability that
such traffic consists of attacks; therefore, the Google hack honeypot can efficiently collect
attacks. However, if a service provider wants to continually collect attacks to find new
attack information, it is necessary to enhance the fidelity of web honeypots for adapting to
attackers in order to become the target of attacks. To enhance fidelity, Glastopf extracts
URLs from HTTP request messages and obtains programs from those URLs. Glastopf
can collect files that may have been ordered to download by the received HTTP request
messages. In the Dshield web honeypot, operators can configure HTTP response messages,
each of which is sent according to the information of a received HTTP request message,
in advance. The Dshield web honeypot can send an HTTP response message, which is
configured for a special source IP address, such as a search engine crawler’s IP addresses,
known attacker’s IP addresses, or a destination web application program. Low-interaction
web honeypots, such as Glastopf and Dshield web honeypot, can emulate actual vulnerable
websites with high precision to enhance adaptability to attackers.

However, these low-interaction web honeypots cannot execute malware programs, so
it is impossible to generate perfect HT'TP response messages that reflect actions of web
applications and malware programs. In attacks on websites, exploit codes are described
in HTTP request messages, so attackers receive HT'TP response messages corresponding
to the HT'TP request messages they sent. Therefore, attackers know whether their target
is a low-interaction web honeypot by analyzing results of web application and malware
program operations, which are written in HTTP response messages. Of course malware,
such as a downloader, is not executed. Consequently, the web honeypot cannot collect
malware programs downloaded sequentially. Thus, if service providers want to continually
collect and analyze a large amount of attack information from not only simple but also
complex attacks, it is better to deploy high-interaction web honeypots.

A high-interaction web honeypot contains a decoy website that has vulnerable web

— 14 —

Chapter 2. Related Works

applications installed. For example, in the high-interaction honeypot analysis tool [48],
programs, which record access logs, are inserted into web application programs in a decoy
website. The web honeypot can then record attacks, which are received by web application
programs, and actions resulting from the attacks. In other high-interaction web honeypots,
accesses, which result from HTTP request messages from the Internet to a decoy website,
are recorded. In such high-interaction web honeypots, an HT'TP response message resulting
from an HTTP request message from an attacker is generated by a vulnerable web applica-
tion program, which receives the attack. Therefore, these web honeypots can exhibit high
fidelity.

If a vulnerable web application program on a high-interaction web honeypot received an
attack from the Internet, the program downloads and executes a malware program by using
functions of the vulnerable web application program, which download and execute desig-
nated files. Moreover, if the malware program downloads additional malware programs,
such as a downloader, the high-interaction web honeypot downloads additional malware
programs from other malware download sites and executes them. Thus, when vulnera-
ble web application programs on the high-interaction web honeypot can receive attacks,
in other words, attacks to the web honeypot are successful, the web honeypot can collect

many malware programs and specify many malware download sites.

~15 —

Chapter 3

Requirements and Design Issues

for Website Protection Schemes

3.1 Requirements

To protect websites, on which many web applications are typically installed, from attacks,
service providers need to detect various types of attacks. To detect many attacks, service
providers should collect a lot of information about the characteristics of known attacks.
Furthermore, to detect attacks with high accuracy, the number of false positives, in which
normal information is recognized as malicious, and false negatives, in which malicious in-

formation is not recognized as malicious, should be restricted. Details are as follows.

3.1.1 Detection of Diverse Attack

Website managers select various applications for their websites. Many of these web applica-
tions have vulnerabilities that can be illegally exploited by attackers. However, the website
managers not only spend money and human resources on security but also require service
providers to provide security. It is difficult for service providers to confirm the construction
of each website and deploy countermeasures for each website because such an effort would

incur an enormous cost and require extensive human resources.

17 -

3.1 Requirements

Consequently, service providers should detect various attacks occurring in accesses to

and from all websites

3.1.2 Ability of Information Extraction

There are three types of attack detection schemes: signature detection, which identifies
accesses whose characteristics are the same as those of known attacks; anomaly detection,
which identifies unusual access frequencies and amounts of traffic; and behavior detection,
which identifies accesses whose patterns are similar to those of known attacks. For all
three schemes, it is necessary to collect some information to be used as a basis to determine
whether accesses to and from websites are normal accesses or attacks. The basis information
is generally extracted from known attacks collected from the Internet by web honeypots.
However, it is difficult to collect known attacks because the attack collection depends on
external requirements, for example, whether the attackers select the web honeypots as a
target, and whether search engines register the web honeypots as websites.

Therefore, service providers should extract a lot of information from attacks collected

by web honeypots.

3.1.3 Accuracy of Attack Detection

To carry out successful attacks, attackers try to avoid being detected so as not to be
identified as malware and have their attack characteristics collected and analyzed by service
providers and security vendors. A case in which an attack is not detected is called a “false
negative”. To avoid false negatives, service providers and security vendors may extract
accesses that contain elements that are similar to characteristics of known attacks. A case
in which a normal access is detected as an attack is called a “false positive”. False negatives

cause security incidents, and false positives lead to a decline in service quality.

As a result, service providers should establish high-accuracy attack detection schemes

that can reduce the number of both false negatives and false positives.

~18 -

Chapter 3. Requirements and Design Issues for Website Protection Schemes

Attacker Target website

(http://www.ex.com)
= 1

Sends attack access including exploit codes

WAFsfilter access to target websites by
using signatures that are generated based

on exploitcodes

Samples of exploit code

http://ex.com/vulne1/login.php?dir=
Exploit code

http://ex.com/vulne1/login.php?n=0&dir=
F

http://ex.com/vulne1/login.php?n=0&a=0&dir=
[
11
Meaningless codes that are
disregarded by web application

programs.

Figure 3.1: Patterns of exploit codes

3.2 Design Issue for Diversity and Accuracy

Conventional schemes, which detect attacks by using signatures based on information col-
lected by web honeypots, cannot detect unknown attacks whose exploit codes have not yet

been analyzed.

As shown in Fig. 3.1, WAFs filter access to target websites by using signatures that
are generated based on exploit codes. These exploit codes are generated based on the
vulnerabilities of web applications. These vulnerabilities are continuously being discovered
by security vendors, attackers, developers, and others. Thus, the number of vulnerabilities,
indicated as V(t), increases constantly over time, ¢. In addition, attackers mix an exploit
code with meaningless codes that are disregarded by web application programs. In Fig. 3.1,
n=0 and n=0&a=0 are meaningless codes, which are located as parameters and values. The
number of meaningless codes, indicated as D(t), increases rapidly over time. Therefore,
the function S,(¢) showing the number of signatures that should be generated for a web

application is as follows.

~19 —

3.2 Design Issue for Diversity and Accuracy

So(t) = V(1) D(t) (3.1)

Moreover, in service provider environments, the number of web applications used by
users, represented as N, (), fluctuates over time. The function S,(¢) showing the number

of signatures that should be generated for service provider environments is as follows.

N (t)

Sa(t) = D(t) 3_ Vi(t) (3.2)

i—1

Currently, N,(t) is increasing rapidly because of the wide spread of OSS, Web 2.0, and

cloud computing.

In contrast, the function Sg(¢) showing the number of signatures generated by security
venders uses «, which shows the number of signatures generated by a security vender per

time unit.

Ss(t) =at (3.3)

It currently takes at least two weeks to generate and update a signature [51], so a would

not be too large.

Consequently, the number of exploit codes that have not had signatures generated in

service provider environments, E(t), is as follows.

E(t) = Su(t) - S,(t) = D(t) Y Vi(t) — ot (3.4)

The S, (t) value is larger than that of S,(t), so E(t) increases according to the increase in
t. The value of ¢ is over ten years as attacks exploiting the vulnerabilities of web applications
on websites have been monitored for that long. Consequently, () increases rapidly. Thus,

there is a high possibility that conventional schemes cannot detect many of the attacks.

~90 —

Chapter 3. Requirements and Design Issues for Website Protection Schemes

Attack tool URL of malware Path structure
| download site vulap
v . . [--vulne
$durl=$host.”/”.$path.$mdsurl Function to send .
| |--login.php
e new HTTP request | |-send.php
$req=HTTP::Request->new(GET=>%durl) | message | |--write:php
s \ --read.ph
|~ Function to use get I | PP
/ method |--bbs
List of $host | |--write.php
/ | |-read.php
. . I
List of $path _ Incompatible |--manage
bbs/vulne/read.php?d|r= |-login.php
inc/index.php?path= |--index.php
$host $path

http:/'/h.corr;/'bbs/vulne/quin.php?dir='http://anomaly.net/m.txt -

Attacker 404 not found Web honeypot
(http://h.com)

Figure 3.2: Design issue of web honeypots

3.3 Design Issue for Information Extraction

The path structure of a decoy website is determined by the installer and version of the web
applications. As shown in Fig.3.2, however, automatic tools, with which many attacks on
websites are sent, have path lists, which are described in the destination URL of the attack,
made by tool makers or attackers in advance. Consequently, attacks may be likely to fail
because a path, in which a vulnerable web application program is located, and a path,
which is described in the destination URL of the attack, likely differ. When attacks fail,
it is difficult for the web honeypot to specify MDSs and collect malware programs. It goes
without saying that the web honeypot cannot specify additional malware programs and
MDSs from malware programs that are used in failed attacks and cannot launch further
network attacks. In addition, if an attack fails, an HTTP respounse message for the attack
is an error message such as “404 not found”. In this case, attackers may exclude the web

honeypot from target websites because it seems to attackers that the website, the web

- 21 —

3.4 Approach toward These Issues

honeypot, does not have paths in which vulnerable web application programs are installed.

3.4 Approach toward These Issues

To meet the requirements for a website protection scheme, this thesis proposes and evaluates
a malware download site blacklisting scheme to detect diverse attacks in chapter 4. To
evaluate the proposed scheme and to reveal the limitations of conventional countermeasures,
detection ratios of the blacklisting scheme and those of anti-virus software are compared.
Additionally, in chapter 5, to maximize information that can be extracted from attacks,
this thesis proposes and evaluates web honeypots, which can collect attack information
such as malware download sites, attack sources, and malware. Furthermore, in chapter
6, to reduce the number of false negatives and false positives, this thesis proposes and
evaluates schemes for optimizing blacklist update frequency based on the behavior analysis

of malware attackers.

- 922 —

Chapter 4

Detection of Diverse Attacks by
Provider-Provisioned Website

Protection Based on
Network-Based Blacklisting

Scheme

4.1 Network-Based Blacklisting Scheme

In conventional schemes, increase in S, (t) causes a bottleneck. Additionally, it is problem-
atic for conventional schemes that « of Ss(¢) is not large. Thus, increase in Ss(¢) (which
will improve «) and decrease in S, (t) are requirements for website protection schemes. To
reduce S, (1), it is necessary for website protection schemes to use information that is shared

among various attacks using different exploit codes.

To meet the requirements for provider-provisioned website protection schemes, we pro-

pose a scheme for detecting and filtering not the exploit codes but malware download

~ 93—

4.1 Network-Based Blacklisting Scheme

requests from websites that receive exploit codes. In our proposed scheme, as shown in
Fig. 4.1, we filter accesses that have the destination URL of a malware download request
from a web honeypot to protect user websites. In Fig. 4.1, after a web honeypot received
malware named m.txt from http://anomaly.net , we filter HT'TP messages, whose destina-
tion URL is http://anomaly.net/m.txt, from user websites. In addition, service providers
filter accesses from websites to MDSs by using URL filtering technologies. Our scheme
focuses on the high possibility of attacks that do not use the same exploit code but share
the same MDS. Our scheme attempts to reduce S,(t). With our scheme, accesses from
web honeypots to MDSs are identified by dynamic analysis of the extracted communication
data on an HTTP request message to a web honeypot. By this process, to increase Ss(t),
our scheme extracts communication data that results from an exploit code and specifies the

URLs of MDSs automatically. A more detailed explanation of each process follows.

4.1.1 Protection using URLs of Malware Download Sites

The proposed scheme filters not HT'TP request messages in which exploit codes are written
but malware download request to MDSs. Our scheme identifies MDSs from the communica-
tion records of web honeypots. Therefore, many web honeypots should be located at various
URL domains and blocks of IP addresses to collect a large amount of information. In this

case, decrease in S,(t) is important because the number of web honeypots will increase.

4.1.2 Automated Analysis of Web Honeypots

To reduce S4(t), our scheme deploys a function for extracting communication data includ-
ing an exploit code from the communication data to each web honeypot. In addition, an
analyzing function, which extracts the URLs of MDSs from communication records, is im-
plemented. It is necessary for the former function to eliminate other communication records
of other exploit codes, such as malware and regulated accesses. In addition, it is necessary
for the latter function to analyze downloaded programs and determine whether they are

really malware. In our scheme, the extraction function is implemented in a web honeypot

— 924 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Web
~————_ honeypot
M= : \
Attacker | Monitoring... |

http://anomaly.net/m.txt

Extractjfg destination URLs 8
=
Malware download Filtering accem 8

site_1 destination URL is
(http://anomaly.net) http://anomaly.net/m.txt User websites

Figure 4.1: Proposed scheme

and the analyzing function is implemented as a web-attack analyzer. Our web honeypot
records all communication information created by an HTTP request message. In addition,
the web honeypot sends the recorded information to the web-attack analyzer if parameters
and values are described in a destination URL of an HTTP request message because there
is a high possibility that these messages are attacks. The web-attack analyzer confirms
whether malware are included in the recorded information by recreating the communica-
tion in a closed virtual network, and specifies MDS when the recorded information includes

malware. A more detailed explanation of these devices in the architecture follows.

Web Honeypot

In our scheme, a web honeypot is composed of a decoy website and a controller. A decoy
website carries many types of selected vulnerable web applications. Additionally, it is
constructed so as not to send download requests to an external network using standard
procedures. For instance, users cannot select all the web pages of a decoy website freely
using standard procedures. The controller is used as a reverse proxy server and is located

between the decoy website and an external network.

~ 95—

4.1 Network-Based Blacklisting Scheme

((c) Forwarding onIy Web honeypot § . (d)Recreatlng Web-attack
. Single session theaftack . analyzer
AHTTP [y Controller . {Emulator Decoy
An attack request s — o | Pecoy website i- —~ |, website copy
& —H—=C |||t /==
v m.txt | m.txt
Attacker AHTTP] L D%_ malware T (malware)
response] |LA4" —
A ~mkoniiooo i
;1 ¥b)Sending attack (e) Detection o
7 1} record data malware actions
Normal .n --------------------------------- /
websites (a) Revertlng decoy I Importmg URLs of
website after sending // {...Mmalware download, sites.
Mm.txt HTTP response
]
Malware
download
site User websites
Conventional URL filtering
The function
L Internet) Provider environment

Figure 4.2: Architecture design

Exploit codes are sent to websites as HTTP request messages. Thus, websites send
HTTP response messages after executing exploit codes and finishing malware downloads.
Our scheme focuses on this characteristic. The controller receives all the accesses between
the decoy website and an external network and records the contents before forwarding the
accesses. Moreover, as shown in Fig. 4.2(a), when the controller detects an HT'TP response
message from a decoy website, the controller reverts the decoy website to the website’s
state prior to receiving the HTTP request message because the decoy website may have
been infected by malware. The controller can do so because it has image files of the
decoy website and can overwrite the decoy website by using these image files. Finally, the
controller sends a communication record as attack record data to the web-attack analyzer
(Fig. 4.2(b)). This makes it possible to prevent the communication record of an exploit code
from mixing with the communication records of other malware, some of which may infect
the web honeypots through other exploit codes. In addition, the controller stops forwarding

other HTTP request messages to a decoy website while that decoy website is handling an

~ 96 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

HTTP request message (Fig. 4.2(c)). By this access control, it becomes possible to prevent
the communication record of one exploit code from mixing with communication records of
other exploit codes. Consequently, the controller can generate attack record data composed
of only the communication records of a specific exploit code.

There is a possibility that a decoy website will send attack traffic to the Internet because
it may be infected by malware and thus be controlled by attackers before reverting the
decoy website. From a security viewpoint, the controller should filter the attack traffic
from the decoy website. However, if filtering is detected by attackers, they may avoid the
decoy website. Therefore, it is necessary for attackers not to question that web honeypots
are decoy websites while filtering attack traffic from the decoy website. To satisfy this
requirement, when the controller receives attack traffic from a decoy website, the controller
not only filters the attack traffic but also generates a response message to the attack traffic
and sends it to the decoy website. For detecting attack traffic, the controller confirms any
similarity between received traffic and traffic patterns that may be sent by servers infected
with malware. This traffic pattern can be obtained using static or dynamic analysis [52, 53]
of conventional malware. Furthermore, the controller can generate a response message to
attack traffic using these static or dynamic analysis results and by using a conventional tool

such as Honeyd [54].

Web-Attack Analyzer

The web-attack analyzer consists of an emulator and a decoy website copy. The emulator
has an interface for countrolling the web honeypot. The decoy website copy counstructs a
closed virtual network with the emulator; In other words, the web-attack analyzer does not
have access to the Internet.

The emulator receives an attack record data from the web honeypot collector (Fig. 4.2(a)).
The emulator refers to the data and recreates an attacker’s accesses to a decoy website,
and these accesses are sent to the decoy website copy (Fig. 4.2(d)). The decoy website copy
then initiates a download request as if it were a decoy website. At this time, the emulator

generates a response to the download request and sends it to the decoy website copy by

—97 -

4.2 Evaluation of Proposed and Conventional Website Protection Scheme

referring to the attack record data. Thus, the emulator recreates the download sequence
of the program. Incidentally, malware used to exploit websites attempt to confirm the
communication routes to the terminal of an attacker, such as backdoors. Therefore, after
sending the response to the download request, the emulator monitors whether the decoy
website sends traffic to the Internet (Fig. 4.2(e)). If the decoy website does so, the emulator
determines that the program is malware and that the destination of the download request
is an MDS. In addition, by using this result, the emulator generates a list that contains the
URLSs of MDSs. The list is composed of URLs and IP addresses, so it can be imported into
conventional access control devices as a filtering list. Thus, the web-attack analyzer extracts
information immediately for protecting websites through real-time reproduction of actual
attacks on web honeypots. Consequently, it is possible to detect MDSs instantaneously and

automatically.

4.2 Evaluation of Proposed and Conventional Website Pro-

tection Scheme

There are two requirements for protecting websites with high precision, reduction in the
amount of information needed for generating filter regulations, and reduction in the cal-
culation time for specifying filter regulations. Therefore, we first evaluate our proposed
scheme for the first requirement by connecting prototype web honeypots to the Internet to
collect and analyze attacks to websites. Furthermore, we evaluate our proposed scheme for

the second requirement by using prototype web honeypots and web-attack analyzers.

4.2.1 Prototype Systems and Experiment Environments

The experiment environment for evaluating the first requirement, which is met by our pro-
tection scheme using the URLs of MDS, is shown in Fig. 4.3. The experiment environment
for evaluating the second requirement, which is met by our automated analysis of web hon-
eypots, is shown in Fig. 4.4. The decoy websites carried web applications of OSS, which

were programmed using PHP. The web honeypots were implemented on a physical server by

~ 98 -

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Web honeypot

WAF | | s T T T T s TS m s s M
Decoy website

1
1
I CentOS5.2/Apache2.2/MySQLA4. 0/]
1
1

Controll
ontrofier web application 1 (PHP programs):

The Internet Router Web honeypot

| Decoy website

I CentOS5.2/Apache2.2/MySQLA4. 0/ !
e 1 web application 2 through 10 i
L - !: Virtual machines L (PHP programs) :

Controller

Figure 4.3: First experiment environment

Attacker’s Web honevpot
terminal g PP oo !
] ! Decoy website !
Switch H L y Web-
Malware Controller! ! * CentOS5.2/Apache2.2/MySQLA4. 0/ 1 attack
download [° ! web application 1 (PHP programs)/, analyzer
site _\eb application 2 (PHP programs) ;
L . Virtual machines

Figure 4.4: Second experiment environment

constructing a controller and a decoy website on virtual machines, which were constructed
using technologies such as VMware [55]. The web-attack analyzer was also implemented on
a physical server by constructing an emulator and a decoy web copy on virtual machines.
The specifications of the physical server and virtual machines are listed in Table 4.1. As
shown in Fig. 4.3, we connected a WAF to a router and forwarded the copied traffic, which
forwards to a decoy website, to the WAF. The signature of this WAF had been newly

updated.

~99 _

4.2 Evaluation of Proposed and Conventional Website Protection Scheme

Table 4.1: Specifications of physical servers.

CPU 3.8GigaHz x 2

VMware VMware server 1.08

Memory 4GB (512MB for each virtual machine)
Disk space | 73GB (20GB for each virtual machine)

Table 4.2: Results of WAF'.

Total number of attacks | 867
Attacks detected 580
Detection ratio 67%

4.2.2 Evaluation of Protection Scheme

In this experiment, we analyzed the increase in information used for protecting attacks
with the conventional schemes and proposed scheme. We collected attacks on web honey-
pots from the Internet between January 30,2009 and Aprill, 2009 using the environment
depicted in Fig. 4.3. The number of attacks detected by WAF is listed in Table 4.2. In
addition, the numbers of exploit codes and MDSs are listed in Table 4.3. To reveal the
relationships between MDSs and web applications whose vulnerabilities greatly affect the
kinds of exploit codes generated, we investigated the probability that an MDS is used
by attacks that exploit the vulnerabilities of different web applications. The results are
listed in Table 4.4. Furthermore, to reveal the tendency of information used for protecting
against attacks, we investigated a time series of the accumulated numbers of exploit codes
and MDSs, as shown in Fig. 4.5. MDSs are generated by normal websites being abused.
Therefore, managers of normal websites may find and stop the abuse of their websites. As
a result, the number of websites from which malware can be downloaded may decrease. To
reveal the actual status of this, we investigated a time series of the number of websites from
which malware can be downloaded, as shown in Fig. 4.6.

A high probability that a WAF can detect only limited attacks is shown in Table 4.2.

First, it is necessary to clarify the factors of this result. Asshown in Table 4.3, the number of

- 30 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Table 4.3: Number of exploit codes and MDSs.

Total number of attacks 867
Number of unique exploit codes | 160
Number of unique MDSs 70

Table 4.4: Probability of sharing MDS.

Probability
Sharing multiple web applications 60%
Used only a web application 36%
Unknown 4%

exploit codes is larger than the number of MDSs. As shown in Fig. 4.5, there are two increase
patterns for the exploit codes. In the early stages of the experiment, the accumulated
numbers of exploit codes increases rapidly because almost all the major exploit codes that
are included in many attacks are monitored over a short term. After the early stages,
minor and new exploit codes may be monitored. At this stage, the increase in the latter
becomes nonlinear. To generate signatures for WAFs, it is necessary to clarify vulnerabilities
of programs and consider exploit as many patterns that correspond to vulnerabilities as
possible. Figure 4.5 reveals that there are many kinds of exploit codes and their number
increases rapidly. It will be difficult to generate signatures by analyzing these exploit codes.
In addition, in the case of WAFs, to generate signatures for all kinds of attacks, such as SQL
injection, analysts should extract traffic data from each kind of attack. After that, analysts,
for example, can obtain traffic data of malware distribution (Fig. 4.5). Thus, a large amount
of time and labor are required to generate signatures of WAFs for defending malware
distribution. On the other hand, as shown in Table 4.3, the number of MDSs is small.
Additionally, the increase in the number of MDSs becomes linear (Fig. 4.5). Furthermore,
the time series of the number of websites from which malware can be downloaded stabilizes
(Fig. 4.6). This shows that the number of URLs that should be filtered is constant. Finally,
more than half of the MDSs are used by attacks that each exploits the vulnerabilities of

~31 -

4.2 Evaluation of Proposed and Conventional Website Protection Scheme

180
160 | = Number of MDSs
s
-
P - -
140 = = Number of explot codes -
- -
120 ——
_ - - & - o
100
[}
80 !
] —
60 1 /—’_/_—/
-
. /—/
B //
0
o o) o o) o o o
S S S S S S S S S
¢ & &
¥ v v v NG NG N NG NG

Figure 4.5: Accumulated numbers of exploit codes and MDSs

Table 4.5: Attacks data.

Kind of application | Malware
application_1 freezel.pl, freeze2.pl, freeze3.pl
application_2 echotest.php

different web applications, as shown in Table 4.4. This shows that an MDS is shared by
attacks, each of which uses different exploit codes. Moreover, the result shows that our
proposed scheme can generate filter regulation without installing all the web applications

of service providers.

4.2.3 Evaluation of Automatic Analysis System

In this experiment, we evaluated the calculation time for specifying filter regulation in the
environment shown in Fig. 4.4 using a decoy website that had two kinds of web applications.

First, we forced the decoy website to download Perl programs, which send data, using a

~32 -

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

2 MM

) ™MV
15 N/

. o

5 /,-/\f

S S S > > 4 S S >
¢ O o & K 9
NS NG I\ N NQ Ng Ng g g

Number of MDSs

Figure 4.6: Number of sites from which malware can be downloaded

command injection into web application_1, as shown in Table 4.5. To avoid abuse of this
information, the names and details of these applications are not made public. At this time,
we forced the decoy website (URL http://www.ex.com) to download Perl programs such as
freezel.pl from an MDS (URL http://anomaly.net) multiple times. In this experiment, the
number of downloads from web application_1 increased from one to three. Furthermore, we
evaluated the calculation time for the proposed scheme to specify the URL of the MDS by
inputting these attack data into a prototype of the web-attack analyzer. Next, we forced the
decoy website to download a PHP program, which sends data, using remote file inclusion
on web application_2. We tested each set of conditions five times. The calculation times for
analyzing MDSs are listed in Table 4.6. If vulnerable programs and traffic data of an attack
have been already known, the conventional signature-generation tool [56] can be deployed
for generating a signature based on the exploit codes of web applications, Php-post and
MyBulletinBoard. This tool requires more than 600 seconds to generate a signature. In

addition, WAFs are updated every two weeks, as discussed in chapter 3.

As shown in Table 4.6, conventional tools have the advantage that vulnerable programs

- 33 —

4.2 Evaluation of Proposed and Conventional Website Protection Scheme

Table 4.6: Results of second experiment.

Environments Times [seconds]
Kind of Number of
application | downloads | Min. | Ave. | Max.
application_1 1 21.73 | 23.61 | 24.34
application_1 2 37.35 | 38.92 | 40.17
application_1 3 54.62 | 56.50 | 58.57
application_2 1 25.08 | 25.48 | 25.97
Conventional tool 600
Conventional WAF 2 [weeks]

and traffic data of an attack are already known, the proposed scheme can be used to reduce
the calculation time taken by conventional schemes for analysis to 10%. It is difficult to
search vulnerable programs, and it requires a large amount of time and labor to collect
traffic data of attacks, as discussed in chapter 2, so the advantage of conventional tools is
large. In addition, the calculation time for analysis with the proposed scheme is propor-
tional to the number of downloaded malware. Moreover, the results of one download by
each of two applications are approximately equivalent, so the calculation time for analysis
does not depend on the web applications and their vulnerabilities. Thus, in the proposed
scheme, the calculation time for analysis will not increase exponentially, making it possi-
ble to instantly analyze attack information. In this experiment, all the results show that
http://anomaly.net/ is an MDS. Thus, the proposed scheme can be used to protect websites
economically because filtering a single URL can protect multiple web applications and their

vulnerabilities.

4.2.4 Discussion

As with conventional schemes, our scheme generates a filtering regulation from the attack
information on the web honeypot. Because of this, there is a small possibility that websites
are targeted by attackers before the web honeypots receive the attacks. To reduce this risk,

web honeypots are located at various URL domains and blocks of IP addresses. In addition,

34 -

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

the management server has a reputation function, which collects filter lists from all of an
attacker’s accesses, and analyzing functions, such as web-attack analyzers. It also uses the
filter lists for all the URL filtering functions. This server is located in service provider
environments. By using the server, the risk of attacks on websites can be reduced. It is
difficult for conventional schemes, in which filtering regulations are generated by manually
analyzing web honeypots, to distribute many web honeypots because of the rapid increase
in analysis costs. In contrast, the proposed scheme can distribute many web honeypots
economically because filter regulations are generated automatically.

In addition, from the URLs of MDSs, service providers detect websites that already have
access to MDSs by checking the access logs of the websites. By using this characteristic,
service providers can detect malware infections in websites before the websites generate
other cyber attacks.

The proposed scheme is not a means for constructing solid websites by spending a large
amount of time and labor but a means for strengthening the security of all websites in
service provider environments with high cost efficiency. Our scheme can detect and defend
against malware distribution to websites efficiently and effectively, but WAFs can detect
and defend against other kinds of attacks to websites, such as SQL injections and cross-site
scripting. Therefore, if the service provider wants to construct solid websites for premium
service, our scheme can be used with conventional technologies, such as a WAF, so that
the service provider can strengthen the security of each website according to user demand.

Thus, a service provider can provide various security services on the basis of cost.

4.3 Evaluation of Proposed Scheme and Anti-Virus Software

To quantitatively evaluate actual malware and communication opponents of malware in-
fections, we investigated the detection ratio of anti-virus software to malware distributed
to websites. The malware files are collected by web honeypots connected to the Internet.
Moreover, we investigated communication opponents on the web honeypots and evaluated

the blacklist-based filtering method using the communication information.

— 35 —

4.3 Evaluation of Proposed Scheme and Anti-Virus Software

(A .
Environment 1

Web honeypot 1

Decoy website

Firewall ™ Controller F -Cent OS 5.2
-Apache / MySQL / PHP

Internet |—H Router -
k _I Web honeypot 4 | /
[Environment 2 \
- Different IP address block, location,
-I Web honeypot 5 I
|-+— Router -

and domains from environment 1
| Web honeypot 11
Virtual \ j

server
Figure 4.7: Investigation environments
Table 4.7: Specifications of physical servers.
CPU 3.8GigaHz x 2
Virtual machine | VMware server 1.08
Memory At least 512MB for each virtual machine
Disk space At least 20GB for each virtual machine

In these evaluations, eleven web honeypots, which included a decoy website and a con-
troller, were deployed on a virtual machine of a physical server and located on two different
address blocks, as shown in Fig. 4.7. The specifications of the physical server and virtual
machines are listed in Table 4.7. Malware files were collected from the Internet between
September 8, 2009 and January 30, 2010. Decoy websites in the high-interaction web honey-
pots were registered on search engines on the Internet during this period to collect attacks,
as described in chapter 1. A total of 15 vulnerable web applications [57] were deployed.
These web applications had RFI and command injection vulnerabilities. Attacks that oc-

cur due to vulnerabilities of web applications depend not on the OS and middleware but

— 36 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Table 4.8: Attack information collected by web honeypots

Total
Number of RFI attacks 4,621
Number of malware download sites | 2,666

Number of malware files 366

on the applications. In addition, many service providers deploy linux OSs for many users
because the OSs are free. Consequently, we used the environment shown in Fig. 4.7. We
used anti-virus software programs appropriate for linux servers.

The attack information collected by web honeypots in this investigation is listed in
Table 4.8. In this investigation, 4,621 attacks were collected. These attackers collectively
used 2,666 malware download sites. Additionally, 366 types of malware were identified

using the SHA1 value of malware files.

4.3.1 Evaluation of Detection by Anti-Virus Software

To evaluate the detection ratio of anti-virus software, we selected six types of anti-virus
software for server protection, which were developed by several security vendors [58]. These
anti-virus software programs can detect not only malware files but also spam emails and
accesses to malicious websites. In the evaluation, detection ratios of the anti-virus software
by using only malware files were investigated.

In the evaluation, as shown in Fig. 4.8, the detection ratio of malware collected by web
honeypots was checked on May 20, 2010 using six types of anti-virus software whose pattern
files were newly updated. This shows that security vendors were able to collect and analyze
many malware files from January 30 to May 20. This evaluation reveals the limitation of
the detection ratio of anti-virus software. Even though a behavior blocking method can
monitor actions caused by malware when the attack is successful, many attacks on websites
fail [59]. In order to generate all actions caused by malware and to check the actions by
using the behavior blocking method for evaluating the detection ratio, we sent malware files

to a dummy vulnerable web server, to which anti-virus software using a behavior blocking

— 37 -

4.3 Evaluation of Proposed Scheme and Anti-Virus Software

—

| Anti-virus software A |
Web server

Send each malware to
all web servers

I—

| Anti-virus software B |
Web server

e —

| Anti-virus software C |
Web server

—

| Anti-virus software D |
Web server

Malware collected by
web honeypots in first
investigation

E—

| Anti-virus software E |
Web server

I—

| Anti-virus software F |

Web server

Figure 4.8: Evaluations of anti-virus software

method was installed, by using RFI attacks, as shown in Fig. 4.9. The aim was to determine
the probability that websites on which anti-virus software is installed can be protected from
malware.
When each anti-virus software is shown by v(v = A, B,..., F), the detection ratio of
anti-virus software v, represented as A,, is as follows.
M,

Ay =7 (4.1)

Here, M, is the number of malware files detected by anti-virus software v, and T is the

number of malware files used in this evaluation.

In addition, we evaluated the number of anti-virus software programs that detected each
malware file. When the number of anti-virus software programs that detect an arbitrary
malware file is shown by i(i = 0, 1,2,...,6), the number of malware files, which are detected
by ¢ anti-virus software programs, can be shown by D;. Here, the ratio of the number of

anti-virus software programs that can detect each malware file, represented as P;, is as

— 38 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

/ 2)SendHTTP ™ 1) Set ma|wa@
request including download site
ﬂElL exploit code Vulnerable
"Web application 1
— {
Test L__I3)Downloadand Malware
terminal
execufe malware
: v Malware
4) Check the actions caysed Anti-virus download site
by malware execution software
—_Webserver
\ Local network /

Figure 4.9: Test of anti-virus software

Table 4.9: Detection ratios of anti-virus software

Types of anti-virus software | Detection ratios [%]
Software_A (A4) 41
Software B (Ap) 57
Software_C (A¢) 34
Software_ D (Ap) 74
Software_ E (Ag) 38
Software F (Ap) 35
follows.
D.
P, = ?1 (4.2)

4.3.2 Results of Evaluation of Anti-Virus Software

The results of A, are listed in Table 4.9. All detection ratios were insufficient to protect
websites from malware infection. In particular, four types of anti-virus software were only
able to detect half of the malware files, even though security vendors collected and analyzed
many malware files from January 30 to May 20. As shown in Ap, software_D detected
approximately 74% of malware files. However, the other anti-virus software programs could
not detect many malware files, so Ap is a particular value that depends on this evaluation

environment.

-39 —

4.3 Evaluation of Proposed Scheme and Anti-Virus Software

all anti-virus software
programs
7%

no anti-virus software
14%

5 anti-virus software
programs
17%

1anti-virus software
program
16%

4 anti-virus software
programs
9%

2 anti-virus software
programs
12%

3 anti-virus software
programs
25%

Figure 4.10: Number of anti-virus software programs that can detect each malware file

In addition, the results of F; are shown in Fig. 4.10. For example, two types of anti-virus
software detected approximately 12% of the malware, shown as P». As shown in the figure,
14% of the malware was undetectable by all the anti-virus software, whereas only 7% of
the malware was detectable by all of the software. In addition, when only one anti-virus
software program was used, it detected 16% of the malware. Generally, different anti-virus
software cannot be installed at the same time. Therefore, many malware files will not be

detected depending on the selected anti-virus software.

Thus, anti-virus software was able to detect only about half of the older malware, which
was collected several mounths before. These results show that anti-virus software cannot
detect a large amount of malware used to attack websites. To solve this problem, it is

necessary to monitor not only files but also traffic patterns, including malware infection

— 40 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

routes, to detect malware.

4.3.3 Evaluation of Detection using Blacklist

Generally, it is difficult to evaluate detection ratios of blacklisting methods in actual sit-
uations because it is impossible to understand all attacks and all malicious information,
such as IP addresses of attack sources and malware download sites, in the actual situation.
To evaluate blacklisting methods, it is necessary to build up a hypothesis. For example,
cross validation checks were deployed [69, 70]. In the methods, collected data in the actual
situation was divided into two groups, one was treated as known data and the other was
treated as unknown data. Blacklisting methods were evaluated whether the unknown data

could be detected by using the known data.

Except for accesses generated by crawlers from search engines, it is highly probable
that a large number of accesses received by web honeypots are generated by attackers
because there is no reason for a normal user to access web honeypots. If there is a high
reappearance of access characteristics on web honeypots, such as IP addresses of attack
sources and malware download sites, the access characteristics may be useful for detecting
malware infection. Specifically, if the IP addresses of attack sources and malware download
sites, which are collected by web honeypots, are registered in our blacklist, we may be able
to detect many attacks by using the blacklist. To reveal an actual attack situation, we
evaluated the blacklist by using access data that were collected by web honeypots in our

evaluation environments.

We assumed that, with the blacklist, we cannot detect IP addresses that are used for the
first time, but we can detect IP addresses that are used repeatedly because the IP addresses
will have already been monitored by web honeypots. Thus, the detection ratio of attack
sources by the blacklist, represented as B, and the detection ratio of malware download
sites, represented as W, may be evaluated by the reappearance of the attack sources and

malware download sites.

— 41 —

4.3 Evaluation of Proposed Scheme and Anti-Virus Software

Table 4.10: Reappearance ratios

Total | IP addresses used | Detection
by attack only ratio
Number of 4,621 | 92 B =97.9%
attacks
Number of malware | 2,666 | 45 W =98.3%
download sites

98% of attack sources were
used repeatedly

98% of malware download
sites were used repeatedly

Attacker [/

[H —

Attacker ><

ﬂQ:))

i
Web

honeypot
— Malware
download
S site
Web
honeypot
—_ "

N~

AN

Filter traffic to malware

Filter traffic from attack)
sources monitored on web Website download sites monitored on
honeypots are effective web honeypots are effective

Figure 4.11: Detection method by using traffic patterns

4.3.4 Results of the Evaluation of Blacklist

The results of the analysis are listed in Table 4.10. A total of 4,621 attacks were monitored
on the web honeypots, but there were only 92 attacks that had unique attacker source IP
addresses. This suggests that about 98% of attacks had the same attacker source IP address.

Furthermore, 2,666 attacks used malware download sites, but only 45 attacks used unique

malware download sites. This suggests

download sites used the same malware download site as other attacks. Thus, about 98% of

attack information reappeared.

— 492 —

that about 98% of the attacks that used malware

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Table 4.11: Kinds of malware files

Type of Number of
malware malware files
Strings generator 110
Information investigator | 191
Downloader 2

Bot generator 63

Another useful method for detecting attacks is checking traffic patterns such as source
IP addresses of traffic to websites and destination IP addresses of traffic from websites, and
checking if these patterns are consistent with the traffic pattern between web honeypots
and an external network, as shown in Fig. 4.11. In fact, this detection method is enhanced
with our web honeypots, which were described in this chapter. Because our web honeypots
can execute downloaders and sequential attacks, they can collect much more information,
such as attacker source IP addresses and malware download sites, than conventional web

honeypots. As a result, the number of attacks detected with this method increased.

4.4 Discussion

4.4.1 Malware Characteristics and Detection Ratios

We describe here the four types of malware collected by our web honeypots, which are listed
in Table 4.11. An overview of malware that sends specific messages to an attacker is shown
in Fig. 4.12, and an overview of malware that collects server information and sends it to
an attacker is shown in Fig. 4.13. Furthermore, an overview of malware that downloads
other malware, such as a downloader, is shown in Fig. 4.14, and an overview of malware

that enables an attacker to control an infected server is shown in Fig. 4.15.

The first type of malware sends simple specific strings to an attacker. The attacker

knows whether the target website contains vulnerable web applications by confirming the

43 -

4.4 Discussion

Confirm Attacker Target website
whether website ﬂg i Send strings,
is vulnerable by : such as
checking g : “vulnerable”,
whether there is : to attacker by
“vulnerable” in i EXT?ute using HTTP
HTTP response .\ malware | response
message HTTP response message message

Figure 4.12: First type of malware

Attacker Target website
Receive version ﬂg @ Send sever
information, information
which is useful § : Su:ah rr?e? fllgst
to hagk web§|te Exedute addresé o8
by using various : ,
attacks ; malvi:/are and kernel
HTTP response messade version

Figure 4.13: Second type of malware

existence of the strings in messages from the target website. By using this malware, at-
tackers can generate a target list, in which vulnerable websites are described, to distribute
more malicious malware with a higher success rate. It is difficult for security vendors to
judge whether software for generating simple strings is malware.

The second type of malware downloads and sends website information, such as the host
name, 1P address, OS, and kernel version, to an attacker by referring to the environment
of the website. Attackers can obtain information to hack a website by using this malware.
Anti-virus software cannot detect this type of malware since security vendors judge the
program to be legitimate because this kind of program may be used by website managers
in managing their website. For example, website managers generally update the OS and
kernel when a new version is released, and this kind of program is useful for that.

The third type of malware only downloads other malware. This malware forces a target
website to download pieces of a malicious program. Attackers try to conceal their intrusion

from security applications since this malware complicates the route of infection. Anti-virus

_ 44 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Target website Malware download site

= 5

Download

other [] Other malware
malware Execute malware
(called

downloader)

o

Execute other malware

Figure 4.14: Third type of malware

) Command and
Attacker Target website control server

= (]]

Control target such as FE] Execute malware

bot

Make connection

Send order

Forward order

Execute order
(send attacks to other websites etc)

Figure 4.15: Fourth type of malware

software cannot detect this type of malware because security vendors judge software for
downloading other files to be legitimate.

The last type of malware is the most malicious. This malware makes a connection
or a backdoor for an attacker and allows him/her to control the server. Attackers can
illegally control a server as a bot by using this malware. Orders from the attacker are
sent via a command-and-control server, normally using IRC and HTTP. It may be difficult
for antivirus software to detect this type of malware because there are too many malware
varieties to make enough pattern files to detect all malware.

For example, attackers can set any strings on the first type of malware so it is impossible

for security vendors to generate pattern files for all malware. In an attack using the first

45 -

4.4 Discussion

Attacker ———
Target
jElL website

Malware
download

Malware
download

Send attack to distribute first
type malware

site[First- site] Fourth-
type type
malware malware

malware

Execute firdt-type malware

e ——

Send attack to distribute I

Send another
attack if attacker
can receive
message from
malware

fourth-type malware

| malware

Execute fourth-type malware

Make connection with command and cont

Figure 4.16: Sequential attack

type of malware, attackers can find out whether the target website has vulnerabilities.
As a result, if attackers program unknown malware by remodeling conventional malware,

attackers can force target websites to successfully download and execute the malware by

abusing the vulnerabilities, as shown in Fig. 4.16.

4.4.2 Logs of Web Honeypots and Detection Ratios

When traffic patterns of web honeypots are used for detecting malware infections on web-
sites, websites may receive new attacks before the web honeypots receive them. This risk

can be prevented by locating many web honeypots at many IP address blocks, locations,

and domains to receive attacks as quickly as possible.

Many attacks are generated by normal user terminals and websites already hacked by

attackers. Therefore, normal user traffic may have the same source IP address as attack

46 —

rol server

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

Compare received traffic and files with traffic and malware that are
monitored on web honeypots

M

()
User $

———

=

Filter traffic and files that are
monitored on web honeypots

n
Ty
Attacker {

e —
Ji=)

. —
download site
Reverse proxy
transparent type
_ Internet Service provider environment /

Figure 4.17: Detection method in service provider environment

traffic to websites because the user may use the same terminal as the attackers. In this
case, the proposed method of using traffic patterns generates false positives. To solve this
problem, a detection method for monitoring traffic patterns and the file characteristics
and monitoring whether the characteristics received by websites are the same as those of
files received by honeypots is effective. In service provider environments, a transparent
reverse proxy is useful for checking traffic between the Internet and websites. As shown
in Fig. 4.17, the reverse proxy is set on the boundary between the Internet and service
provider environments. In addition, the reverse proxy contains traffic data and malware
monitored by web honeypots. When the reverse proxy receives traffic between the Internet
and websites, it determines whether these traffic data and files are the same as the traffic
data and malware monitored by the web honeypots. Of course, the reverse proxy can contain
anti-virus software at the same time. Therefore, the reverse proxy can detect attacks to

websites with higher probability.

47 -

4.4 Discussion

Log data
(") on web honeypot
(e.g. syslog)
— ——
Attacker / 7 Web honeypot | ———
Check log data on
websites whether
websites have already
Malware been attacked.
download site \
- —
= e J—[
Command
and control
server
~—~——
e —
—+[)
_ Internet &Service provider environmentj

Figure 4.18: Detection method by using log data

This detection method can be useful in detecting websites that have already been hacked
by attackers. Many attacks are generated by user terminals and websites infected by mal-
ware, so we can specify infected user terminals and websites by monitoring attack sources
and malware download sites. Additionally, it is highly probable that websites whose traffic
patterns in the log data are the same as those of web honeypots have already been attacked
and infected by malware. When service providers use high-interaction web honeypots, they
can obtain log data, such as syslog, from actual vulnerable web server systems in high-
interaction web honeypots. Therefore, it is easy for service providers to compare log data
of websites with log data of attacks received by web honeypots, as shown in Fig. 4.18. This
detection method is useful for detecting malware before and after infection.

To detect malware attacks on websites, this network-based detection method, which
monitors the patterns of traffic to websites, is more effective than terminal-based detec-

tion methods using anti-virus software installed on user terminals and websites. Network

48 —

Chapter 4. Provider-Provisioned Website Protection Based on Network-Based Blacklisting Scheme

security appliances are useful in detecting traffic patterns. For example, service providers
can protect websites from the threat of malware according to the configurations of traffic

patterns as signatures of network appliances between web honeypots and the Internet.

4.5 Conclusions

We proposed a provider-provisioned website protection scheme that specifies MDSs using
web honeypots and filter accesses from websites to MDSs. The proposed scheme focuses
on the characteristics of websites accessing MDSs during an attack. The proposed scheme
can then deploy protection technology that filters accesses from websites to the MDSs. In
addition, it focuses on the specific characteristic of attacks on websites in which exploit codes
are executed as HT'TP requests. By this characteristic, the proposed scheme can construct
a web honeypot from which it is possible to extract the URLs of MDSs automatically.
Incidentally, it is necessary to use other scheme against the attacks, such as SQL injection,
that do not use MDSs. To correspond with this type of attack, the controller confirms
whether the contents of decoy websites are changed before and after an access by using a
tool such as a tripwire [60]. If there is a difference between the before and after content
of decoy websites, the controller extracts the source IP address from the access logs and
filters the access from the source IP address. By this, the proposed scheme can be used
to protect websites from attacks that do not use MDSs. It also can be used to protect
websites from not only attacks using websites as attack platforms but also attacks using
websites as MDSs. By protecting websites from such attacks, service providers can destroy
attack platforms. As a result, a service provider can protect not only websites but also user
terminals from malware infections. By using our proposed scheme, a service provider can
provide cost-effective and secure networking environments.

In addition, we evaluated and analyzed malware infection prevention methods for web-
sites by using web honeypots connected to the Internet. We investigated the detection ratio
of anti-virus software to malware distributed to web honeypots. The results show that it

is difficult to detect a large amount of malware by using antivirus software because the

— 49 —

4.5 Conclusions

malware may be legitimate tools for users, such as websites managers, or usage aims such
as management software versions on websites. Our investigation also revealed that traffic
patterns of attackers appear repeatedly on web honeypots if they can automatically and
safely collect a large amount of attack information, like our web honeypots. Because of this
reappearance, our access filtering method for detecting malware infection by monitoring
the same traffic patterns with web honeypots is effective for detecting malware infections
on websites.

Service providers can use such a method to protect websites from malware infection

with high probability, allowing them to construct secure platforms for websites.

— 50 —

Chapter 5

Enhanced Information Extraction
by Intelligent Web Honeypot

Based on URL Conversion Scheme

5.1 Intelligent Web Honeypot

To solve this problem, we propose a scheme in which an HT'TP forwarding function, which
has information of a path structure of a high-interaction web honeypot, is located between
the web honeypot and the Internet. The HTTP forwarding function has three key features,
a path analyzer, a cache table, and a conversion algorithm. The path analyzer checks
whether a path in a destination URL of an HT'TP request message from the Internet to the
web honeypot corresponds to the path structure of the web honeypot. If the path does not
correspond, the HTTP forwarding function converts the incorrect path to the correct path
on the web honeypot using the cache table and the conversion algorithm. The following is

a more detailed explanation of each key feature.

~5] -

5.1 Intelligent Web Honeypot

path_1

Path structure of
web honeypot
vulap

Forward these data because

corresponds with path_1

their path in destination URL/

\
Path Cache . -I
jg analyzer table Algorithm
>\

||L-vu|ne

| [flogin.ph
|--send.php
[--write.php

|--read.php

I

I

I

I

|--bbs

| |-write.php

| [|-read.php

I

|--manage
|--login.php
|--index.php

Attacker

S

HTTP forwarding function

Destination URL:
http://h.com/vulap/vulne/login.php?
dir=http://anomaly.net/m.txt

Figure 5.1: Path analyzer

5.1.1 Path Analyzer

A path analyzer monitors a path in a destination URL of an HT'TP request message from the
Internet to a web honeypot. The function records the path structure of the web honeypot
in advance. The analyzer also checks a path in a destination URL of attacks and compares
the path with those in the web honeypot using the record date of the path structure. If
the path is found in the web honeypot, the HTTP forwarding function forwards the HTTP
data to the web honeypot, while maintaining the destination URL. For example, the path
in the destination URL corresponds to path_1, as shown in Fig. 5.1. In this case, the HTTP
forwarding function forwards this HT'TP data without URL conversion. On the other hand,

if there is no path found in the web honeypot, the HT'TP forwarding function attempts to

Web honeypot

convert the path in the destination URL to a correct path using a cache table.

~ 52—

Chapter 5. Intelligent Web Honeypot Based on URL Conversion Scheme

Path structure of
web honeypot

vulap
|--vulne
| |-login.php
|--send.php Incorrect path Correct path
|--write.php
|--read.php bbs/vulne/read.php | vulap/bbs/read.php

entry 1 inc/index php vulap/manaqel/index php

I

I

I

I

|--bbs vulap/send.php vulap/vulne/send.php
| [--write.php

| \

I

I_

|--read.php _\ /
\/

-manage
|--login.php
|--index.php Path Cache .
analyzer table Algorithm @
IS .
Attacker HTTP forwarding function Web honeypot

Destination URL: Destination URL:
http://h.com/inc/index.php? Convert by entry_1\ http://h.com/vulap/manage/index.php?
dir=http://anomaly.net/m.txt of cache table dir=http://anomaly.net/m.txt

Figure 5.2: Cache table

5.1.2 Cache Table

The HTTP forwarding function has a cache table in which entries are composed of an
attack path, which is likely used by attackers, and a correct path in which a vulnerable web
application is installed.

The HTTP forwarding function looks up the incorrect path in the cache table. If this
function finds an entry in which the incorrect path is described, it converts the incorrect
path to a correct one, which is described in the entry, and forwards the HTTP data to
the web honeypot. For example, the path in the destination URL corresponds to entry_1,
as shown in Fig. 5.2. In this case, the HT'TP forwarding function converts the path in
the destination URL to the correct path described in entry_1. On the other hand, if the
function cannot find an entry, it attempts to convert the path in the destination URL using
the conversion algorithm described in the next section.

The operator sets the initial entries of the cache table using the analysis data of attack

tools and conventional attacks. In addition, the table is updated with additional entries

— 53 —

5.1 Intelligent Web Honeypot

Path structure of

web honeypot

http://h.com/aaaa/bbbb/cccc/dddd/x.php

yula
I Vuln Host Directory File
| |login.ph path_2 name name name
| |--send.php A
| |--write.php Check correspondence
I |-read.php in this order
|--bbs \
| [--write.php
| [|-read.php
I
I--ma"aae __————*‘>
[Hlogin.php path_3
|-Index.php h Cache Algorithm
arayzer table
IS —
Attacker HTTP forwarding function Web honeypot

Destination URL:

http://h.com/vulne/login.php?

D
Convert by path_2
dir=http://anomaly.net/m.txt |__of path structure

estination URL:
http://h.com/vulap/vulne/login.php?
dir=http://anomaly.net/m.txt

Figure 5.3: Conversion algorithm

generated using the conversion algorithm described below.

5.1.3 Conversion Algorithm

The HTTP forwarding function records an algorithm for incorrect path conversion and
attempts to convert an incorrect path not described in the cache table. In our proposed
scheme, the HTTP forwarding function converts the incorrect path by determining the

correct path on the web honeypot from the similarity between lower paths. This algorithm

is explained

First, the HTTP forwarding function searches the same file name, which is described
in the incorrect path, from names of files on the web honeypot, which are described in the
path structure of the web honeypot. If the file name can be found, the HT'TP forwarding
function stops the conversion of the destination URL and forwards the HT'TP data to the
web honeypot. On the other hand, if the file name can be found and there is only one path

that has the same file name, the function converts the incorrect path to the correct path.

~ 54 —

in detail below.

Chapter 5. Intelligent Web Honeypot Based on URL Conversion Scheme

At the same time, some paths may be found because files with the same name may exist on
a web honeypot, shown as path_2 and path_3 in Fig. 5.3. In this case, the HT'TP forwarding
function compares the directory names that house these files, shown as name_1 and name_2
in Fig. 5.3, with those that house the file of the incorrect path, path 2 in Fig. 5.3, and
selects the path that has the same directory name with the incorrect path. If we cannot
select one path from all the paths, which house the same file name with an incorrect path,

the function stops the conversion of the destination URL.

Thus, in our proposed scheme, the HT'TP forwarding function converts an incorrect path
of a destination URL to a path selected according to the similarity of the file and directory
names of a lower path. With this scheme, it is possible for attacks with incorrect paths,
which are likely to target web applications on a web honeypot, to succeed. Counsequently, a
vulnerable web application receives the attack and the result is transmitted to the attacker

by an HTTP response message, leading the attacker to believe the site has been infected.

5.2 Evaluation of Proposed Honeypot and Conventional Web
Honeypot

One of the main reasons to deploy high-interaction web honeypots is to allow attackers
to gain full access to systems and to allow them to launch further network attacks by
executing malware. By sending HTTP response messages or other types of traffic, which
are generated by executed malware, to attackers, the web honeypot can trick attackers into
recognizing the web honeypot as a vulnerable website. In addition, the web honeypot can
collect malware downloaded with a downloader, which is distributed using an exploit code
by attackers. In these cases, the attack success ratio is important because no malware is
downloaded and executed if attacks fail. To confirm the effect of our proposed schemes,
including the cache table and conversion algorithm, it is necessary to evaluate the attack
success ratio improved by these schemes. It is also better to evaluate the ratio by using

actual attack data from the Internet.

— 5HhH —

5.2 Evaluation of Proposed Honeypot and Conventional Web Honeypot

Web honeypot

e —————— e = = e e e = e e = e =

Decoy website

| I

1
1
Surveillance -Cent0S5.2/Apache2.2/MySQL4.0/ :
function 11 PHP web application I
1 [
____________ i —
Internet Router Web honeypot

_____________________________ a

1 Decoy website

Surveillance _:-CentOSS.Z/ApacheZ.2/MySQL4.0/
function | PHP web application

i __I:Virtual machine - Lo 3

Figure 5.4: Experimental environment

To evaluate the attack success ratio, we collected attack data from the Internet us-
ing high-interaction web honeypots. We also analyzed these data by static analysis and

evaluated the effectiveness of our proposed scheme.

5.2.1 Experimental Environment

The experimental environment for the evaluation is shown in Fig. 5.4. The decoy websites,
deployed as vulnerable websites in high-interaction web honeypots, carried linux OS and
open source web applications, which were programmed using PHP. The decoy websites and
surveillance functions were constructed on virtual machines, which were constructed using
software such as VMware [55]. We compared the proposed high-interaction web honeypots
with conventional high-interaction web honeypots, such as the high-interaction honeypot
analysis tool. We counted the number of naturally successful attacks on a decoy website
and successful attacks on a decoy website with the proposed scheme because the amount
of attack information collected by conventional high-interaction web honeypots depends on

the number of successful attacks on a decoy website on such honeypots.

— 56 —

Chapter 5. Intelligent Web Honeypot Based on URL Conversion Scheme

Table 5.1: Experimental results

Total Naturally Successful attacks with
attacks | successful attacks | proposed scheme
Number of attacks 1035 33 (3%) 526 (50%)
Different types of malware | 63 14 (22%) 45 (71%)

5.2.2 Results of Experiment

We collected attacks on web honeypots from the Internet between January 30, 2009 and
July 22, 2009 using the environment illustrated in Fig. 5.4. We analyzed RFI attacks on
three web applications installed on our high-interaction web honeypots, to evaluate our

proposed scheme.

The total number of attacks, naturally successful attacks and those using the proposed
scheme, are listed in Table 5.1. To evaluate whether the proposed scheme can collect much
more information that can be used to protect websites, the number of different types of
malware, whose information, such as information of malware download sites, can be used
to protect websites used in each attack is also listed. The type of malware is distinguished
by the SHA1 value of a malware file. In this evaluation, the number of attacks and the
different types of malware are manually searched. Furthermore, the types of malware, which
would be used in failed attacks, are counted by analyzing these failed attacks and manually
downloading the malware. As listed in Table 5.1, only 3% of the attacks were naturally
successful, and 22% of the malware was collected from these successful attacks. On the
other hand, about 50% of the attacks were successful with the proposed scheme, and 71%
of the malware was collected. Thus, web honeypots can increase the probability of malware

collection from 22% to 71% by path conversion of 47% of attacks with our proposed scheme.

Next, we analyzed the number of detections of each incorrect path. The number of
detections of each path, which were converted using the proposed scheme, is shown in
Fig. 5.5. Figure 5.6 shows the number of detections of each path that was not be converted

using the proposed scheme but was likely set for using a web application program installed

— 57 —

5.2 Evaluation of Proposed Honeypot and Conventional Web Honeypot

Number of detections

140

120

100

80

60

40

20

0 I""II"lllllll-...........

Path

Figure 5.5: Detections of each incorrect path that was converted

Number of detections

140

120

100

80

60

40

20

olh_l_l_l_l_luwa

Path

Figure 5.6: Detections of each incorrect path that was not converted but set for using
applications on web honeypots

on the web honeypots. Moreover, the number of detections of each path that was likely
set for using a web application program not installed on the web honeypots, or whose
structure was too easy to convert, is shown in Fig. 5.6. As shown in Fig. 5.5, more than
half the paths were repeatedly detected. Therefore, a cache table was referred to frequently.
Additionally, the number of detections of each path in Fig. 5.6 was about 10% of the number
of detections of each path in Fig. 5.5. This suggests that our proposed scheme can convert
incorrect paths that are likely set for using web application programs installed on web

honeypots. Furthermore, as shown in Fig. 5.7, some attacks set paths that are related to

— H8 —

Chapter 5. Intelligent Web Honeypot Based on URL Conversion Scheme

Number of detections

140

120

100

80

60

40

20

0
Path

Figure 5.7: Detections of each incorrect path that did not have to be converted

Use time of same path
27
18
12

B N W A U1 OO

0 5 10
Number of source IP addresses

Figure 5.8: Relationship between attackers and use time of same path

web applications on web honeypots.

Finally, to investigate the usage of incorrect paths, which are described in failed attacks,

we analyzed the usage trend of the most frequently monitored path shown in Fig. 5.5. The

relationship between the number of usage times of the path and the number of IP addresses

of attackers who use the path is shown in Fig. 5.8. Furthermore, The relationship between

the use times of the path and the detection interval of attacks, in which the path is described,

is shown in Fig. 5.9. For example, as shown in Fig. 5.8, an attacker sent an attack, which

had the same path, 27 times. This figure shows that about 70% of attackers repeatedly

used this frequently used path. In addition, about 60% of attack intervals, in which the

— 59 —

5.2 Evaluation of Proposed Honeypot and Conventional Web Honeypot

Detection Interval of same path

1 I L I I
I 1 |

6 _; _______ pp—— 0O ~1min
5 |=ZZZZZi Ciimin~1h
4 e =t £=1h~1day
=
3 __.. B 1day~
) Borons
=
0 5 10 15 20 25

Number of detections

Figure 5.9: Detection interval of same path

path is described, were less than a minute. As shown in Fig. 5.9, for example, an attacker,
who sent an attack 27 times using this path, sent the next attack, which had the same path
as the previous attack, 21 times within a minute. This suggests that a path list, in which
target paths are described, may be shared among attackers. Attacks are also repeatedly
sent for a period of time. From these results, attacks are likely to be generated and sent

automatically using attack tools.

5.2.3 Discussion

As shown in Table 5.1, the proposed scheme enables about half of possible failed attacks,
which have an incorrect path, to succeed. In addition, the scheme can collect about 71%
of the malware, which shows that it can efficiently collect malware. On the other hand,
attacks whose incorrect path cannot be converted with the proposed scheme include those
whose paths are set for using web application programs not installed on web honeypots,
as shown in Fig. 5.7. These attacks may be automatically generated with attack tools, as

shown in Figs. 5.8 and 5.9.

— 60 —

Chapter 5. Intelligent Web Honeypot Based on URL Conversion Scheme

Attacker Target website/ Malware Malware
ﬂg our web honeypot dowpload dow_nload
site] Malware site| Malware
program program
Send:attack to force tatget to to send to control
download first malware; program strings target

malware
Execute program

Send HTTP response messages including
strings written by malware program

Attacker can know whether target is
vulnerable

Send attack to force target to download
nextimalware program

malware
Exécute program

With proposal, it become easy for web
honeypots to collect these attacks

Make connection with command and control server as bot

Figure 5.10: Sequential attacks

If all these attacks are successful with the proposed scheme, the behavior of web honey-
pots becomes forced and artificial. In this case, there is a possibility that attackers will be
able to detect our web honeypots as actual web honeypots. In other words, attackers will
not consider our web honeypots as target websites. From this point of view, the proposed
scheme is suitable because it converts incorrect paths resembling paths on web honeypots.
Moreover, as shown in Figs. 5.5 and 5.6, more than 90% of the attacks, of which each path is
not correct but likely set for using a web application program installed on a web honeypot,
were successful with the proposed scheme. Additionally, a cache table was used frequently.

Thus, the proposed scheme can convert incorrect paths effectively and efficiently.

Attacks on high-interaction web honeypots are successful due to the following. First,
if attackers used downloaders, which download other malware programs, high-interaction
web honeypots can monitor additional malware programs and malware download sites.

In addition, the honeypots can monitor sequential attacks, which send additional attacks

—61 -

5.2 Evaluation of Proposed Honeypot and Conventional Web Honeypot

Date:
2009/7/29 5:02
Destination:
http://<host_A>/<path_B>7<paramater_C>=http://www.<siteD>.org/files/fey/<file_X>7?
Date:
2009/7/29 5:03

Destination:
http://<host_A>/<path_B>?<paramater_C>=http://www.<siteD>.org/files/fey/<file_Y>?

Date:
2009/7/29 5:05
Destination:
http://<host_A>/<path_B>7<paramater_C>=http://www.<siteD>.org/files/fey/<file_Z>?
Date:
2009/7/29 8:25

Destination:
http://<host_A>/<path_B>7<paramater_ C>=http://www.<siteD>.org/files/fey/<file_Z>?

Figure 5.11: Actual sequential attacks

according to the success of the first attack, as shown in Fig. 5.10. In these attacks, an
attacker first uses a malware program, which writes specific strings in HTTP response
messages. Such malware programs are used to confirm whether attacks are successful since
the programs can be used as new malware programs by changing the strings, even though
the programs are analyzed by security vendors to detect malware infection. If the attacker
can confirm the strings in the HT'TP response messages, the attacker sends another attack,
whose exploit code is the same as the first attack, to download another type of malware
program that controls the target website, high-interaction web honeypots in our proposed
scheme, as a bot. In an additional investigation, the sequential attacks were monitored, as
shown in Fig. 5.11. In these attacks, URLs of malware download sites, whose host names
were the same, were inputted as a value of parameter_C of the program located on path_B
of the high-interaction web honeypot whose host name was host_A. There are three types
of malware programs, file_X, file_Y, and file_Z. File X writes specific strings into HT'TP
respounse messages. File Y searches and sends information of the web honeypot such as host
name, [P address, OS, and kernel versions. File_Z controls the web honeypot. The attacks

were successful with our proposed scheme. As a result, some types of malware programs,

~62 -

Chapter 5. Intelligent Web Honeypot Based on URL Conversion Scheme

such as those in Figs. 5.10 and 5.11, were used. With conventional web honeypots, it is
difficult to monitor sequential attacks because attackers do not send additional attacks
after a failed first attack. On the other hand, in our proposed scheme, the first attack can

succeed, so we can collect sequential attacks.

5.2.4 Conclusion

We proposed a scheme for improving attack information collection on high-interaction web
honeypots by converting the destination URLs of low-accuracy attacks.

In our proposed scheme, when a path described in destination URLs does not exist on
a web honeypot, the path is converted to a correct path on that honeypot by determining
the correct path that may be targeted by the attacker. We also showed the effectiveness of
a conversion algorithm, which determines a correct path from the similarity of the file and
directory names of a lower path.

From these results, about 50% of incorrect paths can be converted to correct paths with
the proposed scheme. Most of the remaining 50%, which cannot be converted with the
proposed scheme, are for web applications that were not installed on the web honeypots.
If attacks, which have these remaining paths, are forced to be successful, attackers may
conclude that the behavior of the website, which is a web honeypot in this case, is not
normal. Therefore, the attack success ratio of the proposed scheme is suitable.

By deploying the proposed scheme, we can improve the attack information collected
by high-interaction web honeypots. As a result, we can collect many types of attacks and
analyze them in detail, improving the quality and quantity of information useful for website

protection. This will enable service providers to construct secure website environments.

— 63 —

Chapter 6

High-Accuracy Attack Detection
by Blacklist Update Scheme Based

on Behavior Analysis of Attackers

6.1 Issues with Network-Based Blacklisting Scheme

The malware located on a malware download site may eventually be removed by either the
attacker or the website manager and replaced with a different file [61]. Here, we define the
frequency corresponding to continuous placement of the same malware as the active period
of that malware download site. If malware has been removed and replaced by a normal file,
that malware download site, which is no longer in its active period, must be identified and
removed from the blacklist as a target of filtering prohibiting communications in order to
minimize the effects of such filtering on other services. However, as shown in Fig. 6.1, there
is also the possibility that a malware download site that has exceeded its active period will
be loaded with different malware file and maliciously used as a new malware download site.
In this case, communications with that site must continue to be prohibited.

Here, we describe four conditions that can occur when managing the URL of a malware

download site (Table 6.1). Given that the URL of a non-malware-download site is not

— 65 —

6.1 Issues with Network-Based Blacklisting Scheme

Active period (period covering placement of the same malware)

Original False positive False negative
malware is period period
replaced by

different Malware

malware. removed

Malware
loaded
again
ile monitoring
o period
A A A A A\ A .
Attack Malware No Attack Time
received changed malware received
=Recognized =Continue detected =Recognized
as a malware filtering =Remove as a malware
download site as target download site
of filtering

Figure 6.1: Active period of malware download site

Table 6.1: Generated condition

Not on blacklist

On blacklist

malware download site

Site not used as a True negative False positive
malware download site
Site used as a False negative True positive

blacklisted (true negative (TN)), a false negative (FN) occurs if malware is placed on
that site. On the other hand, a true positive (TP) can occur if that site is subsequently
discovered to be a malware download site and its URL is blacklisted. Under this condition,
the malware placed at the URL of that malware download site may be removed and replaced
by another file. This action would generate a false positive (FP) in which access to that
URL is erroneously detected as part of an attack and filtered out. Here, we point out that
a malware download site may also be blacklisted in terms of its domain or IP address in

addition to its URL. This means that a false positive in which access to all services provided

— 66 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

by that site is filtered out.

Since a service provider usually discovers that malware has been deleted from a certain
malware download site by being told this by users, and unblacklists the site’s URL, a false
positive exists during the time period from malware deletion to URL removal. One way to
solve this problem is to periodically send out a probe to obtain the malware on that malware
download site to confirm its presence there. However, the attacker sense the transmission
of this probe and move the malware to another site to create a new malware download site
and continue the attack [61]. In this case, the service provider will not be able to detect
that attack until the new malware download site is discovered by a honeypot, which will
have the effect of lowering the true positive rate.

To solve this problem, the service provider needs to send out a probe to the malware
download site at time intervals that prevent the attacker from sensing the probe: this will
minimize false positives rate and maximize true positives rate. The positive predictive value
(PPV) indicates the probability that a blacklisted URL is actually a malware download
site: a larger value is preferable.

TPR

PPV = ————— 1
v TPR+ FPR (6-1)

where T PR is the true positive rate and F'PR is the false positive rate.

6.2 Blacklist Monitoring Scheme

6.2.1 Design Issue of Conventional Monitoring Scheme

Malware on malware download sites may be deleted or replaced by attackers or website
managers whose websites are being used illegally by attackers. The period within which
a malware program is located on a malware download site is called the life cycle of the
malware download site in this work. If malware download sites whose life cycles have
finished (i.e., a malware program on a malware download site was deleted) remain in the

filtering list, the list becomes huge and increases the filtering load. In addition, if a malware

— 67 —

6.2 Blacklist Monitoring Scheme

(")
Manage URLs of malware
download sites and hash values

Malware A of malware located on each

Malware download_ site malware download site
(http://host#3/d-A/d-B/d-Cfile —~_{

a) URL of malware download site |Hash value
http://host#3/d-A/d-B/d-C/file-a | hash#101
http://host#5/d-V/d-D/d-H/file-c | hash#025

Malware B http://host#7/d-N/d-O/d-R/file-q | hash#487

Malware download site
(http://host#5/d-V/d-D/d-H/file-c) \ Compare values
\ []Malware_A hash#101

[|Malware_B hash#025

Malware_C [|Malware_C hash#487
Malware download site \

(http://host#7/d-N/d-O/d-R/file-q) | Get files from each Calculate hash
malware download site values
_ Internet J | Site monitoring system

Figure 6.2: Monitoring malware download site using conventional file monitoring schemes

program is deleted and a normal file is located on the same path by website managers or
legal users, accesses to the normal file are filtered, which may stop legitimate services. To
avoid these situations, it is necessary to identify malware download sites whose life cycles
have finished and remove the URLs of the malware download sites from the filtering list.
On the other hand, malware programs may be replaced with different malware programns,
and the malware download site may be used as a new malware download site. Therefore,
the URL of the malware download site should remain in the filtering list.

In spite of the lack of schemes to solve this problem, conventional file monitoring schemes
are applied to periodically monitor malware programs on malware download sites. In such
schemes, as shown in Fig. 6.2, when a web attack analyzer detects a malware download site,
the site monitoring system records the URL of the malware download site and a hash value
of the malware program downloaded from the malware download site. In addition, the

system downloads a file from the URL and calculates a hash value for the file to compare

— 68 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

the calculated hash value with the recorded hash value. If the values are the same, this
indicates that a malware program has been located on the malware download site again
since its first download. Therefore, the URL of the malware download site should remain in
the filtering list. On the other hand, if the values are different, the service provider should
confirm whether the new file is malware. If the file is not malware, the URL of the malware
download site should be removed from the filtering list. Of course, if the site monitoring
system cannot download any file from the URL, the URL of the malware download site can
be removed since the malware may be removed. To deploy these conventional file monitoring
schemes, the service provider can confirm the life cycle of each malware download site to
some extent and update part of the filtering list according to the results of periodical
monitoring.

However, in these schemes, when hash values are different, it is necessary to analyze
the new file and confirm whether the file is malware. Generally, anti-virus software is
used to confirm this; however, the detection ratio of anti-virus software to malware on
websites is limited. To analyze malware programs on not websites but user terminals,
there is a conventional scheme that analyzes malware programs dynamically by running
them on a closed virtual Internet and monitoring their actions [53]. However, almost all
malware programs on websites are scripts and run by using programs of vulnerable web
applications. Therefore, it is difficult for the conventional dynamic analysis scheme to run
malware programs and monitor the actions dynamically without some additional ideas.
Consequently, engineers must manually analyze the new file, which increases labor costs.
Thus, with the conventional schemes, it is difficult to efficiently and automatically monitor

the life cycles of malware download sites.

6.2.2 Proposed Monitoring Scheme

In our proposed scheme, each HT'TP request of an attack from the Internet to web honeypots
is recorded, with the URL of the malware download site and the hash value of the malware

program downloaded from the malware download site, as an attack management list. As

— 69 —

6.2 Blacklist Monitoring Scheme

described in chapter 4, if an HT'TP request of an attack is recorded, a web attack analyzer
can replay the attack by using a new file to determine whether the file is malware. A site
monitoring system and a web attack analyzer can replay attacks again by using the HTTP
request of an attack and a copy of the decoy website, so dynamic analysis on a web attack
analyzer can be conducted. As a result, the site monitoring system can automatically
analyze the new file when hash values are different. The following is a more detailed
explanation.

In our proposed scheme, the site monitoring function consists of an attack management
list. When a web attack analyzer specifies the URL of a malware download site, the web
attack analyzer notifies the URL, the hash value of the malware program located on the
malware download site, and the exploit code, which is described in the HTTP request of
the attack, to the site monitoring system. The site monitoring system generates a new
entry in the attack management list from the notified information and sets the monitoring
interval for each entry, as shown in Fig. 6.3.

The site monitoring function downloads files from each malware download site according
to the interval described by each malware download site in the attack management list. If
the site monitoring system cannot download any files from a malware download site, it
deletes the entry of that site from the attack management list and removes the URL of
that site from the filtering list, which is located in the filtering function. If the system can
download a file from a malware download site, the system calculates the hash value of the
new file and compares it with the hash value described in the attack management list entry
in which the malware download site is described. If the values are the same, this indicates
that a malware program has been located on the malware download site again since its first
download, so the site monitoring system enters the next interval. On the other hand, if
the values are different, the system sends the new file and an exploit code, described in the
attack management list entry in which the malware download site is described, to a web
attack analyzer. The web attack analyzer sends the attack to a decoy website by using the
exploit code. In this case, the decoy website sends a file download request; therefore, the

web attack analyzer sends the new file to the decoy website as a file download response.

- 70 -

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

Attack management list [

URL of malware download sites Hash values| Intervalsi

1
http://host#3/d-A/d-B/d-C/file-a | http://host#1/set.php?dir= hash#101 10
http://host#5/d-V/d-D/d-H/file-c | http://host#1/board/login.php?id=| hash#025 5
http://host#7/d-N/d-O/d-R/file-q | http://host#1/set.php?dir= hash#487 3

Exploit codes

Site monitoring system

2) Send file
whose hash

Web attack analyzer

~~-_ _ Copy of decoy
—= value is website
4_% Attack . c_jlfferent from
- management list || list
1)Download
files from each >
malware

/N

download site

- 4) Send the result
by each interval

—

5) If file is malware, hash value of list

3) Replay attack by
using list information and

is update. If file is not
malware, delete entry in list and
filtering list on filtering function

new file and judge
whether file is malware

Figure 6.3: Proposed scheme

After that, the web attack analyzer can confirm whether the file is malware by monitoring
the actions of the decoy website, and the web attack analyzer sends the analysis result to the
site monitoring system. If the file is not malicious, the site monitoring function deletes the
attack management list entry in which the malware download site is described and removes
the URL of that site from the filtering list in the filter function. On the other hand, if the
new file is malware, the system updates the hash value of the attack management list entry

in which the malware download site is described.

Thus, in the proposed scheme, exploit codes for malware infection are recorded to replay
attacks by using an exploit code and a new file. By using this scheme, a filtering service
on a cloud computing environment, on which a large number of websites are run, can be
provided automatically according to user demand by coupling a web honeypot, web attack

analyzer, and site monitoring system.

~71 -

6.2 Blacklist Monitoring Scheme

Table 6.2: Results of first investigation

Number of sites that replaced Life cycle[days]
their malware program Min. | Ave. | Max.
64 0 17.6 | 212

6.2.3 Investigation and Analysis

Labor costs can be cut with our proposed scheme, which monitors life cycles of malware
download sites and automatically updates a filtering list. To evaluate its effectiveness, we
first investigated malware download sites, for which the proposed scheme is needed, by
developing a prototype system as part of the proposed scheme and connecting the system
to the Internet. We also investigated the life-cycle characteristics of malware download
sites.

In these investigations, 11 high-interaction web honeypots, on which a decoy website,
controller, and firewall were deployed on a virtual machine of a physical server, were located
on 2 different address blocks, and malware from the Internet between January 30, 2009 and

March 31, 2010 were collected.

6.2.4 First Investigation

Table 6.2 lists the number of malware download sites on which malware programs were
replaced and the life cycles of these sites. We confirmed life cycles every day. In addition,
the life cycles of malware download sites on which malware programs were located on March
31, 2010 were cut on that day.

In Table 6.2, a life cycle equaling 0 shows that a high-interaction web honeypot could not
download malware from a malware download site. This shows that attack timing of bots,
which generate many attacks to websites using automatic attack tools, sometimes does not
correspond to the life cycles of malware download sites. As shown in Table 6.2, there were
64 malware download sites on which malware programs were replaced. On some of these

sites, malware programs were replaced every day. This could be because attackers tried to

—72 -

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

0.9

0.8

0.7

0.6

0.5 v‘

0.4 ¢

0.3 .

Cumulative distribution function

0.1

0 T T T 1

0.1 1 10 100 1000
Life cycle [days]

Figure 6.4: Life cycles of malware download sites

conceal their malware programs and their attack platform, such as malware download sites,
from anti-virus software and security vendors. In this investigation, all malware programs
were replaced not with normal files but with other malware programs. The functions of
some of these malware programs were drastically changed. From these results, our proposed
scheme, which can dynamically analyze files by replaying attacks, is necessary to deal with

the change in malware functions.

6.2.5 Second Investigation

We investigated the life-cycle characteristics of malware download sites. To clarify and
design the monitoring interval, we first investigated the cumulative distribution function, as
shown in Fig. 6.4. Many malware download sites are generated by illegally using legitimate
websites. In these websites, there is a probability that malware will be deleted by anti-virus
software installed by website managers. Therefore, the life cycles of malware download sites

may depend on the install conditions and detection ratios of anti-virus software. To clarify

- 73 —

6.2 Blacklist Monitoring Scheme

Table 6.3: Relationships between life cycles of malware download sites and characteristics
of malware programs

Types of | Detection result of | Number of sites that replaced Life cycle [days]
malware | anti-virus software their malware program Min. | Ave. | Max.
Bot Not detected 64 0 17.3 | 212
generator Detected 0 9 40.5 | 197
Other Not detected 0 2 38.3 | 120

malware Detected 0 2 30.7 58

this, we investigated the relationship between the life cycles of malware download sites and
the characteristics of malware, especially whether anti-virus software can detect malware.
The results are listed in Table 6.3. We compared the life cycles of malware download sites
on which malware for generating bots is located with the life cycles of malware download
sites, on which malware for other aims, e.g., sending messages to attackers, sending server
information such as kernel version to attackers, and downloading other malware programs
such as a downloader, is located. In addition, each malware program was checked by anti-
virus software and distinguished according to the detection results.

The cumulative distribution function, as shown in Fig. 6.4, is extremely similar to
the cumulative distribution function of a normal web page [62]. This result shows that
the monitoring interval of malware download sites can be designed using algorithms for
determining the crawling interval of web page crawlers. Crawling systems can quickly
detect updated web pages by dynamically adjusting the crawling interval by each web page
according to the update frequency of each web page. Therefore, it is useful to adjust the
monitoring interval of malware download sites according to the change frequency of the
hash values of malware located on each malware download site.

As shown in Table 6.3, at malware download sites on which malware programs except
bot generators were located, only malware programs not detected by anti-virus software
were replaced. In this investigation, the life cycles of malware download sites on which
these malware programs are located are similar to those listed in Table 6.2. Therefore,

these malware download sites are the most common. On the other hand, at malware

— 74 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

download sites on which bot generators are located, no malware programs were replaced.
In addition, the life cycles of malware download sites were longer than those listed in
Table 6.2 irrespective of the detection results from anti-virus software.

Thus, life cycles of malware download sites are not affected by the detection ratio of anti-
virus software and the type of malware program. Therefore, the results of our investigations

may not change according to the spread of anti-virus software to websites.

6.2.6 Discussion

In our investigations, no malware programs on malware download sites were replaced with
normal files. However, if a malware program is replaced with a normal file by website
managers or users, the filtering list should be quickly updated so as not to filter accesses
to the normal file. On the other hand, we confirmed that many malware programs are
replaced with other malware programs. This may be caused by attackers who want to
avoid detection by anti-virus software. Our proposed scheme is effective because it can
dynamically analyze a new file without the need for manual analysis.

The life cycles of malware download sites depend on the actions of attackers. For
example, attackers replace malicious websites, which enable malware infection of a user’s
terminal via the user’s web browser, in the short term to avoid malware detection by anti-
virus software. Therefore, attackers may change the life cycles of malware download sites
despite the life cycles of malware download sites recently being the same as those of normal
web pages. To correspond with these trends, investigation of statistical data of life cycles
is important. Additionally, interval learning functions, which can adjust the monitoring
interval for malware download sites according to the shift in the distribution characteristics

of life cycles, will be effective.

6.2.7 Conclusion

We proposed an automatic life-cycle monitoring scheme for malware download sites on

which malware is located. In addition, we reported the results of our investigation on the

- 75—

6.3 Blacklist Update Scheme Based on Behavior Analysis of Attackers

life cycles of malware download sites on the Internet.

In our proposed scheme, when a high-interaction web honeypot receive attacks from
the Internet, an exploit code and URLs of malware download sites and malware programs,
which are distributed by the attack, are recorded on a site monitoring system. In addition,
the site monitoring system attempts to periodically download a file from each malware
download site. If the hash value of the new file is different from that of the malware
program recorded on the site monitoring system, the system dynamically analyzes the file
and determines whether the file is malware by using the new file and the exploit code
recorded on the site monitoring systern.

From the results of our investigations on the Internet using our prototype system, we
identified malware download sites on which malware are frequently replaced. From this
investigation, we clarified the cost efficiencyof our proposed scheme. In addition, we con-
firmed that the life cycles of malware download sites are similar to those of normal web
pages. We also found that we can design the monitoring interval of malware download sites
by using an interval-determination method for web page crawlers. Furthermore, we showed
that the life cycles of malware download sites will not be affected by the spread of anti-virus
software.

Thus, our proposed scheme can improve the filtering of malware infection of websites
by automatically updating the filtering list. By using this scheme with a website protection
scheme, which filters accesses from websites to malware download sites, service providers
can provide security services to many websites on cloud computing environments, in which
many types of web services are provided. These security services can be provided according

to user demand or service specifications economically and efficiently.

6.3 Blacklist Update Scheme Based on Behavior Analysis of
Attackers

In this analysis, we consider an attacker preparing a bot (automated software tool, derived

from the word robot) to be used as a malware download site, i.e., a stepping-stone site for

- 76 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

Attacker A
Attacker A
Senses probe at rate <J Attacker A
f(a, y) (stops using bot). Executes attacks at fixed rate a.

Total number of bots: N
Attacker A —

Begins using bot at rate
and stops using bot at Bot B, Bot B,
rate .

Malware

SN —— = \= 7

1
1
Bot B :
1
1

o ————

Victim V

Transmits probe at
rate y (detects bot
termination at rate

Victim V
Discovers attacks and identifies bots used
as malware download sites at rate .

a(v))-
— \ — Attacker V
transmit Website e Website
function honeypot

Figure 6.5: Analysis model

mounting attacks. We define states from the viewpoints of whether or not that bot is being
maliciously used as a malware download site and whether or not it is currently blacklisted.
We also specify transitions between such states through the behavior of the attacker and
that of the victim, i.e., the service provider. In addition, we define an evaluation index
in terms of the TPR, FPR, true negative rate (I'N R) and false negative rate (FNR) to
determine an optimal probe transmission period. Though an attacker may also use a bot to
transmit attack messages in an actual attack, a "bot” in this analysis model denotes only

one used as a malware download site.

6.3.1 Analysis Model

This analysis model consists of a single attacker A, a single victim V, and N bots By,Bs,
...,Bn as shown in Fig. 6.5.

We denote the bots used by attacker A as b= (B;) (1 <i < N) such that B; = 1 when
attacker A is using B; and B; = 0 otherwise, and we denote the blacklist of victim V as

Il =(l;)(1 <1 <) such that [; = 1 when B; is on the blacklist and I; = 0 otherwise.

- 77 -

6.3 Blacklist Update Scheme Based on Behavior Analysis of Attackers

Next, we denote the probe transmission rate of victim V as . This means that victim
V sends a probe to bot B; at rate v when [; = 1, that is, when B; is on the blacklist.
Furthermore, when B; = 1, attacker A monitors the packets received by bot B; currently
being used in an attack and, if a probe is sensed, terminates the use of B;. The packets
received by B; consist of attack-related packets and probe-related packets, and if the number
of packets used in an attack is large, the probability of sensing a probe is low. We therefore
denote the probe sensing rate as f(c«,y), here, « is an attack rate.

Next, we denote the bot-termination detection rate of victim V as g(v). Here, given
that victim V has been sending out probes at rate vy to bot B; on the blacklist (I; = 1),
victim V detects at rate g(y) that an attack by B; has terminated, i.e., that B; is not being
used by the attacker (B; =0).

The following assumptions are made in this model.

1. Attacker A executes attacks on victim V at fixed attack rate a.

2. Attacker A terminates the use of bot B; for mounting an attack at fixed rate n [61]
and begins an attack using bot B;, which was not being used in an attack at that

time, at fixed rate (.

3. Victim V detects an attack by non-blacklisted bot B; at fixed detection rate g and
blacklists bot B;.

Blacklist-based defensive measures originating in the attack defense function might be
detected by the attacker; however, other studies of the defense function have shown that
this detection can be prevented with high probability, so this analysis assumes that this
kind of detection does not occur. Likewise, the attacker might detect that a service provider
is using a honeypot to detect attacks; however, other studies of web honeypots have shown
that this detection can be prevented, so this analysis also assumes that honeypot detection

by the attacker does not occur.

— 78 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

6.3.2 Derivation of State Transition Rate

A system state can be expressed in terms of B; and [; and the state transition rate from
state (b,l) to state (b’',l") as A(b,l)(b',l')‘ Here, it is assumed that the occurrence of state

transitions follows a Poisson process.

First, we consider the state transition rate from state (b,l) to state (b’,l) (b # b’), that
is, the state transition rate for the case that attacker A adds or deletes a bot for use in an
attack. Since this analysis assumes that attacker A adds a bot for use in an attack at rate

¢, we get the following equation.

A(b,l)(b,,l) = (|b| = ZBZ = ZB; - 1) (6.2)

Furthermore, since attacker A terminates a bot being used in an attack at rate n, we

get

o'y =1 (bl = > Bi=> Bi+1) (6.3)

However, if a bot being used in an attack is on the blacklist (B; = I; = 1), attacker A
terminates the use of that bot not only at rate n but also when sensing the transmission of

a probe, which gives us

Mol = ") (6.4)
(Il = > Bi=) Bi+1,Bi=1l;=1)

Next, we consider the state transition rate from state (b,) to (b,l’) (I # l'), that is,
the state transition rate for the case that victim V updates the blacklist. Based on the

assumptions made in this analysis, a blacklist update occurs for no more than a single bot

- 79 —

6.3 Blacklist Update Scheme Based on Behavior Analysis of Attackers

B; per unit time. Initially, we consider that victim V deletes bot B; from the blacklist.
Given that all bots are equivalent and that the rate at which victim V detects attack

termination from bot B; is g(7), we get

Conversely, we can consider the case that victim V places bot B; on the blacklist. Now,
given that all bots are equivalent and that the rate at which victim V detects an attack

from bot B; is vy, we get

Aoy =P @#FV,L=0l=B;=1) (6.6)

If none of the above transitions occurs, the system stays in the same state, so we get

Noppp = ¢ o bbE L bbbl (6.7)

(b £V, 1AT)

Here, we point out that the rate for all other state transitions is 0.

To further examine the state transition rate, we present in Fig. 6.6 part of a state
transition diagram focusing on bots B; and By as bot B; used for mounting attacks. First,
when B; = 0, that is, when B is not being used in an attack, the use of By (B; = 1)
begins at rate ¢, as shown by Eq. (6.2). Now, when By = 1 and [; = 0, that is, when B; is
being used in an attack but is not on the blacklist, victim V detects an attack from B; and
places B; on the blacklist (I; = 1) at rate S in accordance with Eq. (6.6). In addition, the
use of B is terminated (B; = 0) at rate 7, as shown by Eq. (6.3). However, when B; =1
and [; = 1, that is, when B; is being used in an attack and is on the blacklist, the state

transition that terminates the use of By occurs at rate n + f(«,y), as shown by Eq. (6.4).

— 80 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

State: denoted as (B1, Bz, ..., I1, I2, ...)

Figure 6.6: Example of state transitions

Table 6.4: States of bots in Fig. 6.6

Bot B state | Bot By state
(0,0....,0,0,...) | TN TN
(1,0,...,0,0,...) | TN TN
(1,1,...,0,0,...) | FN FN
(0,0....,1,0,...) | FP TN
(1,0,...,1,0,...) | TP TN
(1,1,...,1,0,...) | TP FN
(0,0,...,1,1,...) | FP FP
(1,0,...,1,1,...) | TP FP

Furthermore, when By = 0 and [; = 1, that is, when Bjis not being used in an attack but
is on the blacklist, B is removed from the blacklist (I; = 0) at rate g(-y), as shown by Eq.
(6.5). In addition the state transition expressed by Eq. (6.7) occurs at each state.

The states of bots By and By for each of the system states shown in Fig. 6.6 are listed
in Table 6.4. The states of all bots are TP or TN whenever b = I, which is an optimal

system state.

~ 81 -

6.3 Blacklist Update Scheme Based on Behavior Analysis of Attackers

6.3.3 Numerical Examples and Derivation of Evaluation Index

Using the Markov chain for this analysis model, we compute TPR, TNR, FPR, and FNR
versus 7y by calculating the stationary distribution probability of each state. In this analysis,
we set parameters other than « and v on the basis of the results of surveying actual malware
attacks. First, given that the number of malware download sites used in an attack at any
one time is actually fixed [61], we set this number to 1. In this case, the termination of
bot B; currently being used in an attack and the commencement of an attack using newly

selected bot B;(i # j) occur simultaneously, which gives us

(=n (b|=>_Bi=> Bj=1) (6.8)

Moreover, since the rate of probe detection by the attacker drops as the number of

attacks increases, as described earlier, we get

(0]

flany) = 5 (6.9)

Furthermore, because the rate of terminated bot detection by the victim can be deter-

mined from the probe’s responses, we get

9(y) =~ (6.10)

Since, in this analysis, no differences arise among bots in terms of transition rate, we can
define PPV and the negative predictive value (NPV') by the following equations, where
the former is the probability that bot B; is a malware download site when B; is blacklisted
and the latter is the probability that bot B; is not blacklisted when B; is not a malware

download site. These can be treated as evaluation values.

S TPR
PPV = 11
v S TPR+ Y FPR (6.11)

ZTPR = 2 {(blyes|Bi=t=1} £(b,1)

_ 82 -

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

ZFPR = Z{(b,l)eS\Bi:ODlizl} P(b,1)

SSTNR
NPV = 12
v STNR+Y FNR (6.12)

ZTNR = Z{(b,l)eswi:zi:o} P(b,1)

> FNR= 2 (b byes|=ini=0y £(b:1)

Here, S denotes the set of all states and P(b,l) denotes the stationary distribution
probability of state (b,1).
We can also consider as an evaluation index the sum of stationary distribution proba-

bilities O, such that the states of all bots are either TP or TN.

Op = Z(b,l)eS\Bi:li P(b,1) (6.13)

To calculate v that maximizes PPV, NPV, and Op, we must monitor the total number
of bots N and number of attacks « used by the same malware download site and estimate

n and B. We describe a method for estimating 1 and g in the following subsection.

6.3.4 Parameter Estimation Based on Surveys of Actual Malware Attacks

To estimate i and beta from actual attack conditions, we set up seven our web honeypots [63]
on the Internet and collected attacks according to an attack-survey method [64]. We also
measured the active periods of malware download sites once a day. This survey ran from
October 1, 2011 to February 14, 2012, during which time we collected a total of 128,897
attacks and uncovered 97 malware download sites. The active periods of these malware
download sites are summarized in Table 6.5. We also found through this survey that
attacks using the same malware download site lasted for times ranging from about one

second to more than a month. The unit time for this analysis was therefore taken to be on

— &3 —

6.3 Blacklist Update Scheme Based on Behavior Analysis of Attackers

Table 6.5: Results of surveying actual active period

Active period[days]
Min. | Ave. | Max.

Active period of a 1 15.8 | 124
malware download site

Attacker A HE

Malware
download site

Internet

Web Web
honeypot | | honeypot

Figure 6.7: Placement of periodic attacks

the order of a minute.

The active periods of malware download sites tend to follow an exponential distribu-
tion [64]. We can use the following equation to calculate from the average active period
the rate at which malware on a malware download site is moved to another site in units of

minutes.

n=1—¢ e = (.44 x 10+ (6.14)

In this survey, we uncovered two main attack patterns: intensive attacks lasting for an
interval of several seconds and attacks that reappeared after several days. As an example of
the latter, we observed attacks 3) and 9) from the same malware download site at the same

honeypot, as shown in Fig. 6.7. This observed result was thought to occur because the

84 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

attacker was sending out attacks to attack targets on a regular basis in the order of attacks
1) through 9). In this survey, we found that attacks using the same malware download
site were received by the same honeypot at an average interval of 22 days. Assuming that
the attack arrival interval follows a Poisson process and denoting the number of honeypots
deployed by the service provider as x and the attack detection rate of each honeypot as y,

we can calculate 8 as follows.

1

T
g = Zyi = (1 — e Zx2ixe0)
i=1

= 032x107* x 2 (6.15)

Here, assuming that the number of honeypots is 100 [65] as targets of observations in a
survey of actual attacks on websites, we get 8 = 0.32 x 1072.

Though explained in more detail in section 6.4.2, we mention here that this method for
estimating 1 and £ is just one example and that other estimation methods may be used for

this analysis.

6.4 Results and Discussion

6.4.1 Results

Using 1 and S calculated from the results of our survey on actual malware attacks, we
performed an analysis to determine optimal v when varying the value of a. In that survey,
we observed a maximum of 10 attacks per minute, so in this analysis, we calculated an
optimal value for ~y for values of o from 1 to 10. We also calculated evaluation values when
increasing the number of bots to determine how the total number of bots may affect those
values.

In this analysis model, the state in which bot B; is being used as a malware download
site and no bots have yet been blacklisted is taken to be the initial state. State transitions

are repeated until each state arrives at a stationary distribution so that the stationary

— 85 —

6.4 Results and Discussion

a=1
a=2

a=3
a=4

- a5

- q=6
a=7
o a=8

a=9

® Ge4e000r 4 4o 050° 9710

0.00001 0.0001 0.001 0.01 0.1 1

Figure 6.8: PPV versus v for various « (for N = 3)

1.00

[] ll‘ Il!!
JIr
| |
L] ¢ @ 0.95
Py is
R
il A T H e a=1
[
A 2 090 _ .o
% = "_431? B
oTE A a=3
] A.% 085 e a=4
A b - a=5
* A [u}
n A: & 080 a=6
{ '. A T éo o a=7
T o
L . ? o o a=8
* [§ _ o805 0.75
* A o9 A a=9
'.' s o a=10
S 1 0.70

0.00001 0.0001 0.001 0.01

Figure 6.9: NPV versus «y for various « (for N = 3)

distribution probability of each state can be determined and PPV, NPV, and Op can be
calculated. PPV versus v for different values of a when N(numberofbots) = 3 is shown
in Fig. 6.8, where the horizontal axis is v and the vertical axis is PPV. NPV versus v
for different values of &« when N = 3 is shown in Fig. 6.9, where the horizontal axis is vy
and the vertical axis is NPV. Results for TPR, TNR, FPR, and FNR for « = 1 and 10
when N = 3 are shown in Figs. 6.10 and 6.11, respectively. The horizontal axes are v and
the vertical axes are the values of TPR, TNR, FPR, and FNR. Finally, O, versus -y for

different values of & when N = 3 is shown in Fig. 6.12, where the horizontal axis is v and

— 86 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

0.70

0.60

. 050

0.40 o TPR

oo.-l"' = TNR

0 O oomm

828 v gooEs 030 © FPR
. % Y & :
) o FNR
[] 0000% Ps I:Fﬁ
— 0.20
[] e
[DO
o | 9%
%3% 0.10
e .
o oooommm B ¢ | "“'OI * 00 0.00
0.00001 0.0001 0.001 0.01 0.1 1

Figure 6.10: TPR, TNR, FPR and FNR versus 7 for a =1 (for N = 3)

0.70
NN a mEmmsm B N EEE=

L |
g 0.60

'
0.50
o &

w 040 o TPR
TNR
FPR

FNR

AP i Loy 0.30
5 .

O o m e

s e O 020

4, 0.10

%o
S0

B—o-ooomm 0 |:||:||:||:|IIJI|:|

*

*
k3 %0
S 0000w o 388 0.00
0.00001 0.0001 0.001 0.01 01 1

8 g@%om

Figure 6.11: TPR, TNR, FPR and FNR versus 7 for « = 10 (for N = 3)

the vertical axis is O).

As shown in Fig. 6.8, an optimal vy exists for PPV for each value of «, or to put it
another way, optimal v changes according to a. For a = 1, for example, this optimal
value is v = 0.05 x 1072, Thus, in minute units, the optimal probe transmission period is
0.05 x 10~2, which means that an optimal probe transmission period of 1.38 days. Similarly,
for o = 2, the optimal value is v = 0.01 x 107!, and for a = 3, it is v = 0.05 x 107!, In
short, an optimal «y exists for PPV. By contrast, NPV decreases monotonically versus v in

Fig. 6.9. We think that the reason for this is that, while NPV differs somewhat according

— 87 —

6.4 Results and Discussion

1.00

0.95
0.90
g 38 0.85
goE= I ¢ 0.80

8 S 075 & a=1

Te [HFY.

el Tl 070 w a=)
LI\ 4 0.65

A g AN & A a=3
| Loy | a%=-2 0.60

- n_Ae D 055 ® a=4

Ao _

w4 Y 050 = a=5

e A o 045 < a=6

v 3 - [e] & - =

It 2l s . - QA 0.40

AN * PY n . [ulo) y ¢ a=7
" v =900 0.35

g= ¢ . A | "Sh o a=8
g - . 0.30

K o, T raR, A a=9
X 0.25
f. 3 e 0.20

by i . o a=10
1 + .“AQ‘; 0.15

| I,
¥ . 0.10
"k é% 0.05
; . . ; X L] 0.00
0.00001 0.0001 0.001 0.01 0.1 1

Figure 6.12: O, versus ~y for various « (for N = 3)

to «, the rate of increase of FFNR versus y converges sooner than the rate of increase of
TNR, as shown in Figs. 6.10 and .6.11. This means that, for NPV, it is desirable for ~
to be minimum. In this case, however, false positives occur frequently, as also shown by
Figs. 6.10 and 6.11. Moreover, when focusing on only true positives and true negatives,
the stationary distribution probability O, of the optimal state in Fig. 6.12 features an
optimal 7, though different from PPV . As described in section 6.1, a service provider must
decide a probe-transmission period for a malware download site that maximizes TP while
lying in a range that prevents the attacker from sensing the probe thereby minimizing FP.
Based on the results of this analysis, we conclude that false positives can be minimized
and true positives maximized by considering the PPV evaluation value and calculating

in accordance with «.

Next, we calculate PPV and O, when increasing the number of bots in this analysis
model and examine how optimal v changes with respect to this increase. PPV versus v
for different values of @« when N = 7 is shown in Fig. 6.13, where the horizontal axis is vy
and the vertical axis is PPV. O, versus +y for different values of & when N = 7 is shown in

Fig. 6.14, where the horizontal axis is v and the vertical axis is O,.
Optimal v in Fig. 6.13 is different from that of Fig. 6.8, which tells us that the number

of bots holding the same malware must be observed by web honeypots and reflected in the

— 88 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

0.95

0.90
0.85
0.80
=1
Q a
0.75
)4 m a2
. 070, ¢-3
a4 4 0658 a-4
g M 0.60= Q=5
a=6
0.55
ol a7
et 0.50
m, o a=8
l. hos 045, .o
gt 0400 a=10
! . 0.35
*
0.30
' T T T . 0.25
0.00001 0.0001 0.001 0.01 0.1 1

Figure 6.13: PPV versus v for various « (for N =7)

1.00

0.95
0.90
g 82 0.85
gy 1o 0.80
8 _.:'..,_ o "L~ 075 o a=1
LIV I WEIC 070 m a=
ad o2 0.65
: i o a0 060 4 3
" " . “:-: & 055 ® 94
1 A2 050 = a=s
m A o 045 - qg=6
- o]
- n <
a.AJ 4 0.40 -
AN Il S T4 L) _Dgu 035 o a=7
Q:' b9t A =580 030 O @a=8
LAY # S T o, 025 A a=9
v % W AR -
* = 020 o a=10
] AT .
? Bl 0.15
‘ * ¢ H_A
+ L 0.10
v "w —ﬁiﬁ 0.05
' T T T t 0.00
0.00001 0.0001 0.001 0.01 0.1 1

Figure 6.14: O, versus v for various « (for N =7)

calculation of . In contrast to these results, optimal 7 in Fig. 6.14 is the same as that in

Fig. 6.12 and O, also shows little change.

The results of our analysis show that a probe transmission period that minimizes false
positives and maximizes true positives can be computed by observing the number of bots
holding the same malware and the attack transmission rate used by the same malware
download site and applying those observations to this analysis model. Thus, by using the
analysis, we can clarify the change in attack-detection accuracy, which is difficult to assess

solely by observing attacks, and to determine an optimal frequency for monitoring the

— 89 —

6.5 Conclusion

activities of a malware download site.

6.4.2 Discussion

The method for estimating 1 and S presented in this paper is just one example - other
estimation methods may be used to perform the analysis described here. Specifically, we
can consider a method for estimating g that treats the active period as the time from
when the malware download site is first discovered to the time when it stops being used
for mounting attacks. Likewise, we can consider calculating 8 from the ratio of the number
of attacks received by some honeypots to the number of attacks observed at all honeypots
using, for example, a cross validation technique. An optimal probe period can still be
determined by applying 1 and beta estimated by these methods to the analysis method
introduced in this paper.

Some caution is required in collecting attacks by web honeypots and sending out probes
using a malware-download-site monitoring function [54, 66]. For example, honeypots must
be arranged so as to avoid discovery by attackers. Furthermore, an attacker may be mon-
itoring source IP addresses in packets received at the attacker’s malware download site,
so IP addresses should be changed after sending out probes. Constructing such a system
while taking these precautions should enable a service provider to achieve a blacklist-update
system that maximizes true positives while minimizing false positives. With this approach,
the service provider will be able to protect user websites from attacks with a high level of

accuracy.

6.5 Conclusion

In this paper, we modeled attacker and service-provider behaviors with respect to malware
download sites containing website-infecting malware and modeled state transitions with
respect to blacklisting malware download sites. We also analyzed these model with syn-
thetically generated attack patterns and measured attack patterns in an operation network.

This analysis enabled us to clarify the latent change in attack-detection accuracy, which is

— 90 —

Chapter 6. Blacklist Update Scheme Based on Behavior Analysis of Attackers

difficult to assess solely by observing attacks, and to determine an optimal frequency for
monitoring the activities of a malware download site.

In this analysis, we specified system states in terms of whether bots used by an attacker
for malicious purposes are currently being used as malware download sites and whether
those bots are currently blacklisted. We also specified a state transition rate taking into
account attacker behavior in sensing a probe transmitted by a service provider to monitor
a malware download site. Using a Markov chain for these state transitions and calculating
the stationary distribution probability of each state, we clarified the process by which false
positives and false negatives occur for malware detection and analyzed the relationship
between the probe transmission period and attack detection rate. Through this analysis,
we showed that it is possible to determine a probe transmission period that, while being
dependent on the number of bots, raises the attack detection rate while minimizing false
positives.

In this way, by analyzing malware-download-site activities while considering attacker
behavior when communications from websites to the malware download site are being fil-
tered out, one can create a blacklist-update system that raises the attack detection rate
while minimizing false positives. In other words, the proposed method enables a service
provider to construct a safe and secure website environment that can protect websites from
malware infection with high accuracy.

Topics for future research include realtime estimation of parameters so that this method
can be applied to actual systems and an approximation algorithm for handling an increase

in computational load resulting from an increased number of bots.

~91 -

Chapter 7

Conclusions

This thesis proposed and evaluates a malware download site blacklisting scheme to detect
diverse attacks in chapter 4. Additionally, in chapter 5, to maximize information that can
be extracted from attacks, this thesis proposed and evaluated web honeypots, which can
collect attack information such as malware download sites, attack sources, and malware.
Furthermore, in chapter 6, to reduce the number of false negatives and false positives, this
thesis proposed and evaluated schemes for optimizing blacklist update frequency based on

the behavior analysis of malware attackers.

At first, we proposed a provider-provisioned website protection scheme that specifies
MDSs using web honeypots and filter accesses from websites to MDSs. The proposed
scheme focuses on the characteristics of websites accessing MDSs during an attack. The
proposed scheme can then deploy protection technology that filters accesses from websites
to the MDSs. In addition, it focuses on the specific characteristic of attacks on websites in
which exploit codes are executed as HTTP requests. By this characteristic, the proposed
scheme can construct a web honeypot from which it is possible to extract the URLs of
MDSs automatically. Incidentally, it is necessary to use other scheme against the attacks,
such as SQL injection, that do not use MDSs. To correspond with this type of attack, the
controller confirms whether the contents of decoy websites are changed before and after an

access by using a tool such as a tripwire[60]. If there is a difference between the before

— 93 —

Chapter 7. Conclusions

and after content of decoy websites, the controller extracts the source IP address from
the access logs and filters the access from the source IP address. By this, the proposed
scheme can be used to protect websites from attacks that do not use MDSs. It also can
be used to protect websites from not only attacks using websites as attack platforms but
also attacks using websites as MDSs. By protecting websites from such attacks, service
providers can destroy attack platforms. As a result, a service provider can protect not
only websites but also user terminals from malware infections. By using our proposed
scheme, a service provider can provide cost-effective and secure networking environments.
In addition, we evaluated and analyzed malware infection prevention methods for websites
by using web honeypots connected to the Internet. We investigated the detection ratio
of anti-virus software to malware distributed to web honeypots. The results show that it
is difficult to detect a large amount of malware by using antivirus software because the
malware may be legitimate tools for users, such as websites managers, or usage aims such
as management software versions on websites. Our investigation also revealed that traffic
patterns of attackers appear repeatedly on web honeypots if they can automatically and
safely collect a large amount of attack information, like our web honeypots. Because of this
reappearance, our access filtering method for detecting malware infection by monitoring
the same traffic patterns with web honeypots is effective for detecting malware infections
on websites.

Additionally, in our intelligent web honeypot, when a path described in destination
URLs does not exist on a web honeypot, the path is converted to a correct path on that
honeypot by determining the correct path that may be targeted by the attacker. We also
showed the effectiveness of a conversion algorithm, which determines a correct path from
the similarity of the file and directory names of a lower path. From these results, about
50% of incorrect paths can be converted to correct paths with the proposed scheme. Most
of the remaining 50%, which cannot be converted with the proposed scheme, are for web
applications that were not installed on the web honeypots. If attacks, which have these
remaining paths, are forced to be successful, attackers may conclude that the behavior of

the website, which is a web honeypot in this case, is not normal. Therefore, the attack

— 94 —

Chapter 7. Conclusions

success ratio of the proposed scheme is suitable. By deploying the proposed scheme, we can
improve the attack information collected by high-interaction web honeypots. As a result,
we can collect many types of attacks and analyze them in detail, improving the quality and
quantity of information useful for website protection. This will enable service providers to
construct secure website environments.

Furthermore, in this thesis, we proposed an automatic life-cycle monitoring scheme
for malware download sites on which malware is located. Moreover, we modeled attacker
and service-provider behaviors with respect to malware download sites containing website-
infecting malware and modeled state transitions with respect to blacklisting malware down-
load sites. At first, we proposed an automatic life-cycle monitoring scheme for malware
download sites. In addition, we reported the results of our investigation on the life cycles of
malware download sites on the Internet. In our proposed scheme, when a high-interaction
web honeypot receive attacks from the Internet, an exploit code and URLs of malware
download sites and malware programs, which are distributed by the attack, are recorded
on a site monitoring system. In addition, the site monitoring system attempts to peri-
odically download a file from each malware download site. If the hash value of the new
file is different from that of the malware program recorded on the site monitoring system,
the system dynamically analyzes the file and determines whether the file is malware by
using the new file and the exploit code recorded on the site monitoring system. From the
results of our investigations on the Internet using our prototype system, we identified mal-
ware download sites on which malware are frequently replaced. From this investigation,
we clarified the cost efficiencyof our proposed scheme. In addition, we confirmed that the
life cycles of malware download sites are similar to those of normal web pages. We also
found that we can design the monitoring interval of malware download sites by using an
interval-determination method for web page crawlers. Furthermore, we showed that the life
cycles of malware download sites will not be affected by the spread of anti-virus software.
Thus, our proposed scheme can improve the filtering of malware infection of websites by
automatically updating the filtering list. By using this scheme with a website protection

scheme, which filters accesses from websites to malware download sites, service providers

— 95 —

Chapter 7. Conclusions

can provide security services to many websites on cloud computing environments, in which
many types of web services are provided. These security services can be provided according
to user demand or service specifications economically and efficiently. Next, we modeled
attacker and service-provider behaviors with respect to malware download sites containing
website-infecting malware and modeled state transitions with respect to blacklisting mal-
ware download sites. We also analyzed these model with synthetically generated attack
patterns and measured attack patterns in an operation network. This analysis enabled us
to clarify the latent change in attack-detection accuracy, which is difficult to assess solely
by observing attacks, and to determine an optimal frequency for monitoring the activi-
ties of a malware download site. In this analysis, we specified system states in terms of
whether bots used by an attacker for malicious purposes are currently being used as mal-
ware download sites and whether those bots are currently blacklisted. We also specified a
state transition rate taking into account attacker behavior in sensing a probe transmitted
by a service provider to monitor a malware download site. Using a Markov chain for these
state transitions and calculating the stationary distribution probability of each state, we
clarified the process by which false positives and false negatives occur for malware detection
and analyzed the relationship between the probe transmission period and attack detection
rate. Through this analysis, we showed that it is possible to determine a probe transmission
period that, while being dependent on the number of bots, raises the attack detection rate
while minimizing false positives. In this way, by analyzing malware-download-site activi-
ties while considering attacker behavior when communications from websites to the malware
download site are being filtered out, one can create a blacklist-update system that raises
the attack detection rate while minimizing false positives. In other words, the proposed
method enables a service provider to construct a safe and secure website environment that
can protect websites from malware infection with high accuracy.

Service providers can use such a method to protect websites from malware infection
with high probability, allowing them to construct secure platforms for websites.

In this thesis, schemes were evaluated by using attacks which were collected from the

Internet because many studies evaluate their methods by using attacks collected from the

— 96 —

Chapter 7. Conclusions

Internet[69][70]. On the other hands, it is difficult to evaluate effects in actual situation
accurately because it is impossible to understand all malicious information, such as exploit
codes and malware download sites. Assumption of the information and accurate evaluation

in actual situation are important and future topics.

- 97 —

Bibliography

[1]

2]

[4]

[5]

R. Callon and M. Suzuki, “A framework for layer 3 provider provisioned virtual private
networks (PPVPNs),” IETF RFC/110, July 2005.

T. Yagi, T. Kondoh, T. Kuwahara, J. Murayama, H. Ohsaki and M. Imase, “Archi-
tecture Design for SPX: Secure networking Platform for group-oriented eXchange,”

in Proceedings of the Asia-Pacific Symposium on Information and Telecommunication
Technologies (APSITT) 2008, April 2008.

T. Ogasa, Y. Takahashi, H. Ohsaki, T. Yagi, J. Murayama, and Makoto Imase, “Dy-
namic Topology Reconfiguration Method for Service Overlay Networks Using Users’
Community Information,” in Proceedings of the IEEE/IPSJ International Symposium
on Applications and the Internet (SAINT) 2009, July 2009.

Y. Takahashi, K. Sugiyama, H. Ohsaki, M. Imase, T. Yagi, and Junichi Murayama,
“Group-Oriented Communication: Concept and Network Architecture,” in Proceedings
of the First International Workshop on Security of Computer Communications and
Networks (SoCCaN 2008), pp. 649-655, August 2008.

Y. Takahashi, K. Sugiyama, H. Ohsaki, M. Imase, T. Yagi, and Junichi Murayama, “On
Network Architecture for Realizing Group-Oriented Communication,” in Proceedings

of the Asia-Pacific Symposium on Information and Telecommunication Technologies
(APSITT) 2008, April 2008.

K. Sugiyama, H. Ohsaki, M. Imase, T. Yagi, and Junichi Murayama, “NMF: Network
Mining Framework using Topological Structure of Complex Networks,” in Proceedings
of the IEEE Congress on Services (SERVICES) 2008 Part 11, pp. 210-211, September
2008.

— 99 —

BIBLIOGRAPHY

[7] Y. Takahashi, K. Sugiyama, H. Ohsaki, T. Yagi, Junichi Murayama, and M. Imase, “On
Network Architecture for Realizing Group-Oriented Communication,” in Proceedings

of the Asia-Pacific Symposium on Information and Telecommunication Technologies

(APSITT) 2008, April 2008.

[8] M. Jakobsson, and S. Myers, “Phishing and Countermeasures: Understanding the
Increasing Problem of Electronic Identity Theft,” Wiley, 2007.

[9] M. Aburrous, M.A.Hossain, Keshav Dahal, and Fadi Thabtah, “Experimental Case
Studies for Investigating E-Banking Phishing Techniques and Attack Strategies,”
Springer Science, Cong Comput 2010, vol. 2, no. 242-253, April 2010.

[10] L. Zhuang, J. Dunagan, D. Simon, H. Wang, I. Osipkov, G. Hulten and J. D. Ty-
gar, “Characterizing Botnets from Email Spam Records,” in Proceedings of the First
USENIX Workshop on Large Scale Ezxploits and Emergent Threats (LEET) 2008,
April 2008.

[11] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Felegyhazi, C. Grier, T.
Halvorson, C. Kanich, C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M.
Voelker, and Stefan Savage, “Click Trajectories: End-to-End Analysis of the Spam
Value Chain,” in Proceedings of the IEEE Symposium on Security and Privacy 2011,
May 2011.

[12] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Felegyhazi, C. Grier, T.
Halvorson, C. Kanich, C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M.
Voelker, and Stefan Savage, “Spamalytics: An Empirical Analysis of Spam Marketing

Conversion,” in Proceedings of the ACM Conference on Computer and Communica-

tions Security (CCS), October 2008.

[13] J. Bae, S. Ahn, and J. Chung, “Network Access Control and Management Using ARP

”

Spoofing in Various Windows Environment,” in Proceedings of the International Con-

ference on Information Science and Applications (ICISA) 2011, April 2011.

[14] X. Hou, Z. Jiang, and X. Tian, “The detection and prevention for ARP Spoofing based
on Snort,” in Proceedings of the International Conference on Computer Application and

System Modeling (ICCASM) 2010, October 2010.

- 100 —

[15]

[18]

[19]

[20]

[21]

[22]

23]

[24]

BIBLIOGRAPHY

W. Xing, Y. Zhao, and T. Li, “Research on the Defense Against ARP Spoofing At-
tacks Based on Winpcap,” in Proceedings of the International Workshop on Education
Technology and Computer Science (ETCS) 2010, March 2010.

C. Hepner, E. Zmijewski, “Defending Against BGP Man-In-The-Middle Attacks,” in
Proceedings of Black Hat DC 2009, February 2009.

O. Maennel, I. Phillips, D. Perouli, R. Bush, R. Austein, and A. Jaboldinov, “Towards
a Framework for Evaluating BGP Security,” in Proceedings of the Workshop on Cyber
Security Experimentation and Test 2012, August 2012.

J. Israr, M. Guennoun, H. T. Mouftah, “Analysis of impact of trust on Secure Bor-
der Gateway Protocol,” in Proceedings of the IEEE Symposium on Computers and
Communications (ISCC) 2011, June 2011.

Y. Xi, C. Xiaochen, and X Fangqin, “Recovering and Protecting against DNS Cache
Poisoning Attacks,” in Proceedings of the International Conference on Information
Technology, Computer Engineering and Management Sciences (ICM) 2011, Septem-
ber 2011.

L. Fan, Y. Wang, X. Cheng, and L. Li, “Prevent DNS Cache Poisoning Using Security
Proxy,” in Proceedings of the International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT) 2011, October 2011.

Y. W. Ju, K. H. Song, E. J. Lee, and Y. T. Shin, “Cache Poisoning Detection Method
for Improving Security of Recursive DNS,” in Proceedings of the International Confer-

ence on Advanced Communication Technology 2007, February 2007.

J. Nazario, “Political DDoS: Estonia and Beyond,” in Proceedings of the USENIX
Security Symposium 2008, July 2008.

J. Cheng, J. Yin, Y. Liu, Z. Cai, and C. Wu, “DDoS Attack Detection Using IP
Address Feature Interaction,” in Proceedings of the International Conference on Intel-
ligent Networking and Collaborative Systems 2009 (INCOS ’09), November 2009.

Z. C. Yang, “DOS Attack Analysis and Study of New Measures to Prevent,” in Pro-
ceedings of the International Conference on Intelligence Science and Information En-

gineering (ISIE) 2011, August 2011.

- 101 -

BIBLIOGRAPHY

[25] TippingPoint,“The Top Cyber Security Risks”, http://www.dunkel.de/pdf/200909_Top
CyberSecurityRisks.pdf, September 2009.

[26] L. Zhang, and Q. Zhou, “CCOA: Cloud Computing Open Architecture,” in Proceedings
of IEEE International Conference on Web Services (ICWS) 2009, July 2009.

[27] The Open Web Application Security Project, “2007 OWASP
Top 10 Most Critical Web Application Security Vulnerabilities”,
https://www.owasp.org/images/e/e8/ OWASP _Top_10-2007.pdf.

[28] C. Anley,“Advanced SQL Injection in SQL Server Applications,” An NGSSoftware
Insight Security Research (NISR) Publication, 2002.

[29] HTTP Service Project,“Cross Site Scripting Info”, http://httpd.apache.org/info/css-

security /.

[30] Z. Zhao, G. Ahn, and H. Hu, “Examining Social Dynamics for Contering Botnet At-
tacks,” in Proceedings of the IEEE Global Communication Conference (GLOBECOM)
2011, December 2011.

[31] Y. Pyun, Y. Park, X. Wand, D.S. Reeves, and P. Ning, “Tracing traffic through in-
termediate hosts that repacketize flows,” in Proceedings of the IEEE Conference on
Computer Communications (INFOCOM) 2007, May 2007.

[32] G. Hermosillo, R. Gomez, L. Seinturier, and L. Duchien, “AProSec: an Aspect for
Programming Secure Web Applications,” in Proceedings of the Second International
Conference on Abailability, Reliability and Security 2007 (ARES’07), April 2007.

[33] The Open Web Application Security Project,“Command Injection”,
http://www.owasp.org/index.php/Command_Injection.

[34] H. F. G. Robledo, “Type of hosts on a Remote File Inclusion (RFI) Botnet,” in Pro-
ceedings of the Electronics, Robotics and Automotive Mechanics Conference (CERMA)
2008, September 2008.

[35] K.Sohr, T.Mustafa, and X.Bao, “Enforcing Role-Based Access Control Policies in Web
Services with UML and OCL,” in Proceedings of the Annual Computer Security Ap-
plications Conference (ACSAC) 2008, December 2008.

-102 -

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[44]

BIBLIOGRAPHY

T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Investigation and Analysis of Malware
on Websites,” in Proceedings of IEEE Symposium on Web Systems Evolution (WSE)
2010, September 2010.

Kaspersky, “Component List”, http://www.kaspersky.com/component_list.

S. Nanda, L. Lam and T. Chiueh, “Web Application Attack Prevention for Tiered
Internet Services,” in Proceedings of the International Conference on Information As-
surance and Security 2008 (IAS’08), September 2008.

C. Kruegel, and G. Vigna, “Anomaly detection of web-based attacks,” in Proceedings

of the ACM conference on Computer and communications security, October 2003.

T. Huang, S. Huang, and T. Lin, “Web Application Security Assessment by Fault
Injection and Behavior Monitoring,” in Proceedings of the International World Wide
Web Conference, March 2003.

J. M. E. Tapiador, P. G. Teodoro, and J. E. D. Verdejo, “Detection of Web-based
Attacks through Markovian Protocol Parsing,” in Proceedings of the ACM conference

on Computer and communications security, October 2003.

M. Sharifi, M. Zoroufi, and A. Saberi, “How to Counter Control Flow Tampering
Attacks,” in Proceedings of the Computer Systems and Applications 2007 (AICCSA
"07), May 2007.

D. Scott, and R. Sharp, “Specifying and Enforcing Application-Level Web Security
Policies,” in Proceedings of the IEEE Transactions on Knowledge and data Engineering,
August 2003.

D.Watson, and J.Riden, “The Honeynet Project: Data Collection Tools, Infrastruc-
ture, Archives and Analysis,” in Proceedings of the WOMBAT Workshop on Informa-
tion Security Threats Data Collection and Sharing, April 2008.

Chicago Honeynet Project, “The Google Hack Honeypot”,
http://ghh.sourceforge.net/.

The Honeynet Project, “Web Applicaton Honeypot”,
http://www.honeynet.org/gsoc/project8.

- 103 -

BIBLIOGRAPHY

[47]

48]

[49]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

DShield Web Honeypot Project, “Web Honeypot”,
http://site.google.com/site/ webhoneypotsite/alpha-release.

The German Honeynet Project, “HIHAT”, http://www.honeynet.org/project/HIHAT.

M. Muter, F. Freiling, T. Holz, and J. Matthews, “A Generic Toolkit
for Converting Web Applications Into High-Interaction = Honeypots”,
http://people.clarkson.edu/ jnm/publications/honeypot-raid2007.pdf.

Y. Mai, R. Upadrashta, and X. Su, “J-Honeypot:A Java-Based Network Deception
Tool with Monitoring and Intrusion Detection,” in Proceedings of the International

Conference on Information Technology: Coding and Computing, April 2004.

The Open Web Application Security Project, “OWAPS
Best Practices: Use of Web Application Firewalls”,
http://www.owasp.org/index.php/Category:OWASP _Best_Practices: _Use_of_Web
_Application _Firewalls.

E. Eliam, “Reversing: Secrets of Reverse Engineering,” Wiley, 2005.

SecureWorks, “The Reusable Unknown Malware Analysis Net”,

http://www.secureworks.com/research/tools/truman.html.

N. Holz, and T. Provos, “Virtual Honeypots: From Botnet Tracking to Intrusion
Detection,” Wiley, 2007.

vmware, “Virtualize Your IT Infrastructure”, http://www.vinware.com/virtualization/.

S. Nanda, and T. Chiueh, “Execution Trace-Driven Automated Attack Signature Gen-
eration,” in Proceedings of the Computer Security Applications Coference 2008, Decem-
ber 2008.

Symantec, “Attacks Increasingly Target Trusted Web Sites”,
http://www.symantec.com/business/resources/articles/article.jsp?aid=20080513

_sym_report_attacks_increasingly.

AV-Comparative, “On-demand Detection of Malicious Software”, http://www.av-

comparatives.org/images/stories/test /ondret /avc_report21.pdf.

-104 -

[59]

[60]

[61]

[66]

[67]

BIBLIOGRAPHY

T. Yagi, N. Tanimoto, T. Hariu, and M. Itoh, “Enhanced Attack Collection Scheme on
High-Interaction Web Honeypots,” in Proceedings of IEEE Symposium on Computers
and Communications (ISCC) 2010, June 2010.

Sourceforge, “Tripwire”, http://www.sourceforge.net/projects/tripwire/.

T. Yagi, N. Tanimoto, T. Hariu, and M. Itoh, “Design of Provider-Provisioned [J
Website Protection Scheme against Malware Distribution,” IEICE Transactions on
Communications, vol. E93-B, no. 5, pp. 1122-1130, May 2010.

B.E. Brewington, and G.Cybenko, “How dynamic is the web?,” in Proceedings of
the International Journal of Computer and Telecommunications Networking, vol. 33,
issue 1-6, pp. 257276, June 2000.

T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Intelligent High-Interaction Web Hon-
eypots Based on URL Conversion Scheme,” IEICE Transactions on Communications,
vol. E94-B, no. 5, pp. 1339-1347, May 2011.

T. Yagi, N. Tanimoto, T. Hariu and M. Itoh, “Life-cycle Monitoring Scheme of Malware
Download Sites for Websites,” in Proceedings of IEEE International Conference on
Service-Oriented Computing and Applications (SOCA) 2010, December 2010.

J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi, “Heat-seeking Honey-
pots: Design and Experience,” in Proceedings of the World Wide Web (WWW) 2011,
March 2011.

The Honeynet Project, “About The Honeynet Project”,
http://www.honeynet.org/about.

M. AlSabah, K. Bauer, and I. Goldberg , “Enhancing Tor’s Performance using Real-
time Traffic Classification,” in Proceedings of 19th ACM Conference on Computer and
Communications Security (CCS) 2012, October 2012.

Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung, F. Wang, and D.
Boneh, “StegoTorus: A Camouflage Proxy for the Tor Anonymity System,” in Pro-
ceedings of 19th ACM Conference on Computer and Communications Security (CCS)
2012, October 2012.

- 105 -

BIBLIOGRAPHY

[69] L. Blige, E. Kruegel, and M. Balduzzi, “EXPOSURE: Finding Malicious Domain Using
Passive DNS Analysis,” in Proceedings of 18th Annual Network and Disributed System
Security Symposium (NDSS) 2011, February 2011.

[70] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon, “Detecting Mal-
ware Domains at the Upper DNS Hierarchy,” in Proceedings of 20th USENIX Security
Symposium 2011, August 2011.

- 106 —

